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Abstract. The article presents a procedure designed for identification of projectile’s trajectory model through aerodynamic coefficients estimation. 
The identification process is based on firing tables artificially prepared (firing tables prepared using mathematical flight model for the projectile 
instead of trajectories recorded on field tests) with the use of modified point–mass and rigid body trajectory models. All the necessary data, 
including physical parameters of the projectile and its aerodynamic characteristics are provided. The detailed results of estimation of chosen 
aerodynamic coefficients are presented in both visual and tabular form. The main purpose of this paper is to establish the minimum number of 
trajectories (as characterized in firing tables), and the permissible error of initial parameters being passed to the mathematical model that would 
allow the correct identification of projectile’s trajectory model.
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parameters estimation is proposed in [11, 12]. Authors use in 
both papers the D–optimality criterion which seeks to maximize 
the determinant information matrix (or equivalently minimize 
the determinant of the information matrix inverse).

Another approach to the identification process includes 
the analysis of firing tables containing quantities that describe 
a set of trajectories such as: quadrant elevation, range of the 
projectile, time of flight of the projectile, drift of the projectile 
(projectile motion in the horizontal plane), terminal velocity 
of the projectile (ground impact velocity), terminal altitude of 
the projectile (which does not appear in ground firing tables, 
only in anti-aircraft firing tables), prepared for a specific type 
of ammunition during field tests [13]. This paper focuses on the 
firing tables analysis method of projectile’s trajectory model 
identification based on aerodynamic coefficients (used in the 
model) estimation. To be more precise, the mathematical model 
is identified by estimation of parameters of approximating func-
tions (section 2.3) that describe aerodynamic coefficients in 
subsonic and supersonic regimes (this is meant further in the 
paper by the wording “aerodynamic coefficients estimation” 
unless stated otherwise) in terms of Mach number. In general, 
there are two types of firing tables: basic firing tables (prepared 
for standard atmospheric conditions [14]) and correction firing 
tables (contain the corrections for time of projectile’s flight and 
quadrant elevation dependent on the deviations from standard 
atmospheric conditions). It is possible to describe the motion of 
projectile by one of three mathematical models that differ from 
each other mainly in the level of complexity, i.e., the point–
mass trajectory model [15], the modified point–mass trajectory 
model [16, 17] and rigid body trajectory model (6DoF) [18, 19]. 
The latter is the model with 6 degrees of freedom that consists 
of 12 differential equations. It includes 13 different coefficients 
of aerodynamic forces and moments. The modified point–mass 
trajectory model has 4 degrees of freedom – three coordinates 

1.	 Introduction

Modern fire control systems require the knowledge of precise 
but fast models of projectiles’ motion. NATO standardization 
documents advise to use the modified point–mass trajectory 
model. The basic problem in developing such models is the 
ability to determine the coefficients of aerodynamic forces and 
moments that appear in the model. There are many methods 
for those coefficients estimation but the most accurate are 
indirect methods based on the measurement of the projectile 
flight parameters [1–9]. In [5] cubic splines with deficiency 
number 2 (cubic splines with continuous first derivatives [10]) 
are used in order to parametrize the drag coefficient curve. The 
quasi–Newton–Raphson method is then employed to solve 
multi–variable parametric minimization problem. In their re-
search authors used the 3-DoF point–mass ballistic model. In 
[6] a high-order iterative learning identification method is pro-
posed for extracting projectile’s drag coefficient curve from 
radar measured velocity. Again the 3-DoF point–mass model is 
used in this paper. A different approach is presented in [2] which 
employs numerical solutions to the projectile’s equations of mo-
tion. Linse and Stengel [1] propose to combine computational 
neural network models with an estimation-before-modeling par-
adigm for on-line training information. The method is used on 
simulated flight data of a twin-jet transport aircraft. A popular 
approach to the aerodynamic characteristics identification with 
the use of wind tunnel is presented in [9]. Author compares the 
free–flight data and wind tunnel results for the basic finner ref-
erence projectile. A different procedure of the system unknown 
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of the centre of mass and rotational speed. This model con-
tains 6 coefficients of the forces and moments that affect the 
trajectory of the projectile in the highest degree. The model 
identification process is much less complicated due to decreased 
number of coefficients. In this article two of them are consid-
ered: the modified point–mass trajectory model (MPMTM) in 
its explicit form presented in [16] (implicit form of this model 
can be found in [17]) and rigid body trajectory model. The 
comparison of explicit and implicit form of the modified point 
mass trajectory model is presented in [20]. Both models require 
ammunition parameters and aerodynamic coefficients in order 
to produce the trajectory of projectile. In many cases we have 
firing tables on our disposal but we do not have a projectile 
motion model which is crucial in modern fire control systems. 
This paper focuses on analyzing the possibility of the MPMTM 
identification. The identification process will be described for 
target practice–tracer (TP–T) 35 mm, spin–stabilized ammu-
nition (Fig. 1).

