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Abstract. We review recent work characterizing the classes of functions for which deep learning can be exponentially better than shallow learning. 
Deep convolutional networks are a special case of these conditions, though weight sharing is not the main reason for their exponential advantage.
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3. the key aspect of convolutional networks that can give them 
an exponential advantage is not weight sharing but locality 
at each level of the hierarchy.

2. Previous theoretical work

Deep Learning references start with Hinton’s backpropagation 
and with Lecun’s convolutional networks (see for a review [8]). 
Of course, multilayer convolutional networks have been around 
at least as far back as the optical processing era of the 1970s. 
The Neocognitron [9] was a convolutional neural network that 
was trained to recognize characters. The property of composi-
tionality was a main motivation for hierarchical models of vi-
sual cortex such as HMAX which can be regarded as a pyramid 
of AND and OR layers [10], that is a sequence of conjunctions 
and disjunctions. Several papers in the 1980s focused on the ap-
proximation power and learning properties of one-hidden layer 
networks (called shallow networks here). Very little appeared 
on multilayer networks, (but see [11‒13]), mainly because one 
hidden layer nets performed empirically as well as deeper net-
works. On the theory side, a review by Pinkus in 1999 [14] 
concludes that “...there seems to be reason to conjecture that 
the two hidden layer model may be significantly more prom-
ising than the single hidden layer model...”. A version of the 
questions about the importance of hierarchies was asked in [15] 
as follows: “A comparison with real brains offers another, and 
probably related, challenge to learning theory. The “learning 
algorithms” we have described in this paper correspond to one-
layer architectures. Are hierarchical architectures with more 
layers justifiable in terms of learning theory? It seems that the 
learning theory of the type we have outlined does not offer any 
general argument in favor of hierarchical learning machines 
for regression or classification. This is somewhat of a puzzle 
since the organization of cortex – for instance visual cortex – is 
strongly hierarchical. At the same time, hierarchical learning 
systems show superior performance in several engineering 
applications.” Because of the great empirical success of deep 
learning over the last three years, several papers addressing 
the question of why hierarchies have appeared. Sum-Product 

1. A theory of deep learning

1.1. Introduction1. There are three main theory questions about 
deep neural networks. The first set of questions is about the 
power of the architecture – which classes of functions can it 
approximate and learn well? The second set of questions is 
about the learning process: what is the landscape of the empir-
ical risk? The third question is about generalization. Why there 
is no apparent overfitting despite overparametrization?

Here we focus on the first set of questions, reviewing pre-
viouswork [2‒6]). The main message is that deep networks 
have the theoretical guarantee, which shallow networks do 
not have, that they can avoid the curse of dimensionality for 
an important class of problems, corresponding to a subset of 
compositional functions, that is functions of functions, that 
we call hierarchically local compositional functions where all 
the constituent functions are local, in the sense that they have 
bounded, small dimensionality. The deep networks that can 
approximate them without the curse of dimensionality are of 
the deep convolutional type, but in general without weight 
sharing.

The most relevant implications of the above results are:
1. Certain deep convolutional architectures have a theoretical 

guarantee that they can be much better than one layer ar-
chitectures such as kernel machines;

2. the problems for which certain deep networks are guaran-
teed to avoid the “curse of dimensionality” (see for a nice 
review [7]) correspond to input-output mappings that are 
compositional with a hierarchy of constituent functions that 
are local: an example is f (x1, ¢¢¢, x8) = h3(h21(h11(x1, x2),  
h12(x3, x4)), h22(h13(x5, x6), h14(x7, x8))). The compositional 
function f requires only “local” computations (here with just 
dimension 2) in each of its constituent functions h;

1 The material of this review is based on previous publications, in particular [1].
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networks, which are equivalent to polynomial networks (see 
[16, 17]), are a simple case of a hierarchy that was analyzed 
[18] but did not provide particularly useful insights. Montufar 
and Bengio [19] showed that the number of linear regions that 
can be synthesized by a deep network with ReLU nonlinearities 
is much larger than by a shallow network. The meaning of this 
result in terms of approximation theory and of our own results is 
at the moment an open question2. Relevant to the present review 
is the work on hierarchical quadratic networks [17], together 
with function approximation results [14, 20]. Also relevant is 
the conjecture by Shashua (see [21]) on a connection between 
deep learning networks and the hierarchical Tucker represen-
tations of tensors. In fact, our theorems, that characterize the 
functions represented well by deep convolutional networks, 
may also lead to a characterization of the class of functions 
which can be represented well by a hierarchical Tucker rep-
resentation.

It was already well known that the upper bound for the 
approximation of general functions by shallow networks is ex-
ponential. It is then natural to assume that, since there is no 
general way for shallow networks to exploit a compositional 
prior, lower bounds for the approximation by shallow networks 
of compositional functions should also be exponential. In fact, 
examples of specific functions that cannot be represented effi-
ciently by shallow networks have been given recently by Tel-
garsky [22] and by Shamirc [23]. We provide in Theorem 5 an 
older example of a class of compositional functions for which 
there is a gap between shallow and deep networks.

3. Function approximation by deep networks

In this section, we state theorems about the approximation prop-
erties of shallow and deep networks.

3.1. Degree of approximation. The general paradigm is as 
follows. We are interested in determining how complex a net-
work ought to be to theoretically guarantee approximation of 
an unknown target function f up to a given accuracy ε  > 0. To 
measure the accuracy, we need a norm k¢k on some normed 
linear space X. As we will see the norm used in the results of 
this paper is the sup norm in keeping with the standard choice 
in approximation theory. Notice, however, that from the point 
of view of machine learning, the relevant norm is the L2 norm. 
In this sense, several of our results are stronger than needed. 
On the other hand, our main results on compositionality require 
the sup norm in order to be independent from the unknown 
distribution of the input data, which is important for machine 
learning.

Let VN be the be set of all networks of a given kind with 
complexity N which we take here to be the total number of 

2  We conjecture that the result may be similar to other examples in Section 4.2. 
It says that among the class of functions that are piecewise linear, there exist 
functions that can be synthesized by deep networks with a certain number of 
units but require a much large number of units to be synthesized by shallow 
networks.

units in the network (e.g., all shallow networks with N units in 
the hidden layer). It is assumed that the class of networks with 
a higher complexity include those with a lower complexity; i.e., 
VN µ VN + 1. The degree of approximation is defined by

 dist( f , VN) =  inf
P 2 VN

k f ¡ Pk. (1)

For example, if ( f , VN) = O(N –γ) for some γ  > 0, then a net-
work with complexity N = O

Ã

ε– 1
γ

!

 will be sufficient to guar-
antee an approximation with accuracy at least ε . Since f is un-
known, in order to obtain theoretically proved upper bounds, 
we need to make some assumptions on the class of functions 
from which the unknown target function is chosen. This a priori 
information is codified by the statement that f 2 W for some 
subspace W µ X. This subspace is usually a smoothness class 
characterized by a smoothness parameter m. Here it will be gen-
eralized to a smoothness and compositional class, characterized 
by the parameters m and d (d = 2 in the example of Fig. 1; in 
general is the size of the kernel in a convolutional network.

