
761Bull. Pol. Ac.: Tech. 66(6) 2018

Abstract. We review recent work characterizing the classes of functions for which deep learning can be exponentially better than shallow learning.
Deep convolutional networks are a special case of these conditions, though weight sharing is not the main reason for their exponential advantage.

Key words: deep and shallow networks, convolutional neural networks, function approximation, deep learning.

Theory I: Deep networks and the curse of dimensionality

T. POGGIO* and Q. LIAO
Center for Brains, Minds, and Machines, McGovern Institute for Brain Research,

Massachusetts Institute of Technology, Cambridge, MA, 02139

3. the key aspect of convolutional networks that can give them
an exponential advantage is not weight sharing but locality
at each level of the hierarchy.

2. Previous theoretical work

Deep Learning references start with Hinton’s backpropagation
and with Lecun’s convolutional networks (see for a review [8]).
Of course, multilayer convolutional networks have been around
at least as far back as the optical processing era of the 1970s.
The Neocognitron [9] was a convolutional neural network that
was trained to recognize characters. The property of composi-
tionality was a main motivation for hierarchical models of vi-
sual cortex such as HMAX which can be regarded as a pyramid
of AND and OR layers [10], that is a sequence of conjunctions
and disjunctions. Several papers in the 1980s focused on the ap-
proximation power and learning properties of one-hidden layer
networks (called shallow networks here). Very little appeared
on multilayer networks, (but see [11‒13]), mainly because one
hidden layer nets performed empirically as well as deeper net-
works. On the theory side, a review by Pinkus in 1999 [14]
concludes that “...there seems to be reason to conjecture that
the two hidden layer model may be significantly more prom-
ising than the single hidden layer model...”. A version of the
questions about the importance of hierarchies was asked in [15]
as follows: “A comparison with real brains offers another, and
probably related, challenge to learning theory. The “learning
algorithms” we have described in this paper correspond to one-
layer architectures. Are hierarchical architectures with more
layers justifiable in terms of learning theory? It seems that the
learning theory of the type we have outlined does not offer any
general argument in favor of hierarchical learning machines
for regression or classification. This is somewhat of a puzzle
since the organization of cortex – for instance visual cortex – is
strongly hierarchical. At the same time, hierarchical learning
systems show superior performance in several engineering
applications.” Because of the great empirical success of deep
learning over the last three years, several papers addressing
the question of why hierarchies have appeared. Sum-Product

1. A theory of deep learning

1.1. Introduction1. There are three main theory questions about
deep neural networks. The first set of questions is about the
power of the architecture – which classes of functions can it
approximate and learn well? The second set of questions is
about the learning process: what is the landscape of the empir-
ical risk? The third question is about generalization. Why there
is no apparent overfitting despite overparametrization?

Here we focus on the first set of questions, reviewing pre-
viouswork [2‒6]). The main message is that deep networks
have the theoretical guarantee, which shallow networks do
not have, that they can avoid the curse of dimensionality for
an important class of problems, corresponding to a subset of
compositional functions, that is functions of functions, that
we call hierarchically local compositional functions where all
the constituent functions are local, in the sense that they have
bounded, small dimensionality. The deep networks that can
approximate them without the curse of dimensionality are of
the deep convolutional type, but in general without weight
sharing.

The most relevant implications of the above results are:
1. Certain deep convolutional architectures have a theoretical

guarantee that they can be much better than one layer ar-
chitectures such as kernel machines;

2. the problems for which certain deep networks are guaran-
teed to avoid the “curse of dimensionality” (see for a nice
review [7]) correspond to input-output mappings that are
compositional with a hierarchy of constituent functions that
are local: an example is f (x1, ¢¢¢, x8) = h3(h21(h11(x1, x2),
h12(x3, x4)), h22(h13(x5, x6), h14(x7, x8))). The compositional
function f requires only “local” computations (here with just
dimension 2) in each of its constituent functions h;