ammunition are prepared using trajectories recorded during 
field tests. Using data gathered for several projectile paths 
(projectiles shot with different quadrant elevation), mathemat-
ical flight model and identification methods it is possible to 
estimate aerodynamic coefficients that appear in the model. 
The next step is to produce, using the identified mathematical 
model, firing tables containing parameters that characterize the 
remaining (not recorded during field tests) trajectories.

However, one should keep in mind that field tests are ex-
pensive and the procedure of identification should be tested in 
all possible ways using computer simulations. In order to verify 
and validate the process of aerodynamic coefficients estimation, 
firing tables will be generated using two models of projectile 
trajectory: the explicit form of the modified point–mass tra-
jectory model (MPMTM), and the rigid body trajectory model 
(6DoF). In the implicit form of the MPMTM the yaw of repose 
is determined using an iterative method, which makes the calcu-
lations more time consuming. The mathematical model contains 
the following equations [17]:
●	dynamic differential motion equation of a projectile centre 

of mass

	 mu ̇  = DF + LF + MF + DF + mg ,� (1)

●	dynamic equation of rotation around a projectile axis of 
a symmetry

	
dp
dt
 = 

πρd 4vCspin

8Ix
p,� (2)

●	 equation of the yaw of repose vector

	 αe = 
8Ix p(v£u ̇ )

πρd3(CMα + CMα3αe
2)v4

,� (3)

where: DF, LF, MF, g are the drag, lift, Magnus force and 
gravitational acceleration vectors respectively. Forces acting 
on the projectile (including the planes in which they act) are 
described in details in [21]. Coriolis force is neglected, the 
gravity force is constant along the projectile’s trajectory. The 
remaining letter symbols used in equations: d – projectile diam-
eter (calibre), p – rotational speed, m – mass of the projectile, 
ρ – density of air, v – velocity of the projectile with respect to 
the air: v = u ¡ w, u – velocity of the projectile with respect 
to the ground – fixed reference system, w – velocity of the 
wind, Ix – moment of inertia along the axis of the projectile, 
Cspin – spin damping coefficient, CMα – overturning moment 
coefficient, CMα3 – cubic overturning moment coefficient. It is 
worth mentioning that CMα3 = 0 is assumed during the simu-
lations (as a result of linear dependency of CM on α). In such 
form, the vector αe depends on u ̇ , which results in a differential 
equation being defined by an implicit function. The derived 
explicit form of the MPMTM is described by the following 
equations:

	 x ̇  = v + w,� (4)

where x is the three-dimensional position vector,

Fig. 1. Target–Practice Tracer 35 mm ammunition dimensions and 3D 
model

The goals of this paper are as follows:
●	 check whether the designed identification procedure is cor-

rect;
●	 find the minimal number of trajectories described by firing 

tables needed for correct identification of the mathematical 
model describing projectile’s motion;

●	 establish the level of error of initial guess of aerodynamic 
coefficients values (in an iterative process), which will still 
enable the correct identification.
The process of model identification needs to be performed 

for each type of ammunition only once, i.e., if there are no 
changes in physical parameters (nominal) of the projectile. 

2.	 Aerodynamic ceofficients estimation procedure

This section will provide the procedure used for the aerody-
namic coefficients estimation for TP-T ammunition. It is im-
portant to mention that firing tables for the particular type of 
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	 p ̇  = 
ρv2

2Ix
SdCspin ¢ p ̂ ,   S = 

πd 2

4
,� (5)

	

v ̇  =  ρv2

2m
S

Ã
CD0 + C ̂ Dα2

³
2mg
ρv2S

2́

v ̇  = 
I ̂x2p ̂ 2cos2(γa)

(1 ¡ I ̂x p ̂ 2C ̂ mag ¡ f)
2 + (I ̂x p ̂ 2C ̂ Lα)

2

!
 ¡ g sin(γa)

� (6)
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Dimensionless coefficients used in equations:

	 I ̂x = 
Ix

md 2 , p ̂  = 
pd
v

.� (8)

The above equations describe the case where the wind is ho-
mogeneous within the interval of integration, i.e. w ̇  = 0. The 
dimensionless coefficients were given as:

	 C ̂ Dα2 = 
CDα2

(CMα)
2 , C ̂ Lα = 

CLα

CMα
, C ̂ mag ¡ f  = 

Cmag ¡ f

CMα
.� (9)

Letter symbols used in the above equations: CD0 – aerodynamic 
drag force coefficient, CDα2 – yaw drag coefficient, CLα – lift 
force coefficient. Let us recall that from [20] it follows that the 
explicit and implicit forms of the MPMTM are equivalent. The 
estimation of the dimensionless coefficients described by (9) 
is described next.

In our simulations we will not use firing tables produced 
during field shootings. Such approach ensures that we know 
the aerodynamic coefficients to be estimated beforehand, and 
therefore we can assess whether the outcome of the model iden-
tification procedure is correct. Both models require ammunition 
parameters and aerodynamic coefficients, which will be provided. 
Only ground firing tables will be generated. The reader can easily 
produce such firing tables using aerodynamic coefficients that can 
be found in the paper [22], interpolation techniques (as described 
in chapter 2.3) and one of the mathematical models. Figure 2 
presents the flowchart that describes the model identification 
process which will be described in the following subsections.

2.1. Firing tables and physical parameters of the projec-
tile. In order to generate firing tables for TP–T ammunition 
we used aerodynamic coefficients produced by PRODAS 

1 �γa is the elevation angle of v measured from the horizontal direction,  
i.e. the air-path inclination angle and χa is the azimuth angle of v, i.e.  
the air-path azimuth angle.

(Projectile Rocket Ordnance Design and Analysis System)2 
software. Data used in simulations is prepared with the use of 
both MPMTM and 6DoF. A firing table contains the following 
information about the projectile trajectory: range, quadrant 
elevation, time of flight, abscissa of the trajectory vertex, ordi-
nate of the trajectory vertex, terminal velocity of the projectile 
and drift. Ground firing tables were generated for the elevation 
angle range of 50 to 710 mils3, the latter being the angle of 
maximum range. Authors use mils instead of degrees or ra-
dians as such convention is mostly used in artillery (which is 
the main field of the authors). During the preparation of firing 
tables it is crucial to remember that, in order to estimate aero-
dynamic coefficients in the broader range of Mach number, 
one needs to ‘shoot’ with elevation angles which would 
allow to measure projectile velocities in a much wider range.  
The ammunition physical parameters are presented in Table 1. 

2 www.prodas.com
3 6 400 mil = 2π  rad

Fig. 2. Aerodynamic coefficients estimation procedure; y~i – vector 
containing trajectory description from the firing tables (i.e. range, 
terminal velocity, vertex height, drift), y~

 ̂
i – vector containing trajec-

tory description calculated according to the mathematical model, 
a~ – physical parameters of the projectile and characteristic quantities 
from firing tables (initial velocity, elevation angle, mass, diameter, 
axial moment of inertia), w~i – vector containing coefficients, p~0 – vector 
of the initial coefficients of the approximating functions, p~i – vector of 
the approximating functions coefficients to be estimated, p~id – vector 

of the estimated approximating functions coefficients
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Table 1 
Physical parameters for TP–T ammunition

Ammunition type TP–T

Mass (projectile with fuse) [kg] 0.55

Initial velocity [m/s] 1180

Axial moment of inertia [kg ¢m2] 0.977354e-4

Transversal moment of inertia [kg ¢m2] 0.84686e-3

Diameter [m] 0.035
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The initial angular velocity of the spinning motion was cal-
culated using:

	 p =  2π v
27.57d

,� (10)

where the number 27.57 reflects the length of the revolution of 
the rifling in caliber units.

2.2. Error minimization technique. The MPMTM model is 
used for both the aerodynamic coefficients estimation and the 
firing tables generation, whereas 6DoF motion model is used 
only for firing tables generation. As it was mentioned, the rigid 
body’s trajectory model contains a large number of aerody-
namic coefficients which have a little impact on the simulated 
trajectory. Therefore it makes the process of model identifica-
tion almost impossible to conduct.

