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Abstract. This paper presents state feedback control with a linear-quadratic regulator of a doubly fed induction generator. Resonant terms are 
added to the plant model in order to provide disturbance rejection and reference tracking. A new approach to controlling a parameter varying 
linear model of the induction machine is presented, allowing to apply a linear-quadratic regulator to the doubly fed induction generator. The 
control scheme described herein is suitable for the doubly fed induction generator operating under unbalanced stator voltage conditions, because 
the controller with resonant terms is built in the stationary αβ coordinate system. In it, the positive and negative symmetrical sequences have 
equal frequencies. The paper highlights specific problems associated with state feedback control of the doubly fed induction generator, i.e. the 
process of generator connection to an unbalanced grid. In contrast with classical voltage-oriented cascade control methods, in state feedback 
control of a stand-alone doubly fed induction generator there is no separate rotor current controller. This may cause over-current problem during 
DFIG synchronization with the grid which has been solved in this paper. Voltage synchronization and grid operation of the generator were tested 
in a laboratory rig with a 7.5 kW wound-rotor induction machine.
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for the generator controller come from superior power control-
lers, e.g. the maximum power point tracking (MPPT) algorithm 
[6]. This methodology has been used, for instance, in [1, 4] due 
to a significant difference in time constants between the primary 
source and generator.

The grid-connected DFIG is usually controlled with decou-
pled control loops in the synchronously rotating, field-oriented 

1.	 Introduction

The doubly fed induction generator (DFIG) is utilized in 
modern renewable energy systems such as wind turbines and 
hydropower plants [1]. DFIG rotor windings are connected to 
a power converter by means of slip rings, and its stator is di-
rectly connected to the power grid. Provided that rotor speed is 
close to synchronous speed, the generator can be controlled by 
a power converter with considerably reduced power. This is the 
main reason for DFIG popularity in medium-size variable-speed 
power generation systems. Although DFIG is mostly used in 
wind energy conversion systems, it can also prove useful in 
hydro plants [2], combustion-engine-driven generators [3, 4] 
and flywheel energy storage systems [5].

Figure 1 shows a typical topology of a grid-connected 
DFIG, in which part of the control structure described in this 
paper is highlighted. Issues connected with the grid-side con-
verter (GSC) are neglected in the paper because GSC does not 
influence the performance of the machine. It acts as an active 
filter/rectifier, for which control methods are well known in 
the literature.

Turbine control and superior power management should be 
treated only as an example because there are many possible 
DFIG system configurations, which are beyond the scope of 
the paper. This paper focuses on DFIG control without taking 
account of prime mover dynamics. Torque and power references 

Fig. 1. Part of the wind-turbine-driven DFIG considered in the paper
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(or voltage-oriented) coordinate system (Fig. 2a). Although 
these vector control methods provide satisfactory results with 
sinusoidal balanced grid voltage, they require modifications 
during voltage distortions and under unbalanced grid voltage 
conditions. Those can be obtained by means of calculating 
compensation terms and four controllers of rotor current sym-
metrical sequence components [7]. Another way is to use pro-
portional-integral-resonant controllers in a rotating frame or 
proportional-resonant controllers in a stationary frame [8, 9] 
instead of separate controllers of the positive and negative se-
quence.

In [8], the authors assume fixed angular speed of the stator 
flux vector as well as constant phase shift between stator 
voltage and stator flux. Moreover, equation (24) derived in the 
paper remains true only for a balanced grid. In [9], the authors 
assume that the derivative of the stator voltage α component 
has the waveform of the β component scaled by synchronous 
speed and, quite oppositely, the derivative of β components has 
the waveform of the α component scaled by synchronous speed. 
This is true for specific unbalanced voltage conditions but in 
general α and β components may have different amplitudes or 
phase shift different than 90 degrees as well. Thus, reference 
current calculated using this assumption does not produce the 
expected stator power for voltage unbalance.

