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Abstract: The paper presents a method of construction of cylindrical and azimuthal equal-
area map projections of a triaxial ellipsoid. Equations of a triaxial ellipsoid are a function
of reduced coordinates and functions of projections are expressed with use of the normal
elliptic integral of the second kind and Jacobian elliptic functions. This solution allows us
to use standard methods of solving such integrals and functions. The article also presents
functions for the calculation of distortion. The maps illustrate the basic properties of de-
veloped map projections. Distortion of areas and lengths are presented on isograms and by
Tissot’s indicatrixes with garticules of reduced coordinates. In this paper the author contin-
ues his considerations of the application of reduced coordinates to the construction of map
projections for equidistant map projections. The developed method can be used in planetary
cartography for mapping irregular objects, for which tri-axial ellipsoids have been accepted
as reference surfaces. It can also be used to calculate the surface areas of regions located
on these objects. The calculations were carried out for a tri-axial ellipsoid with semi-axes
a = 267.5 m, b = 147 m, c = 104.5 m accepted as a reference ellipsoid for the Itokawa
asteroid.

Keywords: map projection, distortion in map projection, equal-area map projection, tri-
axial ellipsoid, reduced coordinates

1. Introduction

Nyrtsov et al. (2015) presented a method of construction of cylindrical and azimuthal
equal-area map projections of a tri-axial ellipsoid with application of planetocentric co-
ordinates. This paper presents an alternative method of calculating coordinates in such
type of projections as well as a method of determination of map projection distortion.
These methods depend on the application of reduced coordinates. Final equations are ex-
pressed by Jacobian elliptic functions and the normal elliptic integrals of the second kind.
In this paper the author continues his considerations of the application of reduced coor-
dinates to the construction of map projections as it was proposed in the paper (Pędzich,
2017) for equidistant map projections.



272 Paweł Pędzich

Cylindrical and azimuthal map projections of a tri-axial ellipsoid significantly differ
from commonly known map projections of an oblate ellipsoid or a sphere. In cylindrical
map projections of a triaxial ellipsoid, the meridians are projected as straight lines par-
allel to x axis and parallels are projected as curves. It is the most significant difference
compared to map projections of an oblate ellipsoid wherein parallels are projected as
straight lines. Azimuthal map projections of a tri-axial ellipsoid also differ from projec-
tions of an oblate ellipsoid or a sphere. The main difference is the fact that parallels are
projected as ellipses not as circles like in projections of an oblate ellipsoid or a sphere.

Cylindrical map projections are used for mapping of an entire globe. However be-
cause of huge distortion in the polar regions, azimuthal map projections are recom-
mended. Equal area map projections are used for mapping of entire objects and for cal-
culating the surface areas of regions. Map projections of a tri-axial ellipsoid are used for
mapping of extraterrestrial objects, especially when their shapes differ from a sphere or
an oblate ellipsoid.

Equal-area map projections of a sphere have been known for ages. Ptolemy was one
of the first who described this type of map projections. In 2nd century in his Geography
he developed a map projection similar to equal-area. His second projection was devel-
oped by Rigobert Bonne in 1752 and then it was applied to the creation of topographic
maps in many countries. In 1772 J.H. Lambert published a book on map projections,
which described, among others, cylindrical and azimuthal equal-area map projections
of a sphere. Hence such map projections are called Lambert’s projections. Map pro-
jections of a tri-axial ellipsoid are rarely a subject of research. Nyrtsov et al. (2015)
developed cylindrical and azimuthal map projections of a tri-axial ellipsoid with the ap-
plication of planetocentric coordinates. He also presented maps of irregularly shaped
extraterrestrial bodies. Their surfaces were approximated by a tri-axial ellipsoid. An-
other interesting equal-area mapping method for irregularly shaped bodies was presented
by Bertohoud (2005). He applied the original method that consisted in dividing an ob-
ject into small quadrangles and then projecting them on a plane preserving their ar-
eas. His maps show the approximate shape of object. Despite of maintaining area of
object, an irregular shape of a graticule discouraged potential users. In literature, con-
formal (Bugayevsky, 1987, 1991; Snyder, 1985; Fleis et al., 2013; Nyrtsov, 2014) and
equidistant (Bugaevsky, 1999; Nyrtsov et al., 2012) projections of a tri-axial ellipsoid
are described more often than equal-area projections. Tri-axial ellipsoids are usually
described with use of planetocentric and planetographic coordinates. In this paper, re-
duced coordinates are applied. They are a generalization of reduced coordinates of an
oblate ellipsoid to a tri-axial ellipsoid. This enables the expression of map projection
functions by means of Jacobian elliptic functions and the normal elliptic integrals of the
second kind.

