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A new D-stability area for linear discrete-time systems

DUŠAN KROKAVEC and ANNA FILASOVÁ

The paper addresses the problem of constrained pole placement in discrete-time linear
systems. The design conditions are outlined in terms of linear matrix inequalities for the D-
stable ellipse region in the complex Z plain. In addition, it is demonstrated that the D-stable
circle region formulation is the special case of by this way formulated and solved pole placement
problem. The proposed principle is enhanced for discrete-lime linear systems with polytopic
uncertainties.

Key words: discrete-time linear systems, state control, pole placement constraints, D-
stability region, linear matrix inequalities, polytopic uncertainties

1. Introduction

The first closed-loop pole constraint placement schemes have exploited the
properties of linear-quadratic (LQ) control theory to assign poles to prescribed
regions. The problem of locating the poles in a specified disk, for both continuous
and discrete-time systems by using the Riccati equation, was so solved in [6]. More
complete description of a variety of pole clustering regions, using also Riccati
equations, was presented in [8], characterizing the matrices whose eigenvalues
lie in a given sector in terms of modified Lyapunov equations and, beyond, on
linear matrix inequalities (LMI).

The design of H∞ controllers that satisfy additional constraints on the closed-
loop poles was proposed in [4]. Since stability conditions, quadratic constraints
and additional coupling objectives were formulated in terms of a common Lya-
punov function, the control design was reduced to solving a system of LMIs,
and the proposed characteristic functions have became mainly an LMI-based
representation ofD-stability circle regions [5,17]. Some adaptations to dynamic
controller design, cascade reconfiguration control design, uncertain descriptor
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linear system control, continuous-time singular systems, as well as to systems
with real convex polytopic uncertainties, are given in [3, 7, 18–20], respectively.
Other specific forms can be found in the active vibration controller design [13].

The nonlinear H∞ control design is based either on the dissipative theory or on
the nonlinear version of bounded real lemma (BRL). An alternative to this prin-
ciple is the technique based on Takagi-Sugeno (TS) fuzzy models, which employ
linear controllers, corresponding to the local linear system models, connected by
the fuzzy membership functions. Motivated by the above mentioned LMI based
design of the conventional state control with pole placement constraints, the fuzzy
controller adjustment formulas, imposing H∞ objectives for guaranteeing global
stability and transient behaviors [11], were adapted to closed-loop pole location
in the conic sectors [2,10,14], or circular regions [8,12]. Note, de facto, most of
these algorithms are concerned with the continuous-time systems.

Since of the closed form of BRL for discrete-time systems, requiring in
its beginnings the use of Finsler’s theorem to solve the associated LMIs, the
problem leads to a relatively small number of references to this field [15]. The
modern concept prefers the methodology given in [6], relaxing a circular region
as a restriction for closed-loop pole placement, while the region parameters are
considered in accordance with [1]. It is proven that the prescription of a D-stable
circle region is equivalent to the specific quadratic boundary on the system state
variables [17].

This paper proposes to use the more generalized D-stable region, defined by
the ellipse parameters. Exploiting the Lypunov-Krasovskii theorem, the closed-
loop system pole clustering is tailored via a finite set of LMIs with expansion of the
Lyapunov matrix inequality by one sub-block, comparing to its structure for the
D-stable circle region. Using the slack matrix approach, the method is enhanced
to ensure stability for linear discrete-time systems with polytopic uncertainties.
The proposed approach seems to be reasonable also when the control problem
involves further additive quadratic performance constraints.

The content and scope of the paper are as follows. Following the problem
formulation in Sec. 2, the basic concept used in the paper for the ellipse eigenvalue
clustering in discrete-time linear systems is given in Sec. 3. Section 4 derives
the control law parameter design conditions in the framework of LMIs and,
orienting on linear discrete-time systems with polytopic uncertainties, enhanced
pole placement is introduced in Sec. 5 The relevance of the proposed conditions
is illustrated by a numerical example in Sec. 6 and in Sec. 7 are drawn some
concluding remarks.