3.2. Shallow and deep networks. This Section characterizes 
conditions under which deep networks are “better” than shallow 
network in approximating functions. Thus we compare shallow 
(one-hidden layer) networks with deep networks as shown in 
Fig. 1. Both types of networks use the same small set of op-
erations – dot products, linear combinations, a fixed nonlinear 
function of one variable, possibly convolution and pooling. 
Each node in the networks we consider usually corresponds 
to a node in the graph of the function to be approximated, as 
shown in the Figure. In particular each node in the network 
contains a certain number of units. A unit is a neuron which 
computes

 (hx, wi + b)+ , (2)

where w is the vector of weights on the vector input x. Both 
t and the real number b are parameters tuned by learning. We 
assume here that each node in the networks computes the linear 
combination of r such units

 
i =1

r

∑ ci(hx, tii + bi)+ . (3)

Notice that for our main example of a deep network corre-
sponding to a binary tree graph, the resulting architecture is an 
idealized version of the plethora of deep convolutional neural 
networks described in the literature. In particular, it has only 
one output at the top unlike most of the deep architectures with 
many channels and many top-level outputs. Correspondingly, 
each node computes a single value instead of multiple channels, 
using the combination of several units (see Equation 3). Our ap-
proach and basic results apply rather directly to more complex 
networks (see third note in Section 6).

The logic of our theorems is as follows.
● Both shallow (a) and deep (b) networks are universal, that 

is they can approximate arbitrarily well any continuous 
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function of n variables on a compact domain. The result for 
shallow networks is classical. Since shallow networks can 
be viewed as a special case of deep networks, it clear that 
for any continuous function of n variables, there exists also 
a deep network that approximates the function arbitrarily 
well on a compact domain.

● We consider a special class of functions of n variables on 
a compact domain that are a hierarchical compositions of 
local functions such as

 
f (x1, ¢¢¢, x8) = h3(h21(h11(x1, x2), h12(x3, x4)),
f (x1, ¢¢¢, x8) = h22(h13(x5, x6), h14(x7, x8))) .

 (4)

The structure of the function in equation 4 is represented by 
a graph of the binary tree type. This is the simplest example 
of compositional functions, reflecting dimensionality d = 2 
for the constituent functions h. In general, d is arbitrary but 

fixed and independent of the dimensionality n of the com-
positional function f. In our results we will often think of 
n increasing while d is fixed. In Section 4 we will consider 
the more general compositional case.

● The approximation of functions with a compositional struc-
ture – can be achieved with the same degree of accuracy 
by deep and shallow networks but that the number of pa-
rameters are much smaller for the deep networks than for 
the shallow network with equivalent approximation accu-
racy. It is intuitive that a hierarchical network matching the 
structure of a compositional function should be “better” at 
approximating it than a generic shallow network but univer-
sality of shallow networks asks for non-obvious character-
ization of “better”. Our result makes clear that the intuition 
is indeed correct.
In the perspetive of machine learning, we assume that the 

shallow networks do not have any structural information on 
the function to be learned (here its compositional structure), 

Fig. 1. The top graphs are associated to functions; each of the bottom diagrams depicts the ideal network approximating the function above. In 
(a) a shallow universal network in 8 variables and N units approximates a generic function of 8 variables f (x1, ¢¢¢, x8). Inset b) shows a binary 
tree hierarchical network at the bottom in n = 8 variables, which approximates well functions of the form f (x1, ¢¢¢, x8) = h3(h21(h11(x1, x2), h1

2(x3, x4)), h22(h13(x5, x6), h14(x7, x8))) as represented by the binary graph above. In the approximating network each of the n ¡ 1 nodes in the 
graph of the function corresponds to a set of Q =  N

n ¡ 1  ReLU units computing the ridge function ∑Q
i=1ai(hvi, xi + ti)+, with vi, x 2 R2, ai, ti 2 R. 

Each term in the ridge function corresponds to a unit in the node (this is somewhat different from todays deep networks, but equivalent to 
them, see text and note in 6). In a binary tree with n inputs, there are log2n levels and a total of n ¡ 1 nodes. Similar to the shallow network, 
a hierarchical network is universal, that is, it can approximate any continuous function; the text proves that it can approximate a compositional 
functions exponentially better than a shallow network. No invariance – that is weight sharing – is assumed here. Notice that the key property 
that makes convolutional deep nets exponentially better than shallow networks for compositional functions is the locality of the constituent 
functions – that is their low dimensionality. Weight sharing corresponds to all constituent functions at one level to be the same (h11 = h12 etc.). 
Inset c) shows a different mechanism that can be exploited by the deep network at the bottom to reduce the curse of dimensionality in the 
compositional function at the top: leveraging different degrees of smoothness of the constituent functions, see Theorem 6 in the text. Notice that 
in c) the input dimensionality must be ¸ 2 in order for deep nets to have an advantage over shallow nets. The simplest examples of functions 

to be considered for (a), (b) and (c) are polynomials with a structure corresponding to the graph at the top
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because they cannot represent it directly and cannot exploit the 
advantage of a smaller number of parameters. In any case, in 
the context of approximation theory, we will exhibit and cite 
lower bounds of approximation by shallow networks for the 
class of compositional functions. Deep networks with standard 
architectures on the other hand do represent compositionality 
in their architecture and can be adapted to the details of such 
prior information.

We approximate functions of n variables of the form of 
Equation (4) with networks in which the activation nonlin-
earity is a smoothed version of the so called ReLU, given by 
σ (x) = x+ = max(0, x). The architecture of the deep networks 
reflects Equation (4) with each node hi being a ridge function, 
comprising one or more neurons.

Let I n = [–1, 1]n, X = C(I n) be the space of all continuous 
functions on I n, with k f k = maxx 2 I nj f (x)j. Let SN, n denote the 
class of all shallow networks with N units of the form

x  7! 
k = 1

N
∑ akσ (hwk, xi + bk),

where wk 2 Rn, bk, ak 2 R. The number of trainable parameters 
here is (n + 2)N » n. Let m ¸ 1 be an integer, and Wm

n be the set 
of all functions of n variables with continuous partial derivatives 
of orders up to m < 1 such that k f k + ∑1 ≤ jkj1 ≤ mkDk f k ∙ 1, 
where Dk denotes the partial derivative indicated by the 
multi-integer k ¸ 1, and jkj1 is the sum of the components of k.