The main purpose of the article is to show the method of construction of equal-area
map projections with application of reduced coordinates, normal elliptic integrals and
Jacobian elliptic functions. Series of maps were created to present the graticules and
map projections distortion. The calculations were carried out for a tri-axial ellipsoid
with semi-axes a = 267.5 m, b = 147 m, c = 104.5 m accepted as a reference ellipsoid
for the Itokawa asteroid (Nyrtsov et al., 2014).
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2. Basic assumptions

One of the most interesting direction of research in cartography is mapping of small
extraterrestrial objects, such as asteroids, comets or small satellites. Often their surfaces
are approximated by tri-axial ellipsoids. Itokawa asteroid is an example of such object. It
is a stony asteroid, classified as near-Earth object and potentially hazardous asteroid. It
was the first asteroid to be the target of a sample return mission (the Japanese space
probe Hayabusa) and the smallest asteroid photographed and visited by spacecraft
(wikipedia). Therefore it is interesting object for mapping and is used in the paper as
an example for calculation.

In the paper as a reference surface in map projections a tri-axial ellipsoid is assumed.
Such a surface is often used as an approximation of small celestial bodies. In the paper
equations of a tri-axial ellipsoid are expressed in reduced coordinates and have the fol-
lowing form:

r⃗ = [X = acosucosv, Y = bcosusinv, Z = csinu] (1)

where a, b, c – semi-axis of ellipsoid, u, v – reduced coordinates u ∈
⟨
−π

2
,

π
2

⟩
,

v ∈ ⟨−π, π).
In the paper formulae of equal-area cylindrical and azimuthal projections are derived.

These types of projections are used for mapping of entire extraterrestrial objects and
because such maps preserve surface area they are especially useful for mapping the
distribution of geological features on irregular objects (Berthoud 2005). They can also
be used to calculate the surface areas of regions located on these objects.

General formulae for map projections of a tri-axial ellipsoid are as follows:

r⃗′ = [x = x(u,v), y = x(u,v)] . (2)

In equal-area map projections the following condition must be fulfilled:

H ′ = H, (3)

where H ′ = |⃗r′u × r⃗′v| is a determinant of partial derivatives for projection functions and
H = |⃗ru × r⃗v| is a determinant for a reference surface.

In the paper also formulae for distortion are derived. The equations for Tissot in-
dicatrix and also scale of linear distortion are as follows (Balcerzak, Panasiuk 2005),
(Pędzich, 2014):

µ⃗ = µ⃗1 cosA+ µ⃗2 sinA, (4)

where:

µ⃗1 =
r⃗′u√
E
, µ⃗2 =

E⃗r′v −Fr⃗′u
H
√

E
,

and r⃗′u, r⃗′v are partial derivatives of map projection functions.
Based on scales µ⃗1, µ⃗2 extreme scales m,n can be calculated, according to the fol-

lowing equations:

m⃗ = µ⃗1 cosAe + µ⃗2 sinAe ,

n⃗ =−µ⃗1 sinAe + µ⃗2 cosAe ,
(5)
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where:
tanAe =

2Q
P−R

and
P = µ2

1 , Q = µ⃗1 ◦ µ⃗2 , R = µ2
2 .

Angular distortion is calculating according to the formula:

sin
ω
2
=

m−n
m+n

. (6)

For calculation of distortion partial derivatives r⃗′u, r⃗′v are required:

r⃗′u =
[

dx
du

,
dy
du

]
, r⃗′v =

[
dx
dv

,
dy
dv

]
,

and coefficients of the Gaussian fundamental form.

3. Derivation of formulae in equal-area map projections of a tri-axial ellipsoid

This chapter shows the method of construction of equal-area map projections with appli-
cation of reduced coordinates, normal elliptic integrals and Jacobian elliptic functions.
There are presented equations of a tri-axial ellipsoid expressed by reduced coordinates
and coefficients of the Gaussian fundamental form. Then functions of cylindrical and
azimuthal equal-area map projections are derived along with their partial derivatives for
map projection distortion.