Direct power control (DPC) is another control structure 
used in DFIG applications, described in [10–12]. However, 
when using vector control, the current harmonics are lower 
than when hysteresis controllers are used at the same average 
switching frequency [11]. This is because the resolution of 
the PWM signal created by the modulator in vector control 
is wider than the one created by the hysteresis controller in 
classic DPC. Additionally, in order to obtain any of the current 

reasonable targets (symmetrical stator current, sinusoidal rotor 
current or electromagnetic torque oscillations cancellation) in 
DPC methods, it is necessary to calculate adequate amplitude 
and phase of the power component oscillations. Although it is 
possible to introduce some factors allowing management of 
power component oscillations to obtain specific targets [12], 
lack of the current control inner loop hinders the implementa-
tion of current limitations in a simple manner. Compensation 
of electromagnetic torque oscillations during unbalanced grid 
operation can be arrived at as shown in [12]. However, although 
the decomposition of currents into positive and negative se-
quences can be neglected, grid voltage decomposition is usually 
necessary, as shown in [13].

Stand-alone DFIG usually contains additional superior stator 
voltage regulation loops, which create, together with current 
controllers, a cascade control scheme (Fig. 2b). Moreover, extra 
parallel regulators can be incorporated into the control system 
under non-linear load conditions. Tuning of DFIG controllers 
designed for unbalanced and distorted conditions can be espe-
cially problematic due to interferences of simultaneously oper-
ating parallel controllers. State feedback control is an approach 
to control system design different from the cascade scheme 
because overall plant dynamics are considered during individual 
tuning procedure calls. The paper presents full-state feedback 
control of DFIG with the rotor-side converter (RSC) for stand-
alone and grid operation. A control method for stand-alone op-
eration is developed in order to obtain voltage synchronization.

Special attention has been paid to the process of DFIG tran-
sition from the stand-alone operation mode to the grid operation 
mode using state feedback control. Solving the problem requires 
not only physical synchronization of stator and grid voltage, but 
also synchronization of the states of regulators which are sepa-
rate for stand-alone and grid-connected operation modes. This 
problem does not occur in the classic cascaded control system 
but application of many resonant terms connected parallelly in 
classic cascaded control is troublesome when tuning to assure 
system stability.

The paper proposes a linear-quadratic regulator for power 
and torque control of DFIG operating under unbalanced 
voltage conditions. DFIG operation is shown in all potential 
modes: generator launch in the autonomous mode, gener-
ator synchronization and connection to an unbalanced grid. 
Control system targets in the grid-connected mode include 
reduction of electromagnetic torque ripples due to negative 
sequence influence and maintaining non-oscillatory stator re-
active power. Other control targets are also identified (sym-
metrical stator currents, sinusoidal rotor currents, constant 
instantaneous powers) [15] but they are not analyzed in this 
paper because they concern stator or rotor current reference 
calculation and do not constitute a regulation problem [22]. 
The main objective of the paper is to obtain synchronization 
of stator voltage in the autonomous mode with grid voltage 
before grid connection. In classical stator voltage regulation 
with an inner current control loop this issue is quite trivial 
[16]. In the case of state feedback control of stator voltage, it 
requires (before the moment of connection) building the con-
trol signal of the controller carrying the work after connection 

Fig. 2. DFIG control structures: a) decoupled cascade power control, 
b) decoupled cascade voltage control

(a)

(b)
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to the grid. Otherwise, once the grid connection operation 
controller is started with zero control signals, it may cause 
stator and rotor over-current even if stator and grid voltage 
are synchronized. In the steady state, both cascaded voltage 
control with the inner current control loop and state-feedback-
based voltage controller may give similar results, when both 
methods involve oscillatory terms.

2.	 State controller

Although the electrical circuit model of the induction machine 
is non-linear, it is mostly considered linear with a varying 
parameter ωm. This is a minor simplification because the rotor 
speed varies very slowly in comparison with electrical state 
variables. This approach is also fundamental for using linear 
proportional-resonant controllers with decoupling terms in 
a cascade structure for DFIG [13]. The DFIG linear-quadratic 
regulator (LQR) has already been implemented using model 
linearization at a chosen operation point (particular rotor 
speed) [14]. This method provides for a convenient tuning 
procedure, especially when many resonant terms are present 
in the internal model of the control system, designed in order 
to provide disturbance suppression. The main drawback of 
building voltage-oriented control for a distorted grid with 
high harmonics is the tuning procedure based on a try-and-
guess procedure, which can be very tiresome when there are 
many resonant terms. Moreover, stability is not guaranteed 
analytically. In contrast, LQR provides an elegant procedure 

for building the control system. However, its main drawback 
is that the DFIG mathematical model is non-stationary because 
some terms in the dynamic model depend on speed, which 
varies in time.