1 The material of this review is based on previous publications, in particular [1].

*e-mail: tp@csail.mit.edu

Manuscript

BULLETIN OF THE POLISH ACADEMY OF SCIENCES
TECHNICAL SCIENCES, Vol. 66, No. 6, 2018
DOI: 10.24425/bpas.2018.125924

INVITED PAPER

762

T. Poggio and Q. Liao

Bull. Pol. Ac.: Tech. 66(6) 2018

networks, which are equivalent to polynomial networks (see
[16, 17]), are a simple case of a hierarchy that was analyzed
[18] but did not provide particularly useful insights. Montufar
and Bengio [19] showed that the number of linear regions that
can be synthesized by a deep network with ReLU nonlinearities
is much larger than by a shallow network. The meaning of this
result in terms of approximation theory and of our own results is
at the moment an open question2. Relevant to the present review
is the work on hierarchical quadratic networks [17], together
with function approximation results [14, 20]. Also relevant is
the conjecture by Shashua (see [21]) on a connection between
deep learning networks and the hierarchical Tucker represen-
tations of tensors. In fact, our theorems, that characterize the
functions represented well by deep convolutional networks,
may also lead to a characterization of the class of functions
which can be represented well by a hierarchical Tucker rep-
resentation.

It was already well known that the upper bound for the
approximation of general functions by shallow networks is ex-
ponential. It is then natural to assume that, since there is no
general way for shallow networks to exploit a compositional
prior, lower bounds for the approximation by shallow networks
of compositional functions should also be exponential. In fact,
examples of specific functions that cannot be represented effi-
ciently by shallow networks have been given recently by Tel-
garsky [22] and by Shamirc [23]. We provide in Theorem 5 an
older example of a class of compositional functions for which
there is a gap between shallow and deep networks.

3. Function approximation by deep networks

In this section, we state theorems about the approximation prop-
erties of shallow and deep networks.

3.1. Degree of approximation. The general paradigm is as
follows. We are interested in determining how complex a net-
work ought to be to theoretically guarantee approximation of
an unknown target function f up to a given accuracy ε  > 0. To
measure the accuracy, we need a norm k¢k on some normed
linear space X. As we will see the norm used in the results of
this paper is the sup norm in keeping with the standard choice
in approximation theory. Notice, however, that from the point
of view of machine learning, the relevant norm is the L2 norm.
In this sense, several of our results are stronger than needed.
On the other hand, our main results on compositionality require
the sup norm in order to be independent from the unknown
distribution of the input data, which is important for machine
learning.

Let VN be the be set of all networks of a given kind with
complexity N which we take here to be the total number of

2  We conjecture that the result may be similar to other examples in Section 4.2.
It says that among the class of functions that are piecewise linear, there exist
functions that can be synthesized by deep networks with a certain number of
units but require a much large number of units to be synthesized by shallow
networks.

units in the network (e.g., all shallow networks with N units in
the hidden layer). It is assumed that the class of networks with
a higher complexity include those with a lower complexity; i.e.,
VN µ VN + 1. The degree of approximation is defined by

 dist(f , VN) =  inf
P 2 VN

k f ¡ Pk. (1)

For example, if (f , VN) = O(N –γ) for some γ  > 0, then a net-
work with complexity N = O

Ã

ε– 1
γ

!

 will be sufficient to guar-
antee an approximation with accuracy at least ε . Since f is un-
known, in order to obtain theoretically proved upper bounds,
we need to make some assumptions on the class of functions
from which the unknown target function is chosen. This a priori
information is codified by the statement that f 2 W for some
subspace W µ X. This subspace is usually a smoothness class
characterized by a smoothness parameter m. Here it will be gen-
eralized to a smoothness and compositional class, characterized
by the parameters m and d (d = 2 in the example of Fig. 1; in
general is the size of the kernel in a convolutional network.