Throughout this paper, the used notations are narrowly standard in such way
that xT , XT denotes the transpose of the vector x and the matrix X , respectively,
X = XT > 0 means that X is a symmetric positive definite matrix, the symbol In

indicates the n-th order unit matrix, R denotes the set of real numbers and Rn×r

refers to the set of all n× r real matrices.
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2. Problem Formulation

In the paper, the task is concerned with design of the state feedback control
law matrix gain for controlling the discrete-time linear dynamic systems given
by the state equations

q(i+1) = Fq(i)+Gu(i) , (1)

y(i) = Cq(i) , (2)

where q(i) ∈ Rn, u(i) ∈ Rr , and y(i) ∈ Rm are vectors of the system state, input
and output variables, respectively, and F ∈ Rn×n, G ∈ Rn×r , C ∈ Rm×n are real
matrices. Evidently, the autonomous system part of (1) is

q(i+1) = Fq(i) . (3)

Considering the linear state feedback controller of the form

u(i) = −Kq(i) , (4)

where K ∈ Rr×n is the feedback gain matrix, then substituting (4) in (1) it can get
that

q(i+1) = Fcq(i) , (5)

where the closed-loop system matrix is

Fc = F −GK . (6)

These equations can be viewed as the dynamics of the closed-lop system.

3. Closed-loop Eigenvalue Clustering

For simplicity, it is assumed in this section that there exists no multiple
eigenvalue of the system matrix. This assumption is not a restriction, the key
idea remaining the same. Moreover, is enough to consider the model of the type
(7) [17].

Theorem 1 If a stable discrete-time linear autonomous system is described as

p(i+1) =
F −mI

a
p(i) , (7)

where with the positive scalars m,a ∈R, y ¬ b< a, m+a < 1, and for h= 1,2, . . .,n
it yields

σ(F) = {zh, zh ∈ Z : z⋆z < 1} , (8)
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then with the positive tuning parameters y,b ∈ R, y ¬ b < a,

σabmy(F) =

{
zh, zh ∈ Z : (z⋆− a)(z− a) < a2− y2

(
a2

b2
−1

)}
. (9)

Hereafter, σ(·) denotes the eigenvalue spectrum of a real square matrix and
the eigenvalue z⋆

h
is complex conjugated to the eigenvalue zh.

Proof Defining the Lyapunov function as

v(p(i)) = pT (i)Pp(i) > 0, (10)

where P ∈ Rn×n is positive definite matrix, to solve stability condition of the
autonomous system (7), the forward difference of (10) has to satisfy the inequality

∆v(p(i)) = pT (i+1)Pp(i+1)− pT (i)Pp(i) < 0 . (11)

Considering the Lyapunov-Krasovskii theorem [9], it can be prescribed

∆v(p(i)) = pT (i+1)Pp(i+1)− pT (i)Pp(i)

¬ − y
2

a2

(
a2

b2
−1

)
pT (i)Pp(i) < 0, (12)

where the positive tuning parameters b, y ∈ R and y ¬ b < a are setting.
Substituting (7) in (12) implies

pT (i)

(
(F −mI )T

a
P

(F −mI )

a
−P+ y

2

a2

(
a2

b2
−1

)
P

)
p(i) < 0, (13)

which predefines that matrix inequality implying from (13) takes the form

FTPF −mPF −mFTP+

(
m2− a2

+ y
2

(
a2

b2
−1

))
P < 0 . (14)

If zh is the h-th eigenvalue of F and nh is the associated right eigenvector,
then for z⋆

h
complex conjugate to zh and n⋆

h
complex conjugate to nh it is true

that
Fnh = zhnh , Fn⋆h = z⋆hn

⋆
h , n⋆T

h FT
= z⋆hn

⋆T
h . (15)