3.1. Coefficients of the Gaussian fundamental form

Partial derivatives of function (1) have the form:

r⃗u =

[
dX
du

=−asinucosv,
dY
du

=−bsinusinv,
dZ
du

= ccosu
]
,

r⃗v =

[
dX
dv

=−acosusinv, c
dY
dv

= bcosucosv, c
dZ
dv

= 0
]

and coefficients of the Gaussian fundamental form are as follows:

E = |⃗ru|2 =
(

dX
du

)2

+

(
dY
du

)2

+

(
dZ
du

)2

,

E = sin2 u
(
a2 cos2 v+b2 sin2 v

)
+ c2 cos2 u,

F = r⃗u ◦ r⃗v =
dX
du

dX
dv

+
dY
du

dY
dv

+
dZ
du

dZ
dv

,

F = a2 sinucosusinvcosv−b2 sinucosusinvcosv =
(
a2 −b2)sinucosusinvcosv.

(7)
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The determinant of derivatives has the following form:

H = |⃗ru × r⃗v|=

=

√(
dY
du

dZ
dv

− dY
dv

dZ
du

)2

+

(
dX
du

dZ
dv

− dX
dv

dZ
du

)2

+

(
dX
du

dY
dv

− dX
dv

dY
du

)2

=

= abc cosu

√
cos2 u

(
1
a2 cos2 v+

1
b2 sin2 v

)
+

1
c2 sin2 u . (8)

3.2. Cylindrical equal-area map projections of a tri-axial ellipsoid

General formulas for cylindrical map projections of a tri-axial ellipsoid are as follows:

r⃗′ = [x = x(u,v), y = Av] , (9)

where A is a constant.
In that case the meridians are projected as straight lines and the distances between

them are equal. For construction of equal-area map projection partial derivatives of func-
tion (9) are required and their determinant. For function (9) partial derivatives are as
follows:

r⃗′u =
[

dx
du

, 0
]
, r⃗′v =

[
dx
dv

, A
]

(10)

and the determinant has the form:

H ′ =
∣∣⃗r′u × r⃗′v

∣∣= A
dx
du

.

In equal-area map projections the condition (3) must be fulfilled. Hence for an equal-
area map projection of a tri-axial ellipsoid the following condition is obtained:

dx
du

=
1
A

abc cosu

√
cos2 u

(
1
a2 cos2 v+

1
b2 sin2 v

)
+

1
c2 sin2 u . (11)

Integration of (11) from u = 0 to u = ui leads to:

x =
1
A

abc
ui∫

0

cosu

√
cos2 u

(
1
a2 cos2 v+

1
b2 sin2 v

)
+

1
c2 sin2 u du. (12)

Equation (12) may be written in the following form:

x =
1
A

abcI1 , (13)
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where

I1 =

ui∫
0

cosu

√
cos2 u

(
1
a2 cos2 v+

1
b2 sin2 v

)
+

1
c2 sin2 u du. (14)

Substituting

B2 =
1
a2 cos2 v+

1
b2 sin2 v and C2 =

1
c2 (15)

to equation (14) for the integral I1 results in:

I1 =

ui∫
0

cosu
√

B2 cos2 u+C2 sin2 u du (16)

hence

I1 = B
ui∫

0

cosu

√
1+
(

C2

B2 −1
)

sin2 u du = BI2 , (17)

where

I2 =

ui∫
0

cosu
√

1+n2 sin2 u du and n2 =
C2

B2 −1. (18)

Transforming the integral I2:

I2 =

u∫
0

cosu
1+n2 sin2 u√

1+n2 sin2 u
du =

u∫
0

cosu√
1+n2 sin2 u

du+n2
u∫

0

cosusin2 u√
1+n2 sin2 u

du =

=

u∫
0

cosu√
1+n2 sin2 u

du+n2
u∫

0

cosu
(
1− cos2 u

)√
1+n2 sin2 u

du =

=

u∫
0

cosu√
1+n2 sin2 u

du+n2
u∫

0

cosu√
1+n2 sin2 u

du−n2
u∫

0

cos3 u√
1+n2 sin2 u

du.