The state controller was designed in five steps. First, a plant 
model for autonomous operation was constructed and another 
one, without filtering capacitors, for the grid-operation mode. 
Second, the plant models had to be extended to include a dis-
turbance dynamic model, which introduced auxiliary state 
variables. Two resonant terms were included in order to com-
pensate for fundamental harmonic disturbances. Next, a novel 
method of plant model parameter fixing for linear-quadratic 
regulator design was used. Electromagnetic torque and reac-
tive power tracking were the selected control targets in grid 
operation, thus adequate reference stator currents were calcu-
lated on the basis of instantaneous voltages and currents. Next, 
simultaneous synchronization of stator voltage with the grid 
and synchronization of the state controllers for stand-alone 
and grid operation was performed. Eventually, linear-quadratic 
optimization was applied in order to meet the requirements of 
fast stator current tracking in the case of grid-connected op-
eration and of stator voltage disturbance rejection in the case 
of autonomous operation. A schematic diagram of the control 
structure is shown in Fig. 3.

2.1. Plant models. This paper uses the classical linear model of 
the induction machine (1–4). Its full description can be found 
in [17]. Additionally, equations (5–6) are calculated, describing 
voltage dynamics of capacitors connected to the stator side in 

(a) (b)

Fig. 3. Schemes of state feedback control structures for a) stand-alone mode before synchronization, b) grid-connected mode of DFIG



678

M. Szypulski and G. Iwański

Bull.  Pol.  Ac.:  Tech.  66(5)  2018

the stand-alone mode. Based on these six equations, state equa-
tions of the plant models which will be controlled are obtained.

usα = Rsisα + Ls
disα
dt

 + Lm
dirα
dt

� (1)

usβ = Rsisβ + Ls
disβ
dt

 + Lm
dirβ
dt

� (2)

urα = Rrirα + Lr
dirα
dt

 + Lm
disα
dt

 ¡ ωm(Lr irβ + Lmisβ)� (3)

urβ = Rrirβ + Lr
dirβ
dt

 + Lm
disβ
dt

 ¡ ωm(Lr irα + Lmisα)� (4)

dusα

dt
 = –Cf

–1isα ¡ (RlCf)
–1usα� (5)

dusβ

dt
 = –Cf

–1isβ ¡ (RlCf)
–1usβ .� (6)

2.2. Grid operation. In the control system for grid operation of 
DFIG, it is assumed that stator voltage is a disturbance, which 
will be compensated for by the internal model of the regulator. 
A plant model for grid operation that takes this into consider-
ation is shown in (7). Four state variables are measurable, thus 
there is no need to use a state observer. Moreover, model (7) is 
controllable, thus system dynamics can be freely adjusted with 
full-state feedback.

d
dt

 = 

isα
isβ
irα
irβ

 = Agrid

isα
isβ
irα
irβ

 + Bgrid
urα

urβ

Agrid = (σLsLr)
–1

	–RsLr	 ωmL2
m	 RrLm	 ωmLrLm

	–ωmL2
m	 –RsLr	 –ωmLrLm	 RrLm

	 RsLm	 –ωmLsLm	 RrLs	 –ωmLrLs

	ωmLsLm	 RsLm	 ωmLrLs	 RrLs

Bgrid = (σLsLr)
–1

	 Lr	 0	 –Lm	 0
	 0	 Lr	 0	 –Lm

	–Lm	 0	 Ls	 0
	 0	 –Lm	 0	 Ls

.

� (7)

2.3. Stand-alone operation. Autonomous operation requires 
extending the plant state vector to include stator voltages, 
which are state variables emerging due to the operation of sta-
tor-connected filtering capacitors. Load current is treated as 
a disturbance in the autonomous DFIG model, similarly to other 
stand-alone systems such as inverters equipped with LC filters 
generating sinusoidal voltage waveforms. Resonant terms com-
pensate for load current influence despite loading conditions, 
provided that the load is linear. In the paper, an autonomous 
DFIG under no-load conditions is modeled as this is the most 
difficult situation due to the lowest damping in the system.

d
dt

 = 

isα
isβ
irα
irβ
usβ

usβ

 =  Aauto

isα
isβ
irα
irβ
usβ

usβ

 + Bauto
urα

urβ

Aauto = (σLs Lr)
–1

	 –RsLr	 ωmL 2
m	 RrLm	 ωmLrLm	 Lr 	 0

	 –ωmL 2
m	 –RsLr	 –ωmLrLm	 RrLm	 0	 Lr

	 RsLm	 –ωmLsLm	 RrLs	 –ωmLrLs	 Lm	 0
	 ωmLsLm	 RsLm	 ωmLrLs	 RrLs	 0	 Lm

	–Cf
–1(σLsLr)	 0	 0	 0	 0	 0

	 0	 –Cf
–1(σLsLr)	 0	 0	 0	 0

� (8)