Pre-multiplying the left side by n⋆T
h

and the right side by nh then (14) states
the following stability condition
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n⋆T
h FTPFnh −mn⋆T

h FTPnh −mn⋆T
h PFnh+

+

(
m2− a2

+ y
2

(
a2

b2
−1

))
n⋆T

h Pnh < 0 (16)

and inserting (15) into (16) it must be satisfied that
(
zhz⋆h −m(zh + z⋆h )+m2− a2

+ y
2

(
a2

b2
−1

))
n⋆T

h Pnh < 0 . (17)

Then, since the matrix P is positive definite, the inequality (17) brings the stability
region description

zhz⋆h −m
(
zh + z⋆h

)
+m2

+ y
2

(
a2

b2
−1

)
< a2, (18)

(z⋆h −m)(zh −m) < a2− y2

(
a2

b2
−1

)
, (19)

respectively, while (19) predefines (9).
For given (18) the problem is illustrated by setting zh = x + iy. Then the

inequality (18) gives

−2mx+ x2
+ y

2
+m2

+ y
2

(
a2

b2
−1

)
< a2 (20)

and, subsequently, this follows from the inequality (20)

(x−m)2
+

a2

b2
y

2 < a2. (21)

Because the analytical equation of the shifted ellipse is

(x−m)2

a2
+

(y−n)2

b2
< 1, (22)

it is evident that (21) represents the ellipse equation with the center zo = (m+0j)
in the plane Z, the ellipse axes are parallel to the x- and jy-axes, while a is the
semi-major axe and b is the semi-minor axe of the ellipse. This concludes the
proof.

�

Remark 1 Setting a = b, then (21) implies

(x−m)2
+ y

2 < a2, (23)

that means the eigenvalues of F are inside the circle with radius a and the origin
m = m+0 i in the planeZ.
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The following results show the central importance of this description.

Definition 1 (LMI region) A subsetD of the complex planeZ is the stable LMI
region if

D = {z ∈ Z : fD (z) < 0} , (24)

where fD (z) is the region characteristic function.

Theorem 2 The matrix F ∈ Rn×n is D-stable if and only if for given positive
scalars a,b,m, y ∈ R, y ¬ b < a, m + a < 1, there exists a symmetric positive
definite matrix Q ∈ Rn×n such that

Q = QT > 0, (25)

MD (F,Q) =


−aQ ∗ ∗

(F −mI )Q −aQ ∗

cQ 0 −aQ


< 0, (26)

where

c = y

√
a2

b2
−1 . (27)

Marking the LMI region by the characteristic function

fD (z) =


−a z⋆−m c

z−m −a 0
c 0 −a

 , (28)

then MD (F,Q) and fD (z) are related by the substitution

(Q, FQ, QFT )←→ (1, z, z⋆) . (29)

Hereafter, ∗ denotes the symmetric item in a symmetric matrix.

Proof Since a > 0, multiplying by a then (13) implies

a−1(F −mI )TP(F −mI )− aP+
y

2

a

(
a2

b2
−1

)
P < 0 . (30)

Using the Schur complement property, (30) can be written as


−aP+

y
2

a

(
a2

b2
−1

)
P (F −mI )T

F −mI −aP−1

 < 0 . (31)
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Thus, defining the transform matrix

T =
[
Q I

]
, Q = P−1 (32)

and pre-multiplying the left side and post-multiplying the right side by the above
defined T , then (31) gives


−aQ+

y
2

a

(
a2

b2
−1

)
Q Q(F −mI )T

(F −mI )Q −aQ

 < 0 . (33)

Since it yields


y

2

a

(
a2

b2
−1

)
Q 0

0 0

 =

y

√
a2

b2
−1

0


a−1QQ−1Q

y
√

a2

b2
−1 0

 , (34)

using the Schur complement property then (33), (34) implies (26). This concludes
the proof. �

The results of the previous theorem yield a new representation for D-stability
region.