Finally basing on (Byrd Friedman 1954) the integral I2 takes a form:

I2 = G1
(
1+n2)−n2G3 , (19)

where:

G1 =

ui∫
0

cosu√
1+n2 sin2 u

du =
k′

k
ln

1+ ksnω
dnω

∣∣∣∣ωi

0
, (20)

G3 =

ui∫
0

cos3 u√
1+n2 sin2 u

du =
k′

2k3

[
(1+ k2) ln

(
1+ ksnω

dnω

)
− kk′2snω nd2ω

]∣∣∣∣ωi

0
(21)
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and:

sn2ω =

(
1+n2

)
sin2 u

1+n2 sin2 u
, k2 =

n2

1+n2 , k′ =
√

1− k2 ,

dnω =
√

1− k2sn2ω , ndω =
1

dnω
,

snω , dnω,ndω – Jacobian elliptic functions.
Finally, the equations for cylindrical equal-area projections may be written as:

x =
1
A

abcB
(
G1
(
1+n2)−n2G3

)
,

y = Av.
(22)

One can assume that constant A in order to the length of the image of the equator on
plane was equal to the length of the equator on a tri-axial ellipsoid. The equation for the
length of a parallel (Pędzich, 2017) on a tri-axial ellipsoid has the form:

sp = bcosu
1
k′p

[
E (ψp,kp)− k2

psnϑp cdϑp
]
, (23)

where:
E (ψp, kp) is the normal elliptic integral of the second kind,

k′p =
√

1− k2
p , k2

p =
n2

p

1+n2
p
, n2

p =
a2

b2 −1, snϑp =

√√√√(1+n2
p
)

sin2 v

1+n2
p sin2 v

,

cdϑp =

√
1− sn2ϑp

1− k2
psn2ϑp

, ψp = arcsin


√√√√(1+n2

p
)

sin2 v

1+n2
p sin2 v

 .

Substituting u = 0 and v =
π
2

the equation for the length of 1/4 of the equator is
obtained:

sp =
b
k′p

E
(π

2
, kp

)
(24)

and hence the constant A has a form:

A =
2b

π k′p
E
(π

2
, kp

)
. (25)

If we assume a cylindrical map projection in the following form:

r⃗′ = [x = x(u,v), y = y(v)] , (26)



278 Paweł Pędzich

then meridians are projected as straight lines but the distances between them are different
depending on the function y = y(v). Partial derivatives of functions (26) have the form:

r⃗′u =
[

dx
du

, 0
]
, r⃗′v =

[
dx
dv

,
dy
dv

]
, (27)

and the determinant of partial derivatives can be written as follows:

H ′ =
∣∣⃗r′u × r⃗′v

∣∣= dx
du

dy
dv

. (28)

If we assume that the distances between meridians are preserved, it also means that
the equator is projected isometrically, and then basing on (Pędzich, 2017) it may be
written as follows:

y = b
vi∫

0

√
1+n2

p sin2 v dv, (29)

where: n2
p =

a2

b2 −1.
Hence derivative

dy
dv

= b
√

1+n2
p sin2 v . (30)

Then determinant H ′ has a form:

H ′ =
dx
du

b
√

1+n2
p sin2 v .

Basing on equal-area condition H ′ = H we may write:

dx
du

b
√

1+n2
p sin2 v = abc cosu

√
cos2 u

(
1
a2 cos2 v+

1
b2 sin2 v

)
+

1
c2 sin2 u

hence
dx
du

=
ac cosu√

1+n2
p sin2 v

√
cos2 u

(
1
a2 cos2 v+

1
b2 sin2 v

)
+

1
c2 sin2 u (31)

and then

x =
ac√

1+n2
p sin2 v

ui∫
0

cosu

√
cos2 u

(
1
a2 cos2 v+

1
b2 sin2 v

)
+

1
c2 sin2 u du. (32)

Equation (32) may be written in the form:

x =
ac√

1+n2
p sin2 v

BI2 (33)

where B is given by (15) and I2 is given by (18).
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Finally projection functions in a cylindrical equal-area map projection with the equa-
tor projected without distortion are in the following form:

x =
ac√

1+n2
p sin2 v

B
(
G1
(
1+n2)−n2G3

)
,

y = b
1
k′p

[
E(ψp, kp)− k2

psnϑp cdϑp
] (34)

and G1, G3, n and B are given by (15), (18), (20), (21), E(ψp,kp), k′p, k2
p, n2

p, snϑp, cdϑp,
ψp are calculated using (23).

3.3. Distortion in cylindrical equal-area map projections

In case of a map projection with equations given by (9) the partial derivatives have form

(10). Derivatives
dy
du

= 0,
dy
dv

= A. Derivative
dx
du

is given by (11) and
dx
dv

is obtained by
differentiation of (12) with respect to v.