For the hierarchical binary tree network, the analogous 
spaces are defined by considering the compact set Wm

n, 2 to be 
the class of all compositional functions f of n variables with 
a binary tree architecture and constituent functions h in Wm

2. We 
define the corresponding class of deep networks DN, 2 to be the 
set of all deep networks with a binary tree architecture, where 
each of the constituent nodes is in SM, 2, where N = jV jM, V 
being the set of non–leaf vertices of the tree. We note that in 
the case when n is an integer power of 2, the total number of 
parameters involved in a deep network in DN, 2 – that is, weights 
and biases, is 4N.

Two observations are critical to understand the meaning of 
our results:
● compositional functions of n variables are a subset of func-

tions of n variables, that is Wm
n ¶ Wm

n, 2. Deep networks can 
exploit in their architecture the special structure of compo-
sitional functions, whereas shallow networks are blind to it. 
Thus from the point of view of shallow networks, functions 
in Wm

n, 2 are just functions in Wm
n; this is not the case for 

deep networks.
● the deep network does not need to have exactly the same 

compositional architecture as the compositional function 
to be approximated. It is sufficient that the acyclic graph 
representing the structure of the function is a subgraph of 
the graph representing the structure of the deep network. 
The degree of approximation estimates depend on the graph 
associated with the network and are thus an upper bound on 
what could be achieved by a network exactly matched to the 
function architecture.
The following two theorems estimate the degree of approx-

imation for shallow and deep networks.

3.3. Shallow networks. The first Theorem is about shallow 
networks.

Theorem 1. Let σ  : R ! R be infinitely differentiable, and not 
a polynomial. For f 2 Wm

n the complexity of shallow networks 
that provide accuracy at least ε  is

 N = O(ε –n/m) and is the best possible . (5)

Notes. In [24, Theorem 2.1], the theorem is stated under the 
condition that σ  is infinitely differentiable, and there ex-
ists b 2 R such that σ (k)(b)  6 = 0 for any integer k ¸ 0. It is 
proved in [25] that the second condition is equivalent to σ  not 
being a polynomial. The proof in [25] relies on the fact that 
under these conditions on σ, the algebraic polynomials in n 
variables of (total or coordinatewise) degree < q are in the 
uniform closure of the span of O (qn) functions of the form 
x  7! σ(hw, xi + b). The estimate itself is an upper bound on 
the degree of approximation by such polynomials. Since it is 
based on the approximation of the polynomial space contained 
in the ridge functions implemented by shallow networks, one 
may ask whether it could be improved by using a different ap-
proach. The answer relies on the concept of nonlinear n–width 
of the compact set Wm

n (cf. [5, 26]). The n-width results imply 
that the estimate in Theorem (1) is the best possible among all 
reasonable [26] methods of approximating arbitrary functions 
in Wm

n. □ The estimate of Theorem 1 is the best possible if the 
only a priori information we are allowed to assume is that the 
target function belongs to f 2 Wm

n. The exponential dependence 
on the dimension n of the number ε – n/m of parameters needed 
to obtain an accuracy O (ε) is known as the curse of dimen-
sionality. Note that the constants involved in O in the theorems 
will depend upon the norms of the derivatives of f as well as σ.

A simple but useful corollary follows from the proof of 
Theorem 1 about polynomials (which are a smaller space than 
spaces of Sobolev functions). Let us denote with Pk

n the linear 
space of polynomials of degree at most k in n variables. Then

Corollary 1. Let σ  : R ! R be infinitely differentiable, and not 
a polynomial. Every f 2 Pk

n can be realized with an arbitrary 
accuracy by shallow network with r units, r = 

¡n + k
k

¢
 ¼ k n.

3.4. Deep hierarchically local networks. Our second and 
main Theorem is about deep networks with smooth activations 
(preliminary versions appeared in [3‒5]). We formulate it in 
the binary tree case for simplicity but it extends immediately 
to functions that are compositions of constituent functions of 
a fixed number of variables d instead than of d = 2 variables 
as in the statement of the theorem.

Theorem 2. For f 2 Wm
n, 2 consider a deep network with the 

same compositonal architecture and with an activation function 
σ  : R ! R which is infinitely differentiable, and not a polyno-
mial. The complexity of the network to provide approximation 
with accuracy at least σ  is

 N = O ((n ¡ 1)ε –2/m). (6)
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Proof. To prove Theorem 2, we observe that each of the con-
stituent functions being in Wm

2, (1) applied with n = 2 implies 
that each of these functions can be approximated from SM, 2 up 
to accuracy ε = cN –m/2.  Our assumption that f 2 Wm

N, 2 implies 
that each of these constituent functions is Lipschitz continuous. 
Hence, it is easy to deduce that, for example, if P, P1, P2 are ap-
proximations to the constituent functions h, h1, h2, respectively 
within an accuracy of ε , then since kh ¡ Pk ∙ ε , kh1 ¡ P1k ∙ ε 
and kh2 ¡ P2k ∙ ε , then kh(h1, h2) ¡ P(P1, P2)k = kh(h1, h2) ¡
h(P1, P2) + h(P1, P2) ¡ P(P1, P2)k ∙ kh(h1, h2) ¡ h(P1, P2)k + 
kh(P1, P2) ¡ P(P1, P2)k ∙ cε  by Minkowski inequality. Thus

kh(h1, h2) ¡ P(P1, P2)k ∙ cε ,

for some constant c > 0 independent of the functions involved. This, 
together with the fact that there are (n ¡ 1) nodes, leads to (6). □

Also in this case the proof provides the following corollary 
about the subset Tk

n of the space Pk
n which consists of compo-

sitional polynomials with a binary tree graph and constituent 
polynomial functions of degree k (in 2 variables).

Corollary 2. Let σ  : R ! R be infinitely differentiable, and 
not a polynomial. Let n = 2l. Then f 2 Tk

n can be realized by 
a deep network with a binary tree graph and a total of r units 
with r = (n ¡ 1)

¡2 + k
2

¢
 ¼ (n ¡ 1)k 2.