Remark 2 In the limit case where y = b the D-stability region is strictly given
by the area inside the ellipse. In the last case

MD (F,Q) =


−aQ ∗ ∗

(F −mI )Q −aQ ∗

coQ 0 −aQ


< 0, (35)

where

co =

√
a2− b2 . (36)

Corollary 1 Considering a = b then (26) takes the form

MD (F,Q) =


−aQ Q(F −mI )T 0

(F −mI )Q −aQ 0

0 0 −aQ


< 0 (37)

and using the Schur complement property, then (37) can be reduced as

MD (F,Q) =

[ −aQ Q(F −mI )T

(F −mI )Q −aQ

]
< 0, (38)
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while, consequently, the characteristic function takes the form

fD (z) =

[ −a z∗−m

z−m −a

]
, (39)

where MD (F,Q) and fD (z) are tied by the relation (29). Evidently, (38), (39)
define D-circle stability region [5, 17].

If a = 1, m = 0, the relations (38), (39) are reduced as

MD (F,Q) =

[ −Q QFT

FQ −Q
]
< 0, (40)

fD (z) =

[ −a z∗

z −a

]
(41)

and it corresponds to the entire stability area with the open unit disc located in
the complexZ plane.

In the theory of linear systems with polytopic uncertainties the slack ma-
trix approach is preferred, which leads to enhanced forms of the stability area
description.

Theorem 3 The matrix F ∈ Rn×n is D-stable if and only if for given positive
scalars m,a,b, y ∈ R, y ¬ b < a, m+a < 1, there exists symmetric positive definite
matrices R,S ∈ Rn×n such that

S = ST > 0, R = RT > 0, (42)


−a2S ∗ ∗

a(F −mI )R S −2aR ∗

cS 0 −S


< 0 . (43)

The region characteristic function is

fD (z) = fDS (z)+ fDR (z) < 0, (44)

where

fDS (z) =


−a2 0 c

0 1 0

c 0 −1


, c = y

√
a2

b2
−1, (S)←→ (1) , (45)

fDR(z)


0 az⋆− am 0

az− am −2a 0

0 0 0


, (R, FR, RFT )←→ (1, z, z⋆) . (46)
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Proof Since the difference equation (7) can be written as

Fp(i)− ap(i+1) = 0, (47)

with a positive definite symmetric matrix U ∈ Rn×n, it yields

pT (i+1)U
(
Fp(i)− ap(i+1)

)
= 0 . (48)

Therefore, adding of (48) and its transposition to (12) gives

∆v(p(i)) = pT (i+1)Pp(i+1)− pT (i)Pp(i)+
y

2

a2

(
a2

b2
−1

)
pT (i)Pp(i)+

+(Fp(i) − ap(i+1))TUp(i+1)+ pT (i+1)U (Fp(i)− ap(i+1)) < 0 . (49)

Using the following notation

p⋄T (i) =
[
pT (i) pT (i+1)

]
, (50)

the difference of the Lyapunov function can be rewritten as

∆v(p⋄(i)) = p⋄T (i)J⋄p⋄(i) < 0, (51)

where

J⋄ =

−P+ y

2

a2

(
a2

b2
−1

)
P (F − aI )TU

U (F − aI ) P−2aU


< 0 . (52)

Then, using (34), the inequality (52) can be rewritten as follows

−P (F −mI )TU
y

a

√
a2

b2
−1P

U (F −mI ) P−2aU 0

y

a

√
a2

b2
−1P 0 −P


< 0 . (53)

Defining the transform matrix

T⋄ = [aR R R], R = U−1 (54)

and pre-multiplying the left side and post-multiplying the right side by T⋄ then
(53) implies

−a2RPR aR(F −mI )T
y

√
a2

b2
−1RPR

a(F −mI )R RPR−2aR 0

y

√
a2

b2
−1RPR 0 −RPR


< 0 . (55)
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Denoting
S = RPR, (56)

then (55) implies (43) with the same parameter c as defined above. This concludes
the proof. �

The following relations are also immediate in view of (43), (44).