Using firing tables generated as described in 2.1 the goal is 
to find the minimum number of trajectories required for correct 
identification of the projectile’s trajectory model (for the speci-
fied initial errors of the identification process). The model iden-
tification procedure is an iterative process that runs as follows 
(relations between aerodynamic coefficients and the quantities 
used for model identification process can be found in [21]):
●	 estimation of the zero–yaw drag coefficient CD0 based on 

the range and terminal velocity fitting;
●	 estimation of the lift force coefficient C ̂ Lα based on the pro-

jectile’s drift;
●	 estimation of the Magnus force coefficient C ̂ mag ¡ f  based on 

the projectile’s vertex height;
●	 estimation of the quadratic drag coefficient C ̂Dα2 based on 

the range and terminal velocity.
To find a sensible local minimum in the multi-dimensional 

parameter space one needs to start to optimize only the most 
potent, i.e. highest order, forces and work ones way down. This 
way, the algorithm is gradually ‘hinted’ toward the area of in-
terest in the parameter space. The consecutive algorithm’s steps 
are as follows:
1.	Estimate CD0 by fitting the range and terminal velocity.
2.	Estimate C ̂ Lα by fitting the projectile’s drift.
3.	Estimate C ̂ mag ¡ f  by fitting the vertex height.
4.	Estimate C ̂Dα2 by fitting the range and terminal velocity.
5.	Check the level of relative error change δErr (relative error 

defined by (12)). If δErr is greater than the established value 
go to the step 1. Otherwise end the identification algorithm.
At this point we will provide the description of model errors 

for identification process. The critical problem is to properly 
define the relative error for the above quantities. As a physi-
cally correct assumption we adopted the distance traveled by 
the bullet as a relative measure. In order to obtain the distance, 
we need to add the differential equation

	 s ̇  = v,� (11)

where v – velocity of the projectile and s – traveled distance 
(length of the flight path) with the initial condition s(0) = 0me-
ters. Therefore, the relative errors for the projectile’s range, 

Fig. 3. Coordinate system used in calculations

drift, terminal height and terminal velocity respectively are as 
follows:

	 δ x = 
x ¡ xm

s(T)
,    δ y = 

y ¡ ym

s(T)
,� (12a)

	 δh = 
h ¡ hm

s(T)
,    δ v = 

(v ¡ vm)T
2s(T)

,� (12b)

where δ x – relative range error, x – range given by firing ta-
bles (coordinate system with trajectory example is presented 
in figure), s(T) – distance which the projectile traveled during 
the time of flight given in firing tables, δ y – relative drift error, 
y – drift correction given by firing tables (angle value in ra-
dian converted to meters), δh – relative error of the projectile 
terminal altitude, h – terminal altitude given by firing tables, 
δ v – relative error of the projectile terminal velocity, v – ter-
minal velocity given by firing tables, xm, ym, hm, vm – range, 
drift, vertex height (terminal height for anti-aircraft firing ta-
bles), terminal velocity obtained using mathematical model of 
the projectile flight. The stopping condition for the integration 
of equations of motion was dependent on the time of flight that 
was taken from firing tables. The main part of the identification 
process (Fig. 2) is the method for error minimization. The estab-
lished criterion was to minimize the mean squared errors from 
the entire range of firing tables. For the minimization procedure 
we used MATLAB function lsqnonlin (trust-region-reflective 
algorithm [23, 24] which is used by default), which enables 
solving non-linear least-squares curve fitting problems.

2.3. Initial model parameters – aerodynamic coefficients in-
terpolation. As it was mentioned before, our simulation tests 
are based on the values of aerodynamic coefficients for TP-T 
ammunition obtained from PRODAS software. Values of coeffi-
cients are included in the paper [22]. The identification process, 
as it was pointed out in section 2.2, will be conducted for drag, 
lift, and Magnus force coefficients. The first two coefficients 
will be interpolated using polynomials in certain variables r, s, 
which further on we shall call aerodynamic coefficient approx-
imating functions of the form introduced in [25, 26]:
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coefficients even for projectiles that are not in its database. 
According to the documentation the percentage error for some 
coefficients are: 3% – 5% for axial force; 6% – 10% for normal 
force; 33% for Magnus force. For the simulation tests authors 
used aerodynamic coefficients that differed from original ones 
by 15% and 50% – functions approximating these coefficients 
are shown in Figs. 4 and 5. The approximating functions of the 
original aerodynamic coefficient values are only used during the 
phase of firing tables generation. The other functions are used 
as initial parameters for the identification process – obviously 
there is no point of conducting the identification procedure with 
correct initial values of the parameters to be estimated. Details 
on using all forms of approximating functions are given in the 
next section. According to PRODAS documentation the level 
of error for initial aerodynamic coefficients values is assumed 
to be higher (than it is predicted by the PRODAS software 
documentation) for the forces with the greatest impact – drag 
and lift forces.