It is important to emphasize that the assumptions on σ  in the 
theorems are not satisfied by the ReLU function x  7! x+, but 
they are satisfied by smoothing the function in an arbitrarily small 
interval around the origin. Empirical results suggest that the The-
orem should be valid also for the non-smooth ReLU. Section 4.1 
provides formal results. Stronger results than thevtheorems of 
this Section (see [6]) hold for networks where each unit evaluates 
a Gaussian non–linearity; i.e., Gaussian networks of the form

 G(x) = 
k=1

N

∑ ak exp(¡jx ¡ wkj2),  x 2 Rd (7)

where the approximation is on the entire Euclidean space.
In summary, when the only a priori assumption on the target 

function is about the number of derivatives, then to guarantee 
anvaccuracy of ε , we need a shallow network with O(ε –n/m) 
trainable parameters. If we assume, however, a hierarchical 
structure on the target function as in Theorem 2, then the cor-
responding deep network yields a guaranteed accuracy of ε  with 
O(ε –2/m) trainable parameters. Note that Theorem 2 applies to 
all f with a compositional architecture given by a graph which 
correspond to, or is a subgraph of, the graph associated with the 
deep network – in this case the graph corresponding to Wm

n, d. 
Theorem 2 leads naturally to the notion of effective dimension-
ality that we formalize in the next section.

Definition 1. The effective dimension of a class W of functions 
(for a given norm) is said to be d if for every ε  > , any function 
in W can be recovered within an accuracy of ε  (as measured 
by the norm) using an appropriate network (either shallow or 
deep) with ε–d parameters.

Thus, the effective dimension for the class Wm
n is n/m, that 

of Wm
n, 2 is 2/m.

4. General compositionality results: functions 
composed by a hierarchy of functions 
with bounded effective dimensionality

The main class of functions we considered in previous papers 
consists of functions as in Fig. 1b that we called composi-
tional functions. The term “compositionality” was used with 
the meaning it has in language and vision, where higher level 
concepts are composed of a small number of lower level ones, 
objects are composed of parts, sentences are composed of words 
and words are composed of syllables. Notice that this meaning 
of compositionality is narrower than the mathematical meaning 
of composition of functions. The compositional functions we 
have described in previous papers may be more precisely called 
functions composed of hierarchically local functions.

Here we generalize formally our previous results to the 
broader class of compositional functions (beyond the hierar-
chical locality of Fig. 1b to Fig. 1c and Fig. 2) by restating for-
mally a few comments of previous papers. Let us begin with 
one of the previous examples. Consider

Q(x, y) = (Ax2y2 + Bx2y + Cxy2 + Dx2 + 2Exy +

Q(x, y) = + Fy2 + 2Gx + 2Hy + I)210
.

Since Q is nominally a polynomial of coordinatewise de-
gree 211,    [24, Lemma 3.2] shows  that a shallow network 
with 211 + 1 units is able to approximate Q arbitrarily well 
on I 2. However, because of the hierarchical structure of Q,    
[24, Lemma 3.2] shows also that a hierarchical network with 
9 units can approximate the quadratic expression, and 10 fur-
ther layers, each with 3 units can approximate the successive 
powers. Thus, a hierarchical network with 11 layers and 39 units 
can approximate Q arbitrarily well. We note that even if Q is 
nominally of degree 211, each of the monomial coefficients in 
Q is a function of only 9 variables, A, ¢¢¢, I.

A different example is

 Q(x, y) = jx2 ¡ y2j. (8)

This is obviously a Lipschitz continuous function of 2 variables. 
The effective dimension of this class is 2, and hence, a shallow 
network would require at least cε –2 parameters to approximate 
it within ε . However, the effective dimension of the class of 
univariate Lipschitz continuous functions is 1. Hence, if we 
take into account the fact that Q is a composition of a poly-
nomial of degree 2 in 2 variables and the univariate Lipschitz 
continuous function t  7! jtj, then it is easy to see that the same 
approximation can be achieved by using a two layered network 
with O

¡
ε –1
¢
 parameters.

To formulate our most general result that includes the exam-
ples above as well as the constraint of hierarchical locality, we 
first define formally a compositional function in terms of a di-
rected acyclic graph. Let G  be a directed acyclic graph (DAG), 
with the set of nodes V. A G–function is defined as follows. 
Each of the source node obtains an input from R. Each in-edge 
of every other node represents an input real variable, and the 
node itself represents a function of these input real variables, 
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called a constituent function. The out-edges fan out the result 
of this evaluation. We assume that there is only one sink node, 
whose output is the G -function. Thus, ignoring the composi-
tionality of this function, it is a function of n variables, where 
n is the number of source nodes in G .

Theorem 3. Let G  be a DAG, n be the number of source nodes, 
and for each v 2 V, let dv be the number of in-edges of v. Let 
f  : Rn  7! R be a compositional G -function, where each of the 
constitutent function is in W dvmv

. Consider shallow and deep 
networks with infinitely smooth activation function as in The-
orem 1. Then deep networks – with an associated graph that 
corresponds to the graph of f – avoid the curse of dimensionality 
in approximating f for increasing n, whereas shallow networks 
cannot directly avoid the curse. In particular, the complexity 
of the best approximating shallow network is exponential in n

 Ns = O
Ã

ε – n
m
!

, (9)

where m = minv 2 V mv, while the complexity of the deep net-
work is

 Nd = O
µ

v 2 V
∑ ε – dv/mv

¶
. (10)

Following definition 1 we call dv/mv the effective dimen-
sion of function v. Then, deep networks can avoid the curse of 
dimensionality if the constituent functions of a compositional 
function have a small effective dimension; i.e., have fixed, 
“small” dimensionality or fixed, “small” “roughness. A different 
interpretation of Theorem 3 is the following.

Proposition 1. If a family of functions f  : Rn  7! R of smooth-
ness m has an effective dimension < n/m, then the functions 
are compositional in a manner consistent with the estimates in 
Theorem 3.

Notice that the functions included in this Theorem are func-
tions that are either local or the composition of simpler func-
tions or both. Figure 2 shows some examples in addition to the 
examples at the top of Fig. 1.

As before, there is a simple corollary for polynomial functions:

Corollary 3. Let σ  : R ! R be infinitely differentiable, and not 
a polynomial. With the set up as in Theorem 3, let f be DAG 
polynomial; i.e., a DAG function, each of whose constituent 

functions is a polynomial of degree k. Then f can be repre-
sented by a deep network with O(jVNjkd) units, where jVN j is 
the number of non-leaf vertices, and d is the maximal indegree 
of the nodes.

For example, if G  is a full binary tree with 2n leaves, then 
the nominal degree of the G  polynomial as in Corollary 3 is kkn

, 
and therefore requires a shallow network with O(nk 2) units, 
while a deep network requires only O(nk2) units.

Notice that polynomials in Sk
n are sparse with a number of 

terms which is not exponential in n, that is it is not O(kn) but 
linear in n (that is O(nk)) or at most polynomial in n.