Corollary 2 Considering a = b then (43) implies

[ −a2S ∗

a(F −mI )R S−2aR

]
< 0, (57)

which represents the enhanced D-circle stability region, and

fD (z) = fDS (z)+ fDR (z) < 0, (58)

where

fDS (z) =

[ −a2 0

0 1

]
, S←→ 1, (59)

fDR (z)

[
0 az⋆− am

az− am −2a

]
, (R, FR, RFT )←→ (1, z, z⋆) . (60)

In addition, if a = 1, m = 0, the enhanced full stability region is obtained,
where [ −S ∗

FR S −2R

]
< 0 (61)

and

fD (z) = fDS (z)+ fDR (z) < 0, (62)

fDS (z) =

[ −1 0

0 1

]
, S←→ 1, (63)

fDR (z)

[
0 z⋆

z −2

]
, (R, FR, RFT )←→ (1, z, z⋆) . (64)

4. Control Law Parameter Design

Considering the control problem to find an r-dimensional vector u(i) in the
relation given in (3), the corresponding solutions are presented.
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Theorem 4 The system (1) under influence of the control (3) is stable if for given
positive scalars m,a,b, y ∈R, y ¬ b< a, m+a < 1, there exist a symmetric positive
definite matrix Q ∈ Rn×n and a matrix Y ∈ Rr×n such that

Q = QT > 0, (65)
−aQ ∗ ∗

FQ−GY −mQ −aQ ∗

cQ 0 −aQ


< 0, c = y

√
a2

b2
−1. (66)

When the above conditions hold, the control law gain matrix can be found as

K = YQ−1. (67)

Proof Inserting (6) then the inequality (26) gives
−aQ ∗ ∗

(F −GK −mI )Q −aQ ∗

cQ 0 −aQ


< 0 (68)

and denoting
Y = KQ (69)

(68) implies (66). This concludes the proof. �

Theorem 5 The system (1) under influence of the control (3) is stable if for given
positive scalars m,a,b, y ∈ R, y ¬ b < a, m+a < 1, there exist symmetric positive
definite matrices R,S ∈ Rn×n and a matrix Z ∈ Rr×n such that

R = RT > 0, S = ST > 0 (70)
−a2S ∗ ∗

aFR− aGZ − amR S−2aR ∗

cS 0 −S


< 0, c = y

√
a2

b2
−1 . (71)

When the above conditions hold, the control law gain matrix is given by the
relation

K = ZR−1 (72)

Proof Inserting (6) then (43) gives
−a2S ∗ ∗

a((F −GK −mI )R S−2aR ∗

cS 0 −S


< 0 (73)

and denoting
Z = KR (74)

then (73) implies (71). This concludes the proof. �
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Remark 3 Since the deductions and proofs are completely routine, the standard
synthesis conditions resulting from inequalities (38), (40) or (57), (61) are left to
the readers.

5. Uncertain Discrete-Time Systems

The importance of Theorem 5 is that it separates the Lyapunov matrix S from
F and G. This enables to derive design conditions for a system with polytopic
uncertainties.

Assuming that the matrices F, G of (1) are not precisely known but belong
to a polytopic uncertainty domain

O :=
d ∈ Q, (F,G) (d) : (F,G) (d) =

s∑

l=1

dl (Fl,Gl )
 , (75)

Q =
(d1, · · · ,ds) :

s∑

l=1

dl = 1; dl > 0, i = 1,2, . . ., s
 , (76)

where Q is the unit simplex, Fl and Gl are constant matrices with appropriate
dimensions, and dl, l = 1,2, . . ., s, are time-invariant uncertainties.

Since d is constrained to the unit simplex as (76), the matrices (F,G) (d)
are affine functions of the uncertain parameter vector d ∈ Rn, described by the
convex combination of the vertex matrices (Fl,Gl ) , l = 1,2, . . ., s.