Bauto = (σLs Lr)
–1

	 Lr	 0	 – Lm	 0
	 0	 Lr	 0	 – Lm

	– Lm	 0	 Ls	 0
	 0	 – Lm	 0	 Ls

	 0	 0	 0	 0
	 0	 0	 0	 0

.
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Moreover, this mode is used here only for synchronization 
of stator voltage with grid voltage and not for load supply. Influ-
ence of the load current on stator voltage is a broad topic, related 
not only to unbalance and harmonics but also to over-current 
protections. The problem of state feedback control synthesis 
during load current unbalance and harmonics has already been 
solved in [26]. Model (8), describing stand-alone DFIG, is also 
controllable but it now has 6 state variables.

Stability of the closed-loop DFIG system under varying 
parameters can be evaluated by observing the trajectories of 
its eigenvalues. Feedback gain has been designed using one 
set of plant parameters, whereas the eigenvalues trajectories of 
the closed-loop system have been calculated for changing the 
machine speed. Variability of resistances has a minor impact on 
damping of the closed-loop system. Variability of rotor speed 
(Fig. 4) has a much more significant impact on the model dy-
namics despite the feedback loop with LQR.

due to basic state matrices Aauto (8) and Agrid (7). Therefore, the 
actual plant changes under variable-speed operation. Modern 
control theory presents two main ways of handling linear pa-
rameter-varying systems.

	
d
dt

 = 

isα
isβ
irα
irβ
usβ
usβ
xα1
xα2
xβ1
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 = 
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irα
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 +
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� (9a)

	
d
dt

 = 
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isβ
irα
irβ
xα1
xα2
xβ1
xβ2

 = 
	 Agrid	 04£4
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isβ
irα
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 + 
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02£2
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� (9b)

	 1n£n	 – matrix with ones on the diagonal
	 0m£n	– matrix of zeros.

One, suitable for systems with parameters that change only 
slightly, is robust control, described in detail in [18]. In this 
method, controllers are tuned in the nominal operation point 
and they are meant to react to parameter changes as little as 
possible. Another method is designed for systems with param-
eters that change significantly but can be measured and utilized 
to adapt the controller during system operation. Gain-scheduled 
controllers are tuned in many operation points and controller 
gain is approximated across varying parameter [19]. Tuning of 
gain-scheduled controllers may be tiresome due to many tuning 
procedure calls. Moreover, simple linear approximations of the 
feedback gains obtained are not always satisfactory.

Plant parameter fixing is done indirectly within the clas-
sical decoupled control of DFIG because varying rotor speed 
is present only in the cross coupling terms of the DFIG model. 
Decoupling instantly fixes parameters of the controlled plant. It 
is proposed to use a parameter fixing feedback loop which has 
a formula similar to decoupling terms in the classical field-ori-
ented control, except that the proposed parameter fixing loop 

Fig. 4. Eigenvalues trajectories under varying model parameters and 
constant-gain state feedback control: a) sweep of rotor angular speed 

in the range of (0.7 ωs, 1.3 ωs)
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2.4. Auxiliary states. A closed-loop system rejects disturbances 
if the plant model is augmented by extra dynamic terms repre-
senting disturbances dynamics. In the case of the model built 
within the αβ frame, additional oscillatory terms are created 
using the following pairs of variables: xα1–xα2, xβ1–xβ2 for each 
axis, respectively, and the plant models (for autonomous op-
eration (9a) and grid operation (9b)) are augmented by two 
resonant terms, each with resonant pulsation ωs equal to the 
grid voltage pulsation.

2.5. Model parameter fixing. Thus created augmented models 
(9a) and (9b) are linear but still dependent on the rotor speed 
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does not fully decouple state variables. Instead, it makes this 
coupling speed invariant. This is not a problem for state feed-
back control because this type of control takes into consider-
ation the full state of the plant and not only the state of one 
control path (either α or β here) as is the case in the cascaded 
control structure. Thus, the coupling parameters between the 
αβ axes may remain constant.