4.1. Approximation results for shallow and deep networks 
with (non-smooth) ReLUs. The results we described so far 
use smooth activation functions. We already mentioned why 
relaxing the smoothness assumption should not change our re-
sults in a fundamental way. While studies on the properties of 
neural networks with smooth activation abound, the results on 
non-smooth activation functions are much more sparse. Here 
we briefly recall some of them.

In the case of shallow networks, the condition of a smooth 
activation function can be relaxed to prove density (see [14], 
Proposition 3.7):

Proposition 2. Let σ  =: R ! R be in C 0, and not a polyno-
mial. Then shallow networks are dense in C 0.

In particular, ridge functions using ReLUs of the form 
∑r

i = 1ci(hwi, xi + bi)+, with wi, x 2 Rn, ci, bi 2 R are dense in C .
Networks with non-smooth activation functions are ex-

pected to do relatively poorly in approximating smooth func-
tions such as polynomials in the sup norm. “Good” degree of 
approximation rates (modulo a constant) have been proved in 
the L2 norm. Define B the unit ball in Rn. Call C m(Bn) the set 
of all continuous functions with continuous derivative up to 
degree m defined on the unit ball. We define the Sobolev space 
Wp

m as the completion of C m(Bn) with respect to the Sobolev 
norm p (see for details [14] page 168). We define the space  
Bp

m = { f  : f 2 Wp
m, k f km, p ∙ 1} and the approximation error 

E(B2
m; H; L2) = inf g 2 H k f  ¡ gkL2. It is shown in [14, Corol-

lary 6.10] that

Proposition 3. For M r :  f (x) = ∑r
i = 1ci(hwi, xi + bi)+ it holds 

E(B2
m; Mr; L2) ∙ Cr– m

n  for m = 1, ¢¢¢, n + 3
2 .

These approximation results with respect to the L2 norm 
cannot be applied to derive bounds for compositional networks. 

Fig. 2. The figure shows the graphs of functions that may have small effective dimensionality, depending on the number of units per node 
required for good approximation

x1   x2   x3   x4 x5   x6   x7   x8

+
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+
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Indeed, in the latter case, as we remarked already, estimates 
in the uniform norm are needed to control the propagation of 
the errors from one layer to the next, see Theorem 2. Results 
in this direction are given in [27], and more recently in [28] 
and [6] (see Theorem 3.1). In particular, using a result in [28] 
and following the proof strategy of Theorem 2 it is possible to 
derive the following results on the approximation of Lipshitz 
continuous functions with deep and shallow ReLU networks 
that mimics our Theorem 2:

Theorem 4. Let f be a L-Lipshitz continuous function of n 
variables. Then, the complexity of a network which is a linear 
combination of ReLU providing an approximation with accu-
racy at least ε  is

Ns = O
µÃ

ε
L

!–n¶
,

wheres that of a deep compositional architecture is

Nd = O
µ¡

n ¡ 1
¢Ã ε

L

!–2
¶

.

The general Theorem 3 can be extended in a similar way. 
Theorem 4 is an example of how the analysis of smooth acti-
vation functions can be adapted to ReLU. Indeed, it shows 
how deep compositional networks with standard ReLUs can 
avoid the curse of dimensionality. In the above results, the 
regularity of the function class is quantified by the magnitude 
of Lipshitz constant. Whether the latter is the best notion of 
smoothness for ReLU based networks, and if the above esti-
mates can be improved, are interesting questions that we defer 
to a future work. An informal result that is more intuitive 

and may reflect what networks actually do is described in the 
Appendix of [1].

Figures 3‒6 provide a sanity check and empirical support for 
our main results and for the claims in the introduction. Further 
details can be found in the original paper [1].

Fig. 3. The figure shows on the top the graph of the function to be 
approximated, while the bottom part of the figure shows a deep neural 
network with the same graph structure. The left and right node inf 
the first layer has each n units giving a total of 2n units in the first 
layer. The second layer has a total of 2n units. The first layer has 
a convolution of size n to mirror the structure of the function to be 
learned. The compositional function we approximate has the form 
f (x1, x2, x3, x4) = h2(h11(x1, x2), h12(x3, x4)) with h11, h12 and h2 as 

indicated in the figure

Fig. 4. An empirical comparison of shallow vs 2-layers binary tree networks in the approximation of compositional functions. The loss function 
is the standard mean square error (MSE). There are several units per node of the tree. In our setup here the network with an associated binary 
tree graph was set up so that each layer had the same number of units and shared parameters. The number of units for the shallow and binary 
tree neural networks had the same number of parameters. On the left the function is composed of a single ReLU per node and is approximated 
by a network using ReLU activations. On the right the compositional function is f (x1, x2, x3, x4) = h2(h11(x1, x2), h12(x3, x4)) and is approximated 
by a network with a smooth ReLU activation (also called softplus). The functions h1, h2, h3 are as described in Fig. 3. In order to be close to 
the function approximation case, a large data set of 60 K training examples was used for both training sets. We used for SGD the Adam [29] 
optimizer. In order to get the best possible solution we ran 200 independent hyper parameter searches using random search [30] and reported 
the one with the lowest training error. The hyper parameters search was over the step size, the decay rate, frequency of decay and the mini-
batch size. The exponential decay hyper parameters for Adam were fixed to the recommended values according to the original paper [29]. The 

implementations were based on TensorFlow [31]
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Fig. 6. We show that the main advantage of deep Convolutional Networks (ConvNets) comes from “hierarchical locality” instead of weight 
sharing. We train two 5-layer ConvNets with and without weight sharing on CIFAR-10. ConvNet without weight sharing has different filter 
parameters at each spatial location. There are 4 convolutional layers (filter size 3£3, stride 2) in each network. The number of feature maps 
(i.e., channels) are 16, 32, 64 and 128 respectively. There is an additional fully-connected layer as a classifier. The performances of a 2-layer 
and 5-layer fully-connected networks are also shown for comparison. Each hidden layer of the fully-connected network has 512 units. The 
models are all trained for 60 epochs with cross-entropy loss and standard shift and mirror flip data augmentation (during training). The training 
errors are higher than those of validation because of data augmentation. The learning rates are 0.1 for epoch 1 to 40, 0.01 for epoch 41 to 50 
and 0.001 for rest epochs. The number of parameters for each model are indicated in the legends. Models with hierarchical locality significantly 

outperform shallow and hierarchical non-local networks
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Fig. 5. Another comparison of shallow vs 2-layers binary tree networks in the learning of compositional functions. The set up of the experiment 
was the same as in the one in Fig 4 except that the compositional function had two ReLU units per node instead of only one. The right part of 
the figure shows a cross Section of the function f (x1, x2, 0.5, 0.25) in a bounded interval x1 2 [–1, 1], x2 2 [–1, 1]. The shape of the function is 

piecewise linear as it is always the case for ReLUs networks
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4.2. Lower bounds and gaps. So far we have shown that there 
are deep networks – for instance of the convolutional type – that 
can avoid the curse of dimensionality if the functions they are 
learning are blessed with compositionality. There are no similar 
guarantee for shallow networks: for shallow networks approx-
imating generic continuous functions the lower and the upper 
bound are both exponential [14]. From the point of view of ma-
chine learning, it is obvious that shallow networks, unlike deep 
ones, cannot exploit in their architecture the reduced number 
of parameters associated with priors corresponding to composi-
tional functions. In past papers we listed a few examples, some 
of which are also valid lower bounds from the point of view of 
approximation theory:
● The polynomial considered earlier