The following theorem and corollary describe the control design conditions
for uncertain linear discrete-time systems.

Theorem 6 The uncertain system (75) under influence of the control (3) is stable
if for given positive scalars m,a,b, y ∈ R, y ¬ b < a, m+ a < 1, there exist sym-
metric positive definite matrices R,S ∈ Rn×n and a matrix Z ∈ Rr×n such that for
l = 1,2, . . ., s

R = RT > 0, S = ST > 0, (77)
−a2S ∗ ∗

aFlR− aGlZ − amR S −2aR ∗

cS 0 −S


< 0, c = y

√
a2

b2
−1 . (78)

If the existence is affirmative, the control law gain matrix can be found using (74).

Proof To solve this problem it can rely on the expression where the difference
equation (7) takes the form

ap(i+1) =

s∑

l=1

dl (Fl −mI )p(i) (79)
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and, considering that
s∑

l=1
dl = 1, an alternative form of (79) is

s∑

l=1

dl p(i+1) =

s∑

l=1

dl (Fl −mI )p(i) . (80)

Observing that (80) takes on the suggestive form

s∑

l=1

dl ((Fl −mI )p(i)− p(i+1)) = 0 (81)

and using a positive definite matrix U ∈ Rn×n, it can get

s∑

l=1

dl p
T (i+1)U ((Fl −mI )p(i)− p(i+1)) = 0 . (82)

Thus, following the way of proof to Theorem 3, then for l = 1,2, . . ., s the new
result is 

−a2S ∗ ∗

a(Fl −mI )R S −2aR ∗

cS 0 −S


< 0, c = y

√
a2

b2
−1 . (83)

Plugging Fl by Fcl = Fl −GlK then (83) can be rewritten as


−a2S ∗ ∗

a(Fl −GlK −mI )R S−2aR ∗

cS 0 −S


< 0 (84)

and with the notation (74) then (84) implies (78). This concludes the proof. �

Corollary 3 Considering a = b then (77), (78) imply

R = RT > 0, S = ST > 0, (85)[ −a2S ∗

aFlR− aGlZ − amR S−2aR

]
< 0 (86)

and the uncertain system (75) under influence of the control (3) is stable if for given
positive scalars m,a,b, y ∈ R, y ¬ b < a, m+a < 1, there exist symmetric positive
definite matrices R,S ∈ Rn×n and a matrix Z ∈ Rr×n such that for l = 1,2, . . ., s
the inequalities (85), (86) are satisfied.

In addition, if a = 1, m = 0, then (85), (86) are reduced to

R = RT > 0, S = ST > 0, (87)
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[ −S ∗

FlR−GlZ S−2aR

]
< 0 (88)

and the uncertain system (75) under influence of the control (3) is stable if for given
positive scalars m,a,b, y ∈ R, y ¬ b < a, m+a < 1, there exist symmetric positive
definite matrices R,S ∈ Rn×n and a matrix Z ∈ Rr×n such that for l = 1,2, . . ., s
the inequalities (87), (88) are satisfied.

In both cases, the solution is given by the relationship (74).

6. Illustrative Example

The proposedD-pole assignment design approach was applied to the system
described by (1), (2) with the following matrix parameters

F =


0.9993 0.0987 0.0042

−0.0212 0.9612 0.0775

−0.3875 −0.7187 0.5737


, G =


0.0051 0.0050

0.1029 0.0987

0.0387 −0.0388


, CT

=


1 1

0 1

1 0


,

with the sampling period ts = 0.2 s.
To illustrate the results, theD-stability circle region is the disk with the radius

a = 0.3 and the center m = 0.5 on the real axe of the complex plane Z, and the
D-stability ellipse region is defined by the ellipse center m = 0.5 on the real axe
of the complex planeZ, the semi-major axe of the ellipse a = 0.3, the semi-minor
axe of the ellipse b = 0.1 and the tuning parameter y = 0.95b. The LMI-based
synthesis is performed for the design conditions (65), (66) and for he design
conditions derived from (38) with a positive definite matrix Q.