State matrices of models (7) and (8) are decomposed into 
two separate matrices each, one that is rotor-speed-independent 
and another dependent on rotor speed, as shown in (10). By 
splitting the control action into two state-feedback loops (11) 
and finding such gain K̃(ωm) that (13) is true, the closed-loop 
system (12) is reduced to parameter-constant model (14).

x ̇  = (A–  + Ã(ωm))x + Bu� (10)

u = u– + ũ(ωm) = –K–x ¡ K̃(ωm)x� (11)

x ̇  = (A–  ¡ BK–)x + (Ã(ωm) ¡ BK̃(ωm))x� (12)

(Ã(ωm) ¡ BK̃(ωm)) = 0� (13)

x ̇  = (A–  ¡ BK–)x .� (14)

Due to the special structure of the state matrix of the DFIG 
model, (13) can be solved while rotor-speed-dependent control 
signal ũ(ωm) (15) fixes the parameters of the plant model. After 
implementing this internal parameter fixing loop, classical state 
feedback control methods can be applied for this linear time-in-
variant model.

	 ũ(ωm) = 
(ωs ¡ ωm)Lmisβ + (ωs ¡ ωm)Lmirβ
–(ωs ¡ ωm)Lmisα ¡ (ωs ¡ ωm)Lmirα

.� (15)

A system with the presented inner feedback loop can be 
controlled using LQR without other adaptation mechanisms 
because the impact of changing rotor speed is compensated for 
by the inner feedback loop. It can be seen that this feedback 
loop (15) is very similar to the decoupling terms used in FOC 
and VOC methods. The difference is that cross couplings are 
not cancelled but simply rendered rotor-speed-invariant. This 
additional parameter fixing signal converges to 0 when rotor 
speed goes to synchronous speed. The control signal produced 
by the parameter fixing loop is small in comparison to the signal 
produced by main state feedback. When the auxiliary feedback 
loop is applied into the DFIG control scheme, the eigenvalues 
of the closed-loop system remain constant despite changes in 
rotor speed.

2.6. Reference calculation. The state feedback controller pro-
vides for reference tracking and disturbance rejection but pre-
cise calculation of the reference signals is equally important. 
The references for an autonomous DFIG are stator voltages. 
Before connecting DFIG to the grid, stator voltage should 
be smoothly synchronized to the grid voltage in order not to 

cause stator current swell during the connection. In case of 
small voltage unbalances, stator voltage can be synchronized 
only to the positive sequence of grid voltage. When the grid 
is highly unbalanced, both positive and negative sequences of 
stator voltage should be synchronized [20].

DFIG synchronization with an unbalanced grid can be 
performed using a tracking system based on a second-order 
general integrator (SOGI), presented in Fig. 5. SOGI amplifies 
a selected frequency of the input signal and attenuates others. 
A simple feedback loop comparing a reference signal with the 
output of SOGI creates the tracking system of a selected spec-
tral component of the reference signal. Using the presented 
system as the reference filter of the stator voltage reference 
signal, it is possible to smoothly synchronize DFIG voltage 
with the unbalanced grid. Initially, reference is given arbitrarily 
symmetrically, and in some instant to, depending on the superior 
control, the reference changes to grid voltage signal ugα, ugβ. 
Finally, reference stator voltage us

r
α
ef, us

r
β
ef  equals the grid voltage, 

and assuming that SOGI filter dynamics are slower than state 
feedback control, the generated stator voltage usα, usβ is syn-
chronized simultaneously with grid voltage ugα, ugβ.

Fig. 5. Voltage synchronization of DFIG with unbalanced grid voltage

In the grid operation, the electromagnetic torque and re-
active power are the reference signals provided by a superior 
controller (e.g. MPPT, the reactive power management system 
dependent on grid codes). They have to be translated into the 
stator current references within the αβ reference frame [21], 
which are used for current control with state feedback. Equa-
tions (16) and (17) can serve to obtain stator current which will 
produce the commanded electromagnetic torque and reactive 
power of grid-connected DFIG [23].

is
r
α
ef = 

2(T refusα + qrefpψsα)
3p(usαψsβ ¡ usβψsα)

� (16)

is
r
β
ef = 

2(T refusβ + qrefpψsβ)
3p(usαψsβ ¡ usβψsα)

.� (17)

Stator flux occurring in (16) and (17) is usually estimated 
by integrating stator voltage and filtration in order to eliminate 
stator voltage measurement offsets and noises [22].
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2.7. Linear-quadratic regulator. Dynamics of controllable 
linear systems can be adjusted with pole placement in sin-
gle-input single-output systems and with eigenstructure assign-
ment in multiple-input multiple-output systems. The choice of 
adequate eigenvalues and eigenvectors to meet technical re-
quirements (rising time, settling time, overshot) is in general 
complicated and non-trivial. Optimization methods are fre-
quently used to obtain feedback gains. Linear-quadratic opti-
mization, which minimizes function (18), representing signal 
energy in the controlled system, is often used to tune state con-
trollers.