Q(x1, x2, x3, x4) = (Q1(Q2(x1, x2), Q3(x3, x4))
1024,

can be approximated by deep networks with a smaller number 
of parameters than shallow networks is based on polynomial 
approximation of functions of the type g(g(g( ))). Here, 
however, a formal proof of the impossibility of good approx-
imation by shallow networks is not available. For a lower 
bound we need at least one example of a compositional func-
tion which cannot be approximated by shallow networks with 
a non-exponential degree of approximation.

● Such an example, for which a proof of the lower bound exists 
since a few decades, consider a function which is a linear 
combination of n tensor product Chui–Wang spline wave-
lets, where each wavelet is a tensor product cubic spline. It 
is shown in [12, 13] that is impossible to implement such 
a function using a shallow neural network with a sigmoidal 
activation function using O(n) neurons, but a deep network 
with the activation function (x+)2 can do so. In this case, 
as we mentioned, there is a formal proof of a gap between 
deep and shallow networks. Similarly, Eldan and Shamir [32] 
show other cases with separations that are exponential in the 
input dimension.

● As we mentioned earlier, Telgarsky proves an exponential gap 
between certain functions produced by deep networks and 
their approximation by shallow networks. The Theorem [22] 
can be summarized as saying that a certain family of classi-
fication problems with real-valued inputs cannot be approx-
imated well by shallow networks with fewer than exponen-
tially many nodes whereas a deep network achieves zero 
error. His upper bound can be proved directly from our main 
theorem by considering a different function – the real-valued 
polynomial x1x2 … xd defined on the cube (–1, 1)d which can 
be seen as a compositional function with a binary tree graph.

● We exhibit here another example to illustrate a limitation of 
shallow networks in approximating a compositional function. 
Let n ¸ 2 be an integer, B ½ Rn be the unit ball of Rn. We 
consider the class W of all compositional functions f = f2 ± f1, 
where f1 : Rn ! R, and ∑jkj ≤ 4kDk f1k1 ∙ 1, f2 : R ! R and 
kD4 f2k1 ∙ 1. We consider

∆(AN) := sup
f 2 W

inf
P 2 AN

k f ¡ Pk1, B ,

where AN is either the class SN of all shallow networks with N 
units or DN of deep networks with two layers, the first with n in-
puts, and the next with one input. The both cases, the activation 
function is a C1 function σ  =: R ! R that is not a polynomial.

Theorem 5. There exist constants c1 > 0 such that for N ¸ c1,

	 ∆(SN) ¸  2– N/(n ¡ 1) , (11)

In contrast, there exists c3 > 0 such that

	 ∆(DN) ¸ c3N – 4/n. (12)

The constants c1, c2, c3 may depend upon n.

Proof. The estimate (12) follows from the estimates already 
given for deep networks. To prove (11), we use Lemma 3.2 
in [13]. Let φ be a C1 function supported on [0, 1], and we 
consider fN(x) = φ(j4Nxj2). We may clearly choose φ so that 
k fNk1 = 1. Then it is clear that each fN  2 W. Clearly,

	 ∆(SN) ¸  inf
P 2 SN

max
x 2 B

j fN(x) ¡ P(x)j. (13)

We choose P¤(x) = ∑N
k = 1σ (hwk

¤, xibk
¤) such that

 
inf

P 2 SN

max
x 2 B

j fN(x) ¡ P(x)j ¸

¸ (1/2)max
x 2 B

j fN(x) ¡ P¤(x)j.
 (14)

Since fN is supported on {x 2 Rn : jxj ∙ 4– N}, we may imitate the 
proof of Lemma 3.2 in [13] with gk

¤(t) = σ (t + bk
¤). Let x0 2 B 

be such that (without loss of generality) fN(x0) = max x 2 Bj fN(x)j,  
and µ0 be the Dirac measure supported at x0. We group {wk

¤} 
in m = dN/(n ¡ 1)e disjoint groups of n ¡ 1 vectors each. For 
each group, we take vectors {v`} such that v` is orthogonal to 
the wk

¤’s in group `. The argument in the proof of Lemma 3.2 
in [13] can be modified to get a measure µ with total variation 
2m such that
Z

B
fN(x)dµ(x) = k fNk1 , 

Z

B
gk

¤(x)dµ(x) = 0, k = 1, ¢¢¢, N.

It is easy to deduce from here as in [13] using the duality prin-
ciple that

max
x 2 B

j fN(x) ¡ P¤(x)j ¸ c2–m.

Together with [13] and [14], this implies [11]. □
So by now plenty of examples of lower bounds exist showing 

a gap between shallow and deep networks. A particularly in-
teresting case is the product function, that is the monomial 
f (x1, ¢¢¢, xn) = x1x2 ¢¢¢ xn which is, from our point of view, the 
prototypical compositional functions. Keeping in mind the issue 
of lower bounds, the question here has to do with the minimum 
integer r(n) such that the function f is in the closure of the span 
of σ (hwk, xibk), with k = 1, ¢¢¢, r(n), and wk, bk ranging over 
their whole domains. Such a result has been claimed for the 
case of smooth ReLUs [33].
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4.3. Densely connected deep networks. As mentioned already, 
the approximating deep network does not need to exactly match 
the architecture of the compositional function as long as the 
graph or tree associated with the function is contained in the 
graph associated with the network. This is of course good news. 
We have shown that for a given class of compositional func-
tions characterized by an associated graph there exist a deep 
network that approximates such a function better than a shallow 
network. The same network approximates well functions char-
acterized by subgraphs of the original class.

The proofs of our theorems show that linear combinations 
of compositional functions are universal in the sense that they 
can approximate any function; deep networks with a number of 
units that increases exponentially with layers can approximate 
any function.