3.2. Shallow and deep networks. This Section characterizes
conditions under which deep networks are “better” than shallow
network in approximating functions. Thus we compare shallow
(one-hidden layer) networks with deep networks as shown in
Fig. 1. Both types of networks use the same small set of op-
erations – dot products, linear combinations, a fixed nonlinear
function of one variable, possibly convolution and pooling.
Each node in the networks we consider usually corresponds
to a node in the graph of the function to be approximated, as
shown in the Figure. In particular each node in the network
contains a certain number of units. A unit is a neuron which
computes

 (hx, wi + b)+ , (2)

where w is the vector of weights on the vector input x. Both
t and the real number b are parameters tuned by learning. We
assume here that each node in the networks computes the linear
combination of r such units

i =1

r

∑ ci(hx, tii + bi)+ . (3)

Notice that for our main example of a deep network corre-
sponding to a binary tree graph, the resulting architecture is an
idealized version of the plethora of deep convolutional neural
networks described in the literature. In particular, it has only
one output at the top unlike most of the deep architectures with
many channels and many top-level outputs. Correspondingly,
each node computes a single value instead of multiple channels,
using the combination of several units (see Equation 3). Our ap-
proach and basic results apply rather directly to more complex
networks (see third note in Section 6).

The logic of our theorems is as follows.
● Both shallow (a) and deep (b) networks are universal, that

is they can approximate arbitrarily well any continuous

763

Theory I: Deep networks and the curse of dimensionality

Bull. Pol. Ac.: Tech. 66(6) 2018

function of n variables on a compact domain. The result for
shallow networks is classical. Since shallow networks can
be viewed as a special case of deep networks, it clear that
for any continuous function of n variables, there exists also
a deep network that approximates the function arbitrarily
well on a compact domain.

● We consider a special class of functions of n variables on
a compact domain that are a hierarchical compositions of
local functions such as

f (x1, ¢¢¢, x8) = h3(h21(h11(x1, x2), h12(x3, x4)),
f (x1, ¢¢¢, x8) = h22(h13(x5, x6), h14(x7, x8))) .

 (4)

The structure of the function in equation 4 is represented by
a graph of the binary tree type. This is the simplest example
of compositional functions, reflecting dimensionality d = 2
for the constituent functions h. In general, d is arbitrary but

fixed and independent of the dimensionality n of the com-
positional function f. In our results we will often think of
n increasing while d is fixed. In Section 4 we will consider
the more general compositional case.

● The approximation of functions with a compositional struc-
ture – can be achieved with the same degree of accuracy
by deep and shallow networks but that the number of pa-
rameters are much smaller for the deep networks than for
the shallow network with equivalent approximation accu-
racy. It is intuitive that a hierarchical network matching the
structure of a compositional function should be “better” at
approximating it than a generic shallow network but univer-
sality of shallow networks asks for non-obvious character-
ization of “better”. Our result makes clear that the intuition
is indeed correct.
In the perspetive of machine learning, we assume that the

shallow networks do not have any structural information on
the function to be learned (here its compositional structure),

Fig. 1. The top graphs are associated to functions; each of the bottom diagrams depicts the ideal network approximating the function above. In
(a) a shallow universal network in 8 variables and N units approximates a generic function of 8 variables f (x1, ¢¢¢, x8). Inset b) shows a binary
tree hierarchical network at the bottom in n = 8 variables, which approximates well functions of the form f (x1, ¢¢¢, x8) = h3(h21(h11(x1, x2), h1

2(x3, x4)), h22(h13(x5, x6), h14(x7, x8))) as represented by the binary graph above. In the approximating network each of the n ¡ 1 nodes in the
graph of the function corresponds to a set of Q =  N

n ¡ 1 ReLU units computing the ridge function ∑Q
i=1ai(hvi, xi + ti)+, with vi, x 2 R2, ai, ti 2 R.

Each term in the ridge function corresponds to a unit in the node (this is somewhat different from todays deep networks, but equivalent to
them, see text and note in 6). In a binary tree with n inputs, there are log2n levels and a total of n ¡ 1 nodes. Similar to the shallow network,
a hierarchical network is universal, that is, it can approximate any continuous function; the text proves that it can approximate a compositional
functions exponentially better than a shallow network. No invariance – that is weight sharing – is assumed here. Notice that the key property
that makes convolutional deep nets exponentially better than shallow networks for compositional functions is the locality of the constituent
functions – that is their low dimensionality. Weight sharing corresponds to all constituent functions at one level to be the same (h11 = h12 etc.).
Inset c) shows a different mechanism that can be exploited by the deep network at the bottom to reduce the curse of dimensionality in the
compositional function at the top: leveraging different degrees of smoothness of the constituent functions, see Theorem 6 in the text. Notice that
in c) the input dimensionality must be ¸ 2 in order for deep nets to have an advantage over shallow nets. The simplest examples of functions