	 J =
Z

0

1
xT(t)Qx(t) + uT(t)Ru(t)dt.� (18)

Although the choice of the eigenvalue structure is elimi-
nated using LQR, penalty matrices (Q, R) have to be selected. 
Nonetheless, the linear-quadratic regulator is easier to tune than 
the state controller with eigenvalue assignment due to intuitive 
physical interpretation of goal function (18). Iterative tuning 
of LQR by means of the trial-and-error method is usually used 
but lately some automatic methods, such as particle swarm op-
timization, are successfully used in the tuning procedure [25]. 
In the paper, penalty matrices are chosen by means of trial-and-
error tuning, and for small systems they are effective enough. 
Appendix A shows the chosen Q and R penalty matrices. The 
control action extended by resonant terms for stand-alone oper-
ation is described by (19, 20), whereas control action extended 
by resonant terms for a grid-connected system is described by 
(21, 22). Individual gains k for each state variable are provided 
in Appendix A.

urα = –kα1isα ¡ kα2isβ ¡ kα3irα ¡ kα4irβ ¡ kα5usα ¡
urα = ¡ kα6usβ ¡ kα7xα1 ¡ kα8xα2 ¡ kα9xβ1 ¡ kα10xβ2

� (19)

urβ  = –kβ1isα ¡ kβ2isβ ¡ kβ3irα ¡ kβ4irβ ¡ kβ5usα ¡
urα = ¡ kβ6usβ ¡ kβ7xα1 ¡ kβ8xα2 ¡ kβ9xβ1 ¡ kβ10xβ2

� (20)

urα = –kα1isα ¡ kα2isβ ¡ kα3irα ¡ kα4irβ ¡ kα5xα1 ¡
urα = ¡ kα6xα2 ¡ kα7xβ1 ¡ kα8xβ2

� (21)

urβ  = –kβ1isα ¡ kβ2isβ ¡ kβ3irα ¡ kβ4irβ ¡ kβ5xα1 ¡
urα = ¡ kβ6xα2 ¡ kβ7xβ1 ¡ kβ8xβ2.

� (22)

The LQR structure cannot be divided into separate control 
feedback loops for individual variables, in contrast to the situ-
ation in the cascade control scheme. A common current control 
loop for both operation modes in the cascade structure makes 
connection to the grid smooth because the current controller 
keeps rotor voltage invariant during the connection. But let us 
assume that just before connection to the grid the generator 
was not loaded. Then, if the stator and rotor voltage keep their 
amplitude and frequency during changing operation modes, the 
connection is made without the stator current transient.

The LQR structures for the autonomous and grid-oper-
ation modes are separate (resonant terms are connected to 
different signals; the numbers of system state variables are 
also different). Therefore, in order to effect smooth switching 
between operation modes, these two controllers should be syn-
chronized at the time of stator and grid voltage synchroniza-
tion. The regulator synchronization algorithm is presented in 
Fig. 6. The difference between the output signal of the auton-

Fig. 6. Synchronization of state controllers with an additional feedback 
loop and proportional-resonant controller P-R, which is switched on 

during stator voltage synchronization with the grid

Fig. 7. Synchronization of stator voltage with the grid without simul-
taneous synchronization of state controllers

0.6 0.8 1.0 1.2

omous-operation state-controller and the output signal of the 
grid-operation state-controller is enhanced by a proportion-
al-resonant P-R regulator and fed to the resonant terms of the 
grid-operation state controller. Figure 7 and Fig. 8 show stator 
voltage, stator current, electromagnetic torque and stator 
powers during the synchronization of stator voltage with the 
grid. If there is no synchronization of the controllers – this 
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situation is shown in Fig. 7 – there is a stator current swell 
during the connection, which produces torque and power rip-
ples after the connection.