According to the Leibnitz rule we can write:

dx
dv

=
1
A

abc
ui∫

0

cosu
cos2 u

(
− 2

a2 cosvsinv+
2
b2 sinvcosv

)
2

√
cos2 u

(
1
a2 cos2 v+

1
b2 sin2 v

)
+

1
c2 sin2 u

 du =

=
1
A

abcsinvcosv
(

1
b2 −

1
a2

) ui∫
0

cos3 u√
cos2 u

(
1
a2 cos2 v+

1
b2 sin2 v

)
+

1
c2 sin2 u

du

hence:
dx
dv

=
1
A

abcsinvcosv
(

1
b2 −

1
a2

)
I3 , (35)

where:

I3 =

ui∫
0

cos3 u√
cos2 u

(
1
a2 cos2 v+

1
b2 sin2 v

)
+

1
c2 sin2 u

du.

Then substituting (15) to the integral I3 the following is obtained:

I3 =

ui∫
0

cos3 u√
B2 cos2 u+C2 sin2 u

du =
1
B

ui∫
0

cos3 u√
1+
(

C2

B2 −1
)

sin2 u

du. (36)
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Then the integral (36) can be written in the form:

I3 =
1
B

ui∫
0

cos3 u√
1+n2 sin2 u

du =
1
B

G3 . (37)

Finally the derivative
dx
dv

has the form:

dx
dv

=
1
A

1
B

abcsinvcosv
(

1
b2 −

1
a2

)
G3 , (38)

where G3 is given by (21).
Substituting derived partial derivatives to formulae (4), (5) and (6) it is possible to

calculate distortion.
In case of a cylindrical map projection with the equator projected without distortion

(26) spatial derivatives are given by (27). The derivative
dx
du

is given by (31),
dy
dv

is

given by (30) and derivative
dx
dv

can be calculated by differentiation formula (32) with
respect to v:

dx
dv

=
ac√

1+np2 sin2 vB
sinvcosv

(
1
b2 −

1
a2

)
G3+

− ac(
1+np2 sin2 v

)3/2 np2 sinvcosvB
(
G1(1+n2)−n2G3

)
=

=
acsinvcosv√
1+np2 sin2 v

[
1
B

(
1
b2 −

1
a2

)
G3 −

np2B
1+np2 sin2 v

(
G1(1+n2)−n2G3

)]
. (39)

Substituting derived partial derivatives to formulae (4), (5) and (6) it is possible to
calculate distortion.

3.4. Azimuthal equal-area map projections of a tri-axial ellipsoid

The general formulas for azimuthal map projections of a tri-axial ellipsoid are as follows:

r⃗′ = [ρ(u,v)cosv, ρ(u,v)sinv] . (40)

Partial derivatives of functions (40) have the following form:

r⃗′u =
[

dρ
du

cosv,
dρ
du

sinv
]
,

r⃗′v =
[

dρ
dv

cosv−ρ sinv,
dρ
dv

sinv+ρ cosv
] (41)
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and the determinant of partial derivatives:

H ′ = ρ
dρ
du

. (42)

Because equal-area map projections meet the condition (3) hence for azimuthal pro-
jection (40) the following differential equation is obtained:

ρ
dρ
du

= H (43)

then:
ρdρ =−H du . (44)

The minus sign in (44) appeared because function ρ decreases when u grows. After
differentiation substituting (8) the following result is obtained:

ρ2

2
=−

ui∫
π/2

H du = abc
(

I1
∣∣π/2
0 − I1

∣∣ui

0

)
(45)

when I1 is given by (17).
Then after some modification:

ρ =

√
2abc

(
I1
∣∣π/2
0 − I1

∣∣ui

0

)
. (46)

Finally function (46) after substitution (19) takes the form:

ρ =

√
2abcB

[
(G1(1+n2)−n2G3)

∣∣π/2
0 − (G1(1+n2)−n2G3)

∣∣ui

0

]
, (47)

where n, G1, G3, are given by (18), (20), (21).
The basic property of azimuthal map projections is that angles in the pole are pro-

jected without distortion. That condition is not fulfilled in a map projection (40). To
fulfill this condition, a map projection must be modified. Instead of the reduced lati-
tude v, the planetocentric latitude λ should be substituted. Then an equation for a map
projection in the reduced coordinates will take the form:

x = ρ cos(λ (v)) , y = ρ sin(λ (v)) , (48)

where:
tanλ =

b
a

tanv. (49)

Hence, the partial derivatives of the function (48) take the form:

r⃗′u =
[

dρ
du

cosλ ,
dρ
du

sinλ
]
,

r⃗′v =
[

dρ
dv

cosλ −ρ sinλ
dλ
dv

,
dρ
dv

sinλ +ρ cosλ
dλ
dv

]
.