to be considered for (a), (b) and (c) are polynomials with a structure corresponding to the graph at the top

x1 x2 x3 x4 x5 x6 x7 x8

a b c

….
∑

x1 x2 x3 x4 x5 x6 x7 x8

….
….

….
......

∑

...

...

...

∑

x1 x2 x3 x4 x5 x6 x7 x8x1 x2 x3 x4 x5 x6 x7 x8

x1 x2 x3 x4 x5 x6 x7 x8 x1 x2 x3 x4 x5 x6 x7 x8

(a)

x1 x2 x3 x4 x5 x6 x7 x8

a b c

….
∑

x1 x2 x3 x4 x5 x6 x7 x8

….
….

….
......

∑

...

...

...

∑

x1 x2 x3 x4 x5 x6 x7 x8x1 x2 x3 x4 x5 x6 x7 x8

x1 x2 x3 x4 x5 x6 x7 x8 x1 x2 x3 x4 x5 x6 x7 x8x1 x2 x3 x4 x5 x6 x7 x8

a b c

….
∑

x1 x2 x3 x4 x5 x6 x7 x8

….
….

….
......

∑

...

...

...

∑

x1 x2 x3 x4 x5 x6 x7 x8x1 x2 x3 x4 x5 x6 x7 x8

x1 x2 x3 x4 x5 x6 x7 x8 x1 x2 x3 x4 x5 x6 x7 x8

(b) (c)

x1 x2 x3 x4 x5 x6 x7 x8

a b c

….
∑

x1 x2 x3 x4 x5 x6 x7 x8

….
….

….
......

∑

...

...

...

∑

x1 x2 x3 x4 x5 x6 x7 x8x1 x2 x3 x4 x5 x6 x7 x8

x1 x2 x3 x4 x5 x6 x7 x8 x1 x2 x3 x4 x5 x6 x7 x8
x1 x2 x3 x4 x5 x6 x7 x8

a b c

….
∑

x1 x2 x3 x4 x5 x6 x7 x8

….
….

….
......

∑

...

...

...

∑

x1 x2 x3 x4 x5 x6 x7 x8x1 x2 x3 x4 x5 x6 x7 x8

x1 x2 x3 x4 x5 x6 x7 x8 x1 x2 x3 x4 x5 x6 x7 x8x1 x2 x3 x4 x5 x6 x7 x8

a b c

….
∑

x1 x2 x3 x4 x5 x6 x7 x8

….
….

….
......

∑

...

...

...

∑

x1 x2 x3 x4 x5 x6 x7 x8x1 x2 x3 x4 x5 x6 x7 x8

x1 x2 x3 x4 x5 x6 x7 x8 x1 x2 x3 x4 x5 x6 x7 x8

764

T. Poggio and Q. Liao

Bull. Pol. Ac.: Tech. 66(6) 2018

because they cannot represent it directly and cannot exploit the
advantage of a smaller number of parameters. In any case, in
the context of approximation theory, we will exhibit and cite
lower bounds of approximation by shallow networks for the
class of compositional functions. Deep networks with standard
architectures on the other hand do represent compositionality
in their architecture and can be adapted to the details of such
prior information.

We approximate functions of n variables of the form of
Equation (4) with networks in which the activation nonlin-
earity is a smoothed version of the so called ReLU, given by
σ (x) = x+ = max(0, x). The architecture of the deep networks
reflects Equation (4) with each node hi being a ridge function,
comprising one or more neurons.