Solving (65), (66) with respect to the matrix variables R, Z , using Self–Dual–
Minimization (SeDuMi)package for Matlab [21], the design task is feasible with
the LMI matrix variables

Q =


0.0066 −0.0372 −0.0121

−0.0372 0.2372 0.0662

−0.0121 0.0662 0.9512


, Y =

[
0.1482 −0.8654 0.7037

−0.3160 2.0288 0.2749

]
.

The corresponding feedback gain matrix K , closed-loop system matrix Fc as well
as the eigenvalue spectrum of the closed-loop system matrix σ(Fc) are

K =

[
19.3925 −0.8992 1.0486

2.2349 8.9884 −0.3081

]
, Fc =


0.8892 0.0583 0.0004

−2.2373 0.1666 0.0000

−1.0513 −0.3352 0.5212


,

σ(Fc) = {0.5760, 0.5005±0.0477i} .
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Solving the design task with the D-stability circle region, it is found that

Q =


0.0431 −0.1316 0.0393

−0.1316 0.6060 −0.1496

0.0393 −0.1496 1.9861


, Y =

[
0.3019 −0.6942 0.8197

−0.5523 2.8147 0.0864

]
.

and the control law gain matrix K , closed-loop system matrix Fc and the eigen-
value spectrum of the closed-loop system matrix σ(Fc) are computed as

K =

[
10.2476 1.1530 0.2967

3.8646 5.5793 0.3873

]
, Fc =


0.9277 0.0649 0.0008

−1.4571 0.2919 0.0088

−0.6341 −0.5468 0.5772


,

σ(Fc) = {0.7249, 0.5360±0.1017i} .
Evidently, all solutions obtained reflect the associatedD-stability region con-

straints.
Working with nonzero system outputs, the forced mode feedback control

u(i) = −Kq(i)+Wwo

is applied in simulation to force the desired steady-state of the system output,
where W is the signal gain matrix and wo is desired output values vector. Con-
structing the signal gain matrices as [16]

W = (C(In − (F −GK )−1G)−1,

then, with the associated signal gain matrices

W⋄ =
[

6.0206 18.3539

−6.3182 3.5469

]
, W◦ =

[
5.2990 9.9504

−5.6356 4.4855

]
,

the system output steady-state vector wT
o = [0.5 1.0] is forced in the simulations,

while the initial conditions stay as q(0) = 0.
The time profiles of the resulting system states variables and system output

variables are illustrated in Fig. 1 and Fig. 2, where the control law is designed using
the LMI conditions implying from the prescribedD-stability ellipse region. The
simulation results, reflecting the LMI control design conditions implying from
the prescribed D-stability circle region are presented in Fig. 3 and Fig. 4.

Although using the same center value in definition of both stability regions
and the circle radius equal to the semi-major axe of the ellipse, it is evident that
the dynamics, setting time of the responses and the overshoots in the closed-
loop structure with the control law designed for the circular area of stability
are positively worse than those in the closed-loop structure designed using the
ellipse-like criterion.
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Figure 1: State variables response
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Figure 2: Output variables response
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Figure 3: State variables response
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Figure 4: Output variables response

7. Concluding Remarks

In this paper, new sufficient conditions for the discrete-time linear systems to
beD-stable are obtained. These conditions are given in terms of strict LMIs, based
on which, the control law gain matrices are given in explicit expressions. The
proposed approach involves allows to include in the resolution further additive
quadratic performance constraints but, in general, not involving state variables of
the system. Presented numerical example adequately illustrates the efficiency of
the approach.

Note, here the algorithms have been derived under the assumption that the
system matrix A has no multiple eigenvalues. This assumption is for convenience
only, and the given algorithms hold without this preliminary condition. This is a
fundamental generalization of the methodology, while the basic structure of the
algorithms had already been presented in [4, 5] and [17].
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