(50)
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Then the determinant of partial derivatives can be written:

H ′ = ρ
dρ
du

dλ
dv

. (51)

On the basis of (51) the derivative is calculated:

dλ
dv

=
b
a

cos2 λ
cos2 v

. (52)

By converting (51) we can write:
√

1− cos2 λ
cosλ

=
b
a

tanv,

hence:
1− cos2 λ

cos2 λ
=

(
b
a

)2

tan2 v

and then:
1

cos2 λ
=

(
b
a

)2

tan2 v+1

and
cos2 λ =

1(
b
a

)2

tan2 v+1

. (53)

The result of substituting (53) to (52) and then transforming it is the derivative:

dλ
dv

=
b
a

1(
b
a

)2

sin2 v+ cos2 v

. (54)

Then from the condition H = H ′ a differential equation is obtained:

ρ dρ =−a
b

((
b
a

)2

sin2 v+ cos2 v

)
H du. (55)

Integration results in the following formula:

ρ2

2
=−a

b

((
b
a

)2

sin2 v+ cos2 v

) ui∫
π/2

H du (56)

hence:

ρ =

√√√√√2a
b

((
b
a

)2

sin2 v+ cos2 v

) π/2∫
0

H du−
ui∫

0

H du

 (57)
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and then:

ρ =

√√√√2a2c

((
b
a

)2

sin2 v+ cos2 v

)(
I1
∣∣π/2
0 − I1

∣∣ui

0

)
, (58)

where I1 is given by (17).
Finally, after taking into account (14) the equation will take the form:

ρ =

√√√√2a2cB

((
b
a

)2

sin2 v+ cos2 v

)(
(G1(1+n2)−n2G3)

∣∣π/2
0 − (G1(1+n2)−n2G3)

∣∣ui

0

)
, (59)

where G1, G3, n and Bare given by (15), (18), (20), (21).

3.5. Distortion in azimuthal equal-area map projections

The basis for determining the distortion are partial derivatives, which, in the case of a

map projection in the form (40), are given by equation (41). Derivative
dρ
du

=−H
ρ

. The

derivative
dρ
dv

is calculated by differentiating (46) with respect to the variable v.
Hence:

dρ
dv

=
abc
ρ

(
dI1
∣∣π/2
0

dv
−

dI1
∣∣ui

0
dv

)
. (60)

Then, on the basis of (14) the derivative
dI1
∣∣ui

0
dv

is calculated in the following way:

dI1

dv
=

d
ui∫

0

cosu

√
cos2 u

(
1
a2 cos2 v+

1
b2 sin2 v

)
+

1
c2 sin2 u du

dv
=

=

ui∫
0

cosu
cos2 u

(
− 2

a2 cosvsinv+
2
b2 sinvcosv

)
2

√
cos2 u

(
1
a2 cos2 v+

1
b2 sin2 v

)
+

1
c2 sin2 u

du =

= sinvcosv
(

1
b2 −

1
a2

)
I3 , (61)

where:

I3 =
1
B

ui∫
0

cos3 u√
1+n2 sin2 u

du =
1
B

G3 . (62)
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The derivative
dI1
∣∣π/2
0

dv
is calculated in a similar way, changing only the limits of inte-

gration.
Finally, the derivative will take the form:

dρ
dv

=
abc
Bρ

sinvcosv
(

1
b2 −

1
a2

)(
G3
∣∣π/2
0 −G3

∣∣ui

0

)
, (63)

where G3 is given by the equation (21).
Substituting derived partial derivatives to formulae (4), (5) and (6) it is possible to

calculate distortion.
In the case of a map projection (48), the partial derivatives are in the form (50). In

formulas for distortion except derivatives
dρ
du

and
dρ
dv

the derivative
dλ
dv

appears, which

is given by (54). The derivative
dρ
du

is calculated based on (55):

dρ
du

=−
aH

((
b
a

)2

sin2 v+ cos2 v

)
bρ

.