3.	 Experimental verification under unbalanced 
grid voltage conditions

The presented system was verified in a laboratory rig with 
a 7.5 kW DFIG driven by a speed-controlled DC machine. 
DFIG parameters are shown in Table 1 in Appendix B. 
The control algorithm was implemented in a Texas Instruments 
digital signal controller TMS320F28335 and all experimental 
results were acquired using a Yokogawa ScopeCorder DL850E. 
Autonomous operation of DFIG was performed in order to 
synchronize the generator with an unbalanced grid. DFIG was 
connected to filtering capacitors in the autonomous mode, 
which also provided a fraction of the reactive power required 
for magnetization of the machine. The unbalanced grid was 
created with a multi-tap transformer (voltage unbalanced factor 
that is defined in [26] stood at 21%). DFIG was connected to 
the grid following the synchronization procedure.

Figures 9–11 present reference torque and reactive power 
steps under unbalanced voltage conditions. Unfortunately, in 
the laboratory grid there is a visible content of high harmonics, 
which slightly deforms the shape of stator currents. However, 
despite significant asymmetry of the grid voltage, torque and 
stator reactive power ripples have been eliminated. It is not 
possible to reach full rated torque due to the construction of 
the slip ring machine used in the laboratory, which is designed 
for magnetization from the stator side, and the rotor rated cur-
rent is lower than the stator rated current. When magnetization 
is provided from the rotor side, as typically in DFIG systems 

with back-to-back power converters, the rotor current active 
component responsible for torque production is significantly 
lower than the rated value.

Figure 9 shows step change of the reference torque from 
zero to half of the rated value. The rotor current reaches the 
rated value. The step response is rapid due to implementation 
of the input model. Some small oscillations of indirectly con-
trolled variables (Tem, qs) occur at the beginning of the step 
because oscillatory terms require some time to fully elim-
inate the steady state error of the state feedback controller. 
Oscillations of the ps power component are significant despite 
a relatively low voltage asymmetry factor but it is impossible 
to eliminate torque and active power oscillations at the same 
time, and elimination of ps power components is not the goal 
of this paper. Figure 10 shows stator current tracking (four 
bottom waveforms on the oscillograms are actual and refer-
ence αβ components of the stator current) following a step in 

Fig. 8. Synchronization of stator voltage with the grid with synchro-
nization of state controllers

0.6 0.8 1.0 1.2

Fig. 9. Step in reference torque from 0 Nm to –22.5 Nm under 0 var 
stator reactive power; the following are shown: phase stator voltages 
us, stator currents is, rotor currents ir, stator active power ps, stator 

reactive power qs and torque Tem

Fig. 10. Step in reference torque from 0 Nm to –22.5 Nm under 1500 var 
stator reactive power; the following are shown: phase stator voltages 
us, stator currents is, rotor currents ir, α and β components of reference 

stator current i*
sα i*

sβ, α and β components of stator current isα isβ
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the reference electromagnetic torque under 1500 var of the qs 
power component.

Figure 11 shows the step in the reference qs component of 
stator power from zero to 3 kvar at fixed reference torque of 
the machine equal to half of the rated value. Thus obtained 
transients dynamics and elimination of controlled variables os-
cillations are analogical to the case of the reference torque step 

changes. The reference torque step made, shown in Fig. 9, is an 
extreme situation because under normal operation conditions 
the reference power changes gradually, according to the MPPT 
algorithm.

Figure 12 presents synchronization and connection of DFIG 
to an unbalanced grid without load. Significant swells were not 
observed in the stator current. Before DFIG connection to the 
grid, stator and grid voltages were synchronized using the pre-
sented SOGI tracker (Fig. 5). State controllers for autonomous 
and grid operation were also synchronized.

This issue has been explained in subsection 2.6, where com-
parative simulation results with and without synchronization of 
state controllers have been shown. Synchronization of voltages 
within the stationary frame renders both the decomposition of 
symmetrical sequences and the PLL synchronization loop ob-
solete.

In this paper, the methodology of state feedback controllers 
synchronization was verified only for the positive and nega-
tive sequence of fundamental harmonics. It seems that resonant 
terms for higher harmonics do not need to be synchronized 
because the content of harmonics is negligible in comparison 
with the negative sequence.