One should remember, that when using coefficients from 
[22], the lift, Magnus and quadratic drag force coefficient is in 
the form suitable for the MPMTM model in its implicit form. 
For aerodynamic drag and lift force coefficients interpolation we 
used the MATLAB function lsqcurvefit to fit the approximating 
function (13). Table 2 contains values of the estimated approxi-

Fig. 4. Drag force coefficient (CD0) as a function of Mach number 
(Ma): values from PRODAS software and approximating functions
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Fig. 5. Lift force coefficient (C ̂ Lα) as a function of Mach number (Ma): 
values from PRODAS software and approximating functions
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Table 2 
Coefficients of approximating functions of the aerodynamic drag and lift force coefficients; DFC0, DFC15, DFC50 – approximating 

functions for original data and for values changed by 15% and 50% respectively for drag force coefficient; LFC0, LFC15, 
LFC50 – approximating functions for original data and for values changed by 15% and 50% respectively for lift force coefficient

a0 a1 a2 b0 b1 b2 K L
DFC0 30.219726 3 – 0.068226 3– 0.0941 – 30.097469 280.017261 280.011623 0.929411 –0.064276
DFC50 30.109864 3 – 0.034116 3– 0.047070 – 30.048734 280.008629 280.005810 0.929413 – 0.064279
DFC15 30.186769 3 – 0.057999 3– 0.080018 – 30.082848 280.014669 280.009878 0.929413 – 0.064279
LFC0 33.066817 – 348.791715 316.035554 – 32.473851 283.739894 316.487091 2.153751 – 1.000840
LFC50 34.651945 – 352.218964 317.722399 – 34.355475 283.457267 317.949416 2.153499 – 1.000418
LFC15 34.170478 – 350.928496 317.022103 – 33.666464 283.508562 317.407370 2.153673 – 1.000712

	 C(Ma) = (1 + s)A(r) + (1 ¡ s)B(r),� (13)

where:

	 A(r) = a0 + a1r + a2r2, B(r) = b0 + b1r + b2r2,� (14)

	

r = (Ma2 ¡ K)/(Ma2 + K),

s = 
(Ma2 ¡ K)/(Ma2 + K)
q

(1 ¡ L2)r2 + L2
,

� (15)

where C(Ma) is an aerodynamic coefficient dependent on the 
Mach number and a0, a1, a2, b0, b1, b2, K, L are parameters to be 
fit. The approximating functions allow to model aerodynamic 
coefficients in both subsonic and supersonic regimes. Quadratic 
drag force coefficient (C ̂Dα2) and Magnus (C ̂ mag ¡ f) force coef-
ficient are assumed to be constant values. Such simplification 
of the model to be identified does not have significant impact 
on the identification procedure. In the paper, due to space lim-
itations only identification results for the CD0 and C ̂ Lα will be 
shown. Figure 4 shows values of the coefficient (as a function 
of Mach number) produced by PRODAS software and their 
approximating functions. PRODAS software uses physical 
parameters of the projectile in order to produce aerodynamic 
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mating functions coefficients for both original and altered aero-
dynamic coefficients values. The reader should keep in mind that 
Table 2 contains the coefficients of the approximating functions 
and not the values of aerodynamic coefficients themselves. In 
order to obtain the coefficients from the table, one should use the 
already mentioned MATLAB function lsqcurvefit and approx-
imating function (13). While generating firing tables with the 
use of 6DoF model authors interpolated the values of all other 
aerodynamic coefficients using gridded data piecewise cubic 
Hermite interpolation (MATLAB griddedInterpolant class).

3.	 Results of identification process for TP–T 35 mm 
ammunition

In our simulations we focused on establishing the minimum 
number of trajectories characterized as in firing tables, and the 
maximum level of error of initial parameters being passed to 
the mathematical model that would allow its correct identifica-
tion. The analysis of the identification process is based on the 
firing tables generated by both MPMTM and 6DoF model (the 
former is also used during parameters estimation). The proce-
dure that we have followed during simulations is described in 
subsection 2.2.