The derivative
dρ
dv

is calculated by differentiation of the formula (58):

dρ
dv

=
a2c
ρ

sinvcosv

[
2

((
b
a

)2

−1

)(
I1
∣∣π/2
0 − I1

∣∣ui

0

)
+

+

((
b
a

)2

sin2 v+ cos2 v

)(
1
b2 −

1
a2

)(
dI1
∣∣π/2
0

dv
−

dI1
∣∣ui

0
dv

)]

hence

dρ
dv

=
a2csinvcosv

ρ

[
2B

((
b
a

)2

−1

)((
G1(1+n2)−n2G3

)∣∣π/2
0 +

−
(
G1(1+n2)−n2G3

)∣∣ui

0

)
+

1
B

((
b
a

)2

sin2 v+ cos2 v

)(
1
b2 −

1
a2

)(
G3
∣∣π/2
0 −G3

∣∣ui

0

)]
.

where G1, G3, n and Bare given by (15), (18), (20), (21).
Substituting derived partial derivatives to formulae (4), (5) and (6) it is possible to

calculate distortion.
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4. Analysis of results

Derived formulae allow to calculate coordinates and distortion measures in elaborated
map projections. There are formulae for two types of projections: azimuthal and cylin-
drical. Using that formulae coordinates and distortion measures were calculated in map
projections of tri-axial ellipsoid used as a reference surface for asteroid Itokawa. Then
maps of distortion were created.

4.1. Analysis of results in cylindrical map projections

Coordinates of nodes were calculated using equations (22) and then graticule for entire
ellipsoid were drawn (Figure 1).

Fig. 1. A graticule of reduced coordinates in a cylindrical equal-area map projection
of a tri-axial ellipsoid with equally spaced images of meridians v = const

Characteristic property of a graticule presented in Fig. 1 is that distances between
images of meridians are equal and the length of an entire equator is preserved, but the
projection is not equidistant. Meridians v =const on a tri-axial ellipsoid are distributed
along the equator in different distances. Therefore conditions were introduced so that the
distances between images of meridians were equal to the distances between meridians
along the equator on a tri-axial ellipsoid.

Using developed projection (22), maps of distortion were created. On the first map
(Figure 2) the Tissot’s indicatrices are drawn. The second map (Figure 3) presents iso-
grams for maximum angular deformation at 10◦ interval. The third one (Figure 4) shows
isograms of extreme linear scales. Generally the interval is equal to 1 but in the range
(1,2) the interval is equal to 0.1.
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Fig. 2. Tissot’s indicatrices in a cylindrical equal-area map projection of a tri-axial
ellipsoid with equally spaced images of meridians v = const

Fig. 3. Isograms for maximum angular deformations in a cylindrical equal-area map
projection of a tri-axial ellipsoid with equally spaced images of meridians v = const

The result is a map projection with an interesting distribution of distortion. Generally,
relatively small distortion on the equator grows with latitude. If we start from the point
(u = 0, v = 90◦) distortion slightly decreases at first and then starts growing.

Coordinates of nodes of a graticule were calculated basing on equations (34) and
drawn in a cylindrical equal-area map projection of an entire tri-axial ellipsoid (Figure 5).
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Fig. 4. Isograms for extreme linear scales in a cylindrical equal-area map4 projection
of a tri-axial ellipsoid with equally spaced images of meridians v = const

Fig. 5. A graticule of reduced coordinates in a cylindrical equal-area map projections
of a tri-axial ellipsoid with the equator projected without distortion

After the comparison of graticules in Figures 1 and 5 the differences between them
become easily noticeable. Especially the differences between lengths of meridians v =
0 and v = ±90◦ are interesting. In the graticule in Figure 1 the image of the central
meridian v =0 (overlap x-axis) is shorter than the images of meridians v =±90◦ and in
the graticule on Figure 5 there is inverse situation, i.e. the image of the central meridian
v = 0 is longer than the images of meridians v = ±90◦. It is logical because in the
graticule in Fig. 1 the image is shrunk near the central meridian in a direction of x-axis
and in the graticule in Figure 5 the image is stretch near central meridian in a direction
of x-axis.
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The developed projection was used to create maps of distortion. On the first map
(Figure 6) the Tissot’s indicatrices are drawn. The second map (Figure 7) presents iso-
grams for maximum angular deformation at 10◦ interval. The third one (Figure 8) shows
isograms of extreme linear scales. Generally interval is equal to 1 but in the range (1, 2)
interval is equal to 0.1.