As an aside, note that the simplest compositional function 
– addition – is trivial in the sense that it offers no approximation 
advantage to deep networks. The key function is multiplication 
which is for us the prototypical compositional functions. Poly-
nomial functions are indeed linear combinations of monomials 
which are compositional. However, their compositional struc-
ture does not confer any advantage in terms of approximation, 
because of the exponential number of compositional terms.

As we mentioned earlier, networks corresponding to graphs 
that include the graph of the function to be learned can exploit 
compositionality. The relevant number of parameters to be op-
timized, however, is the number of parameters r in the network 
and not the number of parameters r¤ (r¤ < r) of the optimal 
deep network with a graph exactly matched to the graph of 
the function to be learned. In Theory III we will show that 
overparametrization of deep networks for classification does 
not need to pay any overfitting price if the data sets are nice.

In this sense, some of the densely connected deep networks 
used in practice – which contain sparse graphs possibly relevant 
for the function to be learned and which are still “smaller” 
than the exponential number of units required to represent a ge-
neric function of n variables – may be capable in some cases 
of exploiting an underlying compositionality structure without 
paying an exhorbitant price in terms of required complexity.

5. Connections with the theory of Boolean functions

The approach followed in our main theorems suggest the fol-
lowing considerations. The structure of a deep network is re-
flected in polynomials that are best approximated by it – for 
instance generic polynomials or sparse polynomials (in the 
coefficients) in d variables of order k. The tree structure of 
the nodes of a deep network reflects the structure of a specific 
sparse polynomial. Generic polynomial of degree k in d vari-
ables are difficult to learn because the number of terms, train-
able parameters and associated VC-dimension are all exponen-
tial in d. On the other hand, functions approximated well by 
sparse polynomials can be learned efficiently by deep networks 
with a tree structure that matches the polynomial. We recall that 
in a similar way several properties of certain Boolean functions 
can be “read out” from the terms of their Fourier expansion 

corresponding to “large” coefficients, that is from a polynomial 
that approximates well the function.

Classical results [34, 35] about the depth-breadth tradeoff 
in circuits design show that deep circuits are more efficient in 
representing certain Boolean functions than shallow circuits. 
Hastad proved that highly-variable functions (in the sense of 
having high frequencies in their Fourier spectrum), in particular 
the parity function cannot even be decently approximated by 
small constant depth circuits (see also [36]).

Notice that Hastad’s results on Boolean functions have been 
often quoted in support of the claim that deep neural networks 
can represent functions that shallow networks cannot. For in-
stance Bengio and LeCun [37] write “We claim that most func-
tions that can be represented compactly by deep architectures 
cannot be represented by a compact shallow architecture”. It 
is important however to observe that circuits composed of RE-
LU’s have different properties than Hastad circuits. In partic-
ular, the boolean parity function can be represented efficiently 
by a shallow circuit of RELUs.

Finally, we want to mention a few other observations on 
Boolean functions that suggest interesting connections with our 
results. It is known that within Boolean functions the AC 0 class 
of polynomial size constant depth circuits is characterized by 
Fourier transforms where most of the power spectrum is in 
the low order coefficients. Such functions can be approximated 
well by a polynomial of low degree and can be learned well by 
considering only such coefficients. There are two algorithms 
[38] that allow learning of certain Boolean function classes:
1. the low order algorithm that approximates functions by con-

sidering their low order Fourier coefficients and
2. the sparse algorithm which learns a function by approximat-

ing its significant coefficients.
Decision lists and decision trees can be learned by the first 
algorithm. Functions with small L1 norm can be approximated 
well by the second algorithm. Boolean circuits expressing DNFs 
can be approximated by the first one but even better by the 
second. In fact, in many cases a function can be approximated 
by a small set of coefficients but these coefficients do not cor-
respond to low-order terms. All these cases are consistent with 
the notes about sparse functions in Section 6.

6. Notes on a theory of compositional computation

The key property of the theory of compositional functions 
sketched here is that certain deep networks can learn them 
avoiding the curse of dimensionality because of the blessing 
of compositionality via a small effective dimension.

We state here several comments and conjectures.

6.1. Compositionality, smoothness and curse of dimensionality. 
Properties of the compositionality type may have a more signifi-
cant impact than smoothness properties in countering the curse of 
dimensionality in practical cases of learning and approximation.

6.2. Extension to vector nodes and functions. The main ques-
tion that may be asked about the relevance of the theoretical re-
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sults of this paper and networks used in practice has to do with the 
many “channels” used in the latter and with our assumption that 
each node in the networks computes a scalar function – the linear 
combination of r units (Equation 3). The following extension of 
Theorem 1 to vector-valued functions says that the number of 
hidden units required for a given accuracy in each component of 
the function is the same as in the scalar case considered in our 
previous theorems (of course the number of weigths is larger):

Corollary 4. Let σ  : R ! R be infinitely differentiable, and not 
a polynomial. For a vector-valued function f  : Rn ! Rq with 
components fi 2 Wm

n, i = 1, ¢¢¢, q the number of hidden units in 
shallow networks with n inputs, q outputs that provide accuracy 
at least ε  in each of the components of f is

 N = O (ε –n/m). (15)

The demonstration amounts to realizing that the hidden units 
(or linear combinations of them) can be equivalent to the mo-
nomials of a generic polynomial of degree k in n variables that 
can be used by a different set of coefficients for each of the fi. 
This argument of course does not mean that during learning this 
is what happens; it provides one way to perform the approx-
imation and an associated upper bound. The corollary above 
leads to a simple argument that generalizes our binary tree re-
sults to standard, multi-channel deep convolutional networks 
by introducing a set of virtual linear units as ouputs of one 
layer and inputs of the next one. This in turn leads to the fol-
lowing prediction: for consistent approximation accuracy across 
the layers, the rank of the weights matrices between units in 
successive layers should be in the order of the number of the 
dimensionality in the first layer (inputs and outputs have to be 
defined wrt support of the convolution kernel).

6.3. Invariances. Both shallow and deep representations may 
or may not reflect invariance to group transformations of the 
inputs of the function ([39, 40]). Invariance – also called weight 
sharing – decreases the complexity of the network. Since we 
are interested in the comparison of shallow vs deep architec-
tures, we have considered the generic case of networks (and 
functions) for which invariance is not assumed. In fact, the 
key advantage of deep vs. shallow network – as shown by the 
proof of the Theorem – is the associated hierarchical locality 
(the constituent functions in each node are local that is have 
a small dimensionality) and not invariance (which designates 
shared weights that is nodes at the same level sharing the same 
function). One may then ask about the relation of these results 
with i-theory [41]. The original core of i-theory describes how 
pooling can provide either shallow or deep networks with in-
variance and selectivity properties. Invariance of course helps 
but not exponentially as hierarchical locality does.