4.	 Conclusions

The main goal of the paper, i.e. state feedback control applica-
tion to the stand-alone and grid-connected doubly fed induction 
generator, has been achieved. Although state feedback control is 
known in automatic control, using it for the doubly fed induc-
tion generator requires solving two main problems. The first one 
is to adapt the controller to the operation point of the control 
plant with varying parameters. The second issue is to find the 
initial conditions of the controller operating after connection 
to the grid. The first problem has been solved by proposing an 
additional loop creating a speed invariant DFIG model. The 
second problem has been solved by means of controller output 
synchronization during transition from stand-alone to grid-con-
nected operation.

The experiment conducted shows satisfying performance 
of the generator system in the grid-connected operation mode 
and smooth connection of the autonomous DFIG to the grid. 
The simplification made in the DFIG model in this paper, i.e. 
that rotor speed is constant in the transients of stator and rotor 
current, can be justified for a vast group of DFIG applications 
(e.g. wind turbines). The mechanical time constant is 1–2 orders 
of magnitude larger than the electrical time constant for wind 
energy conversion systems. This paper shows a promising per-
spective for state controller application for doubly fed induction 
generator control, in spite of rare use of state controllers for in-
duction machines nowadays. The manner of model parameters 
fixing is valid also for the cage induction machine and can be 
used in its motor and generator control.
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Fig. 11. Step in reference reactive power from 0 var to 3000 var under 
–22.5 Nm torque; the following are shown: phase stator voltages us, 
stator currents is, rotor currents ir, stator active power ps, stator reactive 

power qs and torque Tem

Fig. 12. Synchronization and connection to the grid of the DFIG 
system without load. The following are shown: stator voltages us, grid 

voltages us, stator currents is and rotor currents ir
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Appendix A.
Qauto = diag([�0.0013, 0.0013, 0.0016, 0.0016, 6.92 ¢ 10–6, 

6.92 ¢ 10–6, 5 ¢ 105, 5 ¢ 105, 5.07, 5.07])

Rauto = �diag([3.35 ¢ 10–6, 3.35 ¢ 10–6 ])

Qgrid = diag([�0.013, 0.013, 0.0016, 0.0016, 5 ¢ 105, 5 ¢ 105, 
5.07, 5.07])

Rgrid = diag([�3.35 ¢ 10–6, 3.35 ¢ 10–6 ]) .

Gains obtained for stand-alone operation:
	 kα1	=	 –2.4721487907177195
	 kα2	=	 –26.199722024284885
	 kα3	=	 33.100006713126909
	 kα4	=	 –24.910814027023473
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	 kα5	=	 0.82350178697695897
	 kα6	=	 0.08449827097236072
	 kα7	=	 –13642.429823061711
	 kα8	=	 –1460.6433991669999
	 kα9	=	 –191.46916492232302
	 kα10	=	 –20.499879868614062
	 kβ1	=	 26.199722023292015
	 kβ2	=	 –2.4721487911581304
	 kβ3	=	 24.910814026057043
	 kβ4	=	 33.100006712797217
	 kβ5	=	 – 0.084498270977843237
	 kβ6	=	 0.82350178698059129
	 kβ7	=	 1460.6434072888394
	 kβ8	=	 –13642.429817870459
	 kβ9	=	 20.499879869479599
	 kβ10	=	 –191.46916492500981

Gains obtained for grid-connected operation:
	 kα1	=	 –11.787063698397393
	 kα2	=	 38.623131201840849
	 kα3	=	 33.804866612214006
	 kα4	=	 36.727007414250984
	 kα5	=	 –5891.889892297665
	 kα6	=	 713.90691760765196
	 kα7	=	 126.89103325043251
	 kα8	=	 –15.375098312742464
	 kβ1	=	 –38.623131202028887
	 kβ2	=	 –11.78706369828271

	 kβ3	=	 –36.72700741441944
	 kβ4	=	 33.804866612323131
	 kβ5	=	 – 713.9069180250807
	 kβ6	=	 – 5891.8898947070456
	 kβ7	=	 15.375098309609829
	 kβ8	=	 126.89103325892579

Appendix B.

Table 1 
Parameters of the laboratory rig

Symbol Parameter Value

Pn Rated power 7.5 kW

Us Stator voltage 220/380 V

Nsr Stator-to-rotor turns ratio 380/182

Rs Stator resistance 0.43 Ω

Ls Stator leakage inductance 12 mH

Rr Rotor resistance 0.71 Ω

Lr Rotor leakage inductance 12 mH

Lm Mutual inductance 120 mH

p Pole pairs 2

Cf Stator filtering capacitance 50 µF