Fig. 6. Tissot’s indicatrices in a cylindrical equal-area map projection of a tri-axial
ellipsoid with the equator projected without distortion

Fig. 7. Isograms for maximum angular deformations in a cylindrical equal-area map
projection of a tri-axial ellipsoid with the equator projected without distortion

In a developed map projection the equator is projected without distortion and dis-
tortion grows with latitude. The shapes of isolines are interesting as they are curves that
resemble waves.
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Fig. 8. and isograms for extreme linear scales in a cylindrical equal-area map projection
of a tri-axial ellipsoid with the equator projected without distortion

4.2. Analysis of results in azimuthal map projections

Figure 9 presents the graticule of reduced coordinates for half of a tri-axial ellipsoid in
azimuthal equal-area projection (40).

Fig. 9. The graticule of the northern half of a tri-axial ellipsoid in azimuthal
equal-area projection

In the developed map projection images of meridians are straight lines outgoing
radially from the central point. Angles between those lines are equal. It is not consistent
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with the original because on an ellipsoid meridians v= const converge in the pole but the
angles between them are not equal despite maintaining the same intervals of coordinate v.

Based on the developed map projection (40), maps were created showing the distor-
tion distribution. Tissot’s ellipses were presented in the first map (Figure 10). The second
map (Figure 11) contains isograms for maximum angular deformation at 5◦ interval and
in the range (30◦, 35◦) at 1◦. The third one (Figure 12) shows isograms of extreme linear
scales. The interval is equal to 0.1 and in the range (1.3–1.4) it is equal to 0.01.

Fig. 10. Tissot’s indicatrices in an azimuthal equal-area map projection
of a tri-axial ellipsoid

Fig. 11. Isograms for maximum angular deformation in an azimuthal equal-area
map projection of a tri-axial ellipsoid
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Fig. 12. Isograms of extreme linear scales in an azimuthal equal-area map
projection of a tri-axial ellipsoid

Based on the analysis of the obtained results, an interesting property was detected,
i.e. the smallest distortion occurred at a point located on the equator near the merid-
ian 67.3◦.

Using the developed map projections (48), a graticule of reduced coordinates was
developed (Figure 13).

Fig. 13. The graticule of the northern half of a tri-axial ellipsoid in an azimuthal
equal-area projection
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Figure 13 clearly demonstrates that this time the images of meridians v = const
are not equally spaced but they are equal to the angles on an ellipsoid. Meridians are
projected as straight lines and parallels as ellipses.

Based on the developed map projection (48), maps were created showing the dis-
tribution of distortion. Tissot’s ellipses were presented in the first map (Figure 14). The
second map (Figure 15) contains isograms for maximum angular deformation at 5◦ inter-

Fig. 14. Tissot’s indicatrices in azimuthal equal-area map projection of
a tri-axial ellipsoid

Fig. 15. Isograms for maximum angular deformation in azimuthal
equal-area map projection of a tri-axial ellipsoid
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val and in the range (0◦, 5◦) at 1◦. The third one (Figure 16) shows isograms of extreme
linear scales. Interval is equal to 0.1 and in the range (1.0–1.1) it is equal to 0.01.

Fig. 16. Isograms of extreme linear scales in azimuthal equal-area
map projection of a tri-axial ellipsoid

Based on the analysis of obtained results, it can be noticed that the distortion de-
creases with latitude. The shape of the obtained isolines is very interesting.

5. Conclusions

The article presents the method of construction of cylindrical and azimuthal equal-area
map projections of a tri-axial ellipsoid expressed by means of reduced coordinates. This
is an alternative method to other methods described in subject literature. The functions
in the developed map projections are presented by means of elliptic integrals and Jaco-
bian elliptic functions. The algorithms for calculating coordinates in those projections
require a solution of the second kind of the elliptic integral in the normal form and the
integrals G1 and G3, which are expressed by Jacobian elliptic functions, and those in
turn by means of trigonometric and elementary functions, the solution of which should
not cause much trouble. The article also presents the method of determining distortion.
Partial derivatives are also expressed by similar functions as equations for the calcula-
tion of planar coordinates. The calculation of the elliptic integral of the second kind is
required when calculating the coordinates in the developed map projections. Methods
for solving such integrals have been described in many publications, including (Byrd
and Friedmann, 1954).

The developed method can be used in planetary cartography for mapping irregular
objects, for which tri-axial ellipsoids have been accepted as reference surfaces. It can
also be used to calculate the surface areas of regions located on these objects. The paper
presents graticules of reduced coordinates. Such graticules differ significantly from the
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graticules of other coordinates used on a tri-axial ellipsoid, i.e. planetocentric and plane-
tographic ones. Therefore, when creating maps in developed projections, it is important
to remember to use the appropriate coordinate graticules.
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