6.4. Neuroscience. There are several properties that follow 
from the theory here which are attractive from the point of 
view of neuroscience. A main one is the robustness of the results 
with respect to the choice of nonlinearities (linear rectifiers, 
sigmoids, Gaussians etc.) and pooling.

6.5. Spline approximations and Boolean functions.
● Consider again the case of a multivariate function 

f  : [0, 1]d ! R. Suppose to discretize it by a set of piece-
wise constant splines and their tensor products. Each coor-
dinate is effectively replaced by n boolean variables.This 
results in a d-dimensional table with N = nd entries. This 
in turn corresponds to a boolean function f  : {0, 1}N ! R. 
Here, the assumption of compositionality corresponds 
to compressibility of a d-dimensional table in terms of 
a hierarchy of d ¡ 1 2-dimensional tables. Instead of nd 
entries there are (d ¡ 1)n2 entries.

● Every function f can be approximated by an epsilon-close 
binary function fB. Binarization of f  : Rn ! R is done by 
using k partitions for each variable xi and indicator func-
tions. Thus f   7! fB : {0, 1}kn ! R and supj f ¡ fBj ∙ ε , 
with ε  depending on k and bounded Df .

● fB can be written as a polynomial (a Walsh decomposi-
tion) fB ¼ pB. It is always possible to associate a pb to 
any f, given ε .

6.6. Tensors. One can think of tensors as d-dimensional tables 
representing or approximating a d-dimensional function. The 
framework of hierarchical decompositions of tensors – in par-
ticular the Hierarchical Tucker format – is closely connected to 
our notion of compositionality. Interestingly, the hierarchical 
Tucker decomposition has been the subject of recent papers 
on Deep Learning (for instance see [21]). This work, as well 
more classical papers [42], does not characterize directly the 
class of functions for which these decompositions are effec-
tive. From recent discussions with Hrushikesh Mhaskar and Or 
Sharir, it seems clear that tensors with a HT decomposition of 
low complexity are a subset of our compositional functions. In 
particular, the following (informal) statement holds.

Proposition 4.
1. There exist functions which can be approximated well – that 

is, avoiding the curse of dimensionality – by deep nets, that 
do not have a low complexity HT decomposition;

2. all tensors with a low complexity HT decomposition can be 
approximated well by deep nets.
Notice that tensor decompositions assume that the sum of 

polynomial functions of order d is sparse (see eq. at top of page 
2030 of [42]). Our results may provide a rigorous grounding for 
the tensor work related to deep learning.

6.7. Theory of computation, locality and compositionality:
● From the computer science point of view, feedforward 

multilayer networks are equivalent to finite state machines 
running for a finite number of time steps [43, 44]. This re-
sult holds for almost any fixed nonlinearity in each layer. 
Feedforward networks are equivalent to cascades without 
loops (with a finite number of stages) and all other forms of 
loop free cascades (i.e. McCulloch-Pitts nets without loops, 
perceptrons, analog perceptrons, linear threshold machines). 
Finite state machines, cascades with loops, and difference 
equation systems which are Turing equivalent, are more 
powerful than multilayer architectures with a finite number 
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of layers. The latter networks, however, are practically uni-
versal computers, since every machine we can build can be 
approximated as closely as we like by defining sufficiently 
many stages or a sufficiently complex single stage. Recur-
rent networks as well as differential equations are Turing 
universal.
In other words, all computable functions (by a Turing ma-
chine) are recursive, that is composed of a small set of prim-
itive operations. In this broad sense all computable functions 
are compositional (composed from elementary functions). 
Conversely a Turing machine can be written as a composi-
tional function y =  f (d)(x, p) where f  : Zn£Pm  7! Zh£Pk, 
P being parameters that are inputs and outputs of f. If t is 
bounded we have a finite state machine, otherwise a Turing 
machine, in terms of elementary functions. As mentioned 
above, each layer in a deep network correspond to one time 
step in a Turing machine. In a sense, this is sequential com-
positionality, as in the example of Fig. 1c.

● Hierarchically local compositionality can be related to the 
notion of local connectivity of a network. Local processing 
may be a key constraint also in neuroscience. One of the 
natural measures of connectivity that can be introduced 
is the order of a node defined as the number of its dis-
tinct inputs. The order of a network is then the maximum 
order among its nodes. The term “order” dates back to the 
Perceptron book ([45], see also [44]), where it was used 
for a very specific type of shallow networks. In this case 
many interesting visual computations have low order (e.g. 
recognition of isolated figures), since they can be imple-
mented in a single layer by units that have a small number 
of inputs. More complex visual computations require inputs 
from the full visual field. For a deep networkthe situation 
is different: effective high order at the top can be achieved 
using units with low order. The network architecture of 
Fig. 1b has low order: each node in the intermediate layers 
is connected to just 2 other nodes, rather than (say) all nodes 
in the previous layer (notice that the connections in the 
trees of the figures may reflect linear combinations of the 
input units).

● Low order may be a key constraint for cortex. If it captures 
what is possible in terms of connectivity between neurons, 
it may determine by itself the hierarchical architecture of 
cortex which in turn may impose compositionality to lan-
guage and speech.

● The idea of functions that are compositions of “simpler” 
functions extends in a natural way to recurrent computa-
tions and recursive functions. For instance h( f (t)g((x))) rep-
resents t iterations of the algorithm f (h and g match input 
and output dimensions to f ).

7. Why are compositional functions so common?

Let us provide a couple of simple examples of compositional 
functions. Addition is compositional but the degree of approx-
imation does not improve by decomposing addition in different 
layers of a network; all linear operators are compositional with 

no advantage for deep networks; multiplication as well as the 
AND operation (for Boolean variables) is the prototypical com-
positional function that provides an advantage to deep networks. 
So compositionality is not enough: we need certain sublasses 
of compositional functions (such as the hierarchically local 
functions we described) in order to avoid the curse of dimen-
sionality.

It is not clear, of course, why problems encountered in 
practice should involve this class of functions. Though we and 
others have argued that the explanation may be in either the 
physics or the neuroscience of the brain, these arguments [1] 
are not rigorous. Our conjecture at present is that composition-
ality is imposed by the wiring of our cortex and is reflected in 
language and the common problems we worry about. Thus com-
positionality of several – but not all – computations on images 
many reflect the way we describe and think about them. More 
details about these arguments as well as numerical experiments 
and other topics related to this paper can be found in the original 
contribution [1].
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