3.1. Identification based on the firing tables generated 
with the modified point–mass trajectory model. In the first 
phase of our analysis we focused on verifying our algorithm 
for model identification. Therefore, we used MPMTM model 
for both identification and firing tables generation. After con-
ducting a set of computer simulations we established the level 
of error of initial values of approximating functions’ coefficients 
(section 2.3) on 50% (Figs. 4 and 5). The minimum number 
of trajectories characterized in firing tables is 7 (trajectories 
were chosen from the range 50–650 mils with the interval of 
100 mils) when using MPMTM model. Figures 6 and 7 show 

the results of drag and lift force coefficients compared to the 
original data generated by PRODAS. The identification proce-
dure was stopped when all of the relative errors (refers to the 
quantities from firing tables) reached the level below 0.01% 
– as it can be seen on Fig. 8. Therefore, considering our anal-

Fig. 7. Drag force coefficient: values from PRODAS software and 
approximating functions – result of the identification process for 

different starting values

Fig. 8. Relative errors (as defined by (12)) for range, vertex height, 
terminal velocity and drift – the result of identification process for 

35 mm TP–T ammunition
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Fig. 6. Lift force coefficient: values from PRODAS software and ap-
proximating functions – result of the identification process for different 
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ysis’ results, we can claim that the identification process is 
valid – we managed to estimate aerodynamic coefficients with 
the acceptable tolerance. Figure 9 shows the absolute errors 
obtained for the estimated aerodynamic coefficients. The most 
significant error is associated with the terminal hight – however 
it is crucial to notice that error value is still lower than 80 cm 
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for the longest trajectory (range over 10 km). The maximum 
error values for the drift and range are around 10 cm each and 
the terminal velocity error is below 0.6 cm/s.

3.2. Identification based on the firing tables generated with 
the 6DoF model. In the following simulation tests we estab-
lished the level of error of initial parameters to be equal to 
15% (50% error made the identification process impossible to 
conduct) and the minimum number of trajectories (9 trajecto-
ries chosen from the range of 50–450 mils with the interval of 
50 mils) based on firing tables generated with the use of 6DoF 
(MPMTM still used in the identification process). These values 
guarantee that the identification procedure will give us satis-
fying outcomes – relative errors level below 0.06% (Fig. 12). 
Figures 10 and 11 show the results of the model identification 
process for lift and drag force coefficients. It can be seen that 
despite the relatively small differences between estimated and 
original coefficients, minimum relative errors are higher when 

Fig. 9. Absolute errors for range, vertex height, terminal velocity and 
drift – the result of identification process for 35 mm TP–T ammunition. 

Units for each quantity is given in the legend
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Fig. 10. Lift force coefficient: values from PRODAS software and 
approximating functions
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Fig. 11. Drag force coefficient: values from PRODAS software and 
approximating functions
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Fig. 12. Relative errors (as defined by (12)) for range, vertex height, 
terminal velocity and drift – the result of identification process for 

35 mm TP–T ammunition
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using firing tables generated with the use of 6DoF than with 
the modified point–mass model. One should keep in mind that 
the equations of motion of the projectile treated as a rigid body 
take into account higher number of physical processes that can 
affect the bullet during the flight. It is therefore natural that 
the results are slightly worse when using in the identification 
process the MPMTM – model where we focus only on four 
(out of 11) aerodynamic coefficients that are used in 6DoF. 
Figure 13 shows the absolute errors obtained for the identified 
model. The highest error values are associated with the terminal 
altitude and range of the projectile – errors are within the abso-
lute value of 2.5 meters. The terminal velocity error is within 
the absolute value of approximately 0.5 m/s.
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4.	 Conclusions

During our simulations we studied the possibility of parametric 
identification of the modified point–mass trajectory model (rec-
ommended by NATO standardization documents) in its explicit 
form for the purposes of Fire Control Systems. The firing ta-
bles generated with the modified point–mass model and 6DoF 
model were used in the identification process. In both cases the 
outcome of the identification process was correct. It was found 
that when using the data obtained from 6DoF model, the initial 
values of aerodynamic coefficients have to be more precisely 
determined (determined with lower value of initial error). We 
also established the minimum number of trajectories described 
by firing tables needed for correct identification. Such analysis 
is vital for the accurate planning of field tests with the use 
of artillery. Computer simulations give better insight into the 
issues related to determining the number of different elevation 
angles for artillery shooting.
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