Let I n = [–1, 1]n, X = C(I n) be the space of all continuous
functions on I n, with k f k = maxx 2 I nj f (x)j. Let SN, n denote the
class of all shallow networks with N units of the form

x  7! 
k = 1

N
∑ akσ (hwk, xi + bk),

where wk 2 Rn, bk, ak 2 R. The number of trainable parameters
here is (n + 2)N » n. Let m ¸ 1 be an integer, and Wm

n be the set
of all functions of n variables with continuous partial derivatives
of orders up to m < 1 such that k f k + ∑1 ≤ jkj1 ≤ mkDk f k ∙ 1,
where Dk denotes the partial derivative indicated by the
multi-integer k ¸ 1, and jkj1 is the sum of the components of k.

For the hierarchical binary tree network, the analogous
spaces are defined by considering the compact set Wm

n, 2 to be
the class of all compositional functions f of n variables with
a binary tree architecture and constituent functions h in Wm

2. We
define the corresponding class of deep networks DN, 2 to be the
set of all deep networks with a binary tree architecture, where
each of the constituent nodes is in SM, 2, where N = jV jM, V
being the set of non–leaf vertices of the tree. We note that in
the case when n is an integer power of 2, the total number of
parameters involved in a deep network in DN, 2 – that is, weights
and biases, is 4N.

Two observations are critical to understand the meaning of
our results:
● compositional functions of n variables are a subset of func-

tions of n variables, that is Wm
n ¶ Wm

n, 2. Deep networks can
exploit in their architecture the special structure of compo-
sitional functions, whereas shallow networks are blind to it.
Thus from the point of view of shallow networks, functions
in Wm

n, 2 are just functions in Wm
n; this is not the case for

deep networks.
● the deep network does not need to have exactly the same

compositional architecture as the compositional function
to be approximated. It is sufficient that the acyclic graph
representing the structure of the function is a subgraph of
the graph representing the structure of the deep network.
The degree of approximation estimates depend on the graph
associated with the network and are thus an upper bound on
what could be achieved by a network exactly matched to the
function architecture.
The following two theorems estimate the degree of approx-

imation for shallow and deep networks.

3.3. Shallow networks. The first Theorem is about shallow
networks.

Theorem 1. Let σ  : R ! R be infinitely differentiable, and not
a polynomial. For f 2 Wm

n the complexity of shallow networks
that provide accuracy at least ε is

 N = O(ε –n/m) and is the best possible . (5)

Notes. In [24, Theorem 2.1], the theorem is stated under the
condition that σ is infinitely differentiable, and there ex-
ists b 2 R such that σ (k)(b)  6 = 0 for any integer k ¸ 0. It is
proved in [25] that the second condition is equivalent to σ not
being a polynomial. The proof in [25] relies on the fact that
under these conditions on σ, the algebraic polynomials in n
variables of (total or coordinatewise) degree < q are in the
uniform closure of the span of O (qn) functions of the form
x  7! σ(hw, xi + b). The estimate itself is an upper bound on
the degree of approximation by such polynomials. Since it is
based on the approximation of the polynomial space contained
in the ridge functions implemented by shallow networks, one
may ask whether it could be improved by using a different ap-
proach. The answer relies on the concept of nonlinear n–width
of the compact set Wm

n (cf. [5, 26]). The n-width results imply
that the estimate in Theorem (1) is the best possible among all
reasonable [26] methods of approximating arbitrary functions
in Wm

n. □ The estimate of Theorem 1 is the best possible if the
only a priori information we are allowed to assume is that the
target function belongs to f 2 Wm

n. The exponential dependence
on the dimension n of the number ε – n/m of parameters needed
to obtain an accuracy O (ε) is known as the curse of dimen-
sionality. Note that the constants involved in O in the theorems
will depend upon the norms of the derivatives of f as well as σ.

A simple but useful corollary follows from the proof of
Theorem 1 about polynomials (which are a smaller space than
spaces of Sobolev functions). Let us denote with Pk

n the linear
space of polynomials of degree at most k in n variables. Then

Corollary 1. Let σ  : R ! R be infinitely differentiable, and not
a polynomial. Every f 2 Pk

n can be realized with an arbitrary
accuracy by shallow network with r units, r = 

¡n + k
k

¢
 ¼ k n.

3.4. Deep hierarchically local networks. Our second and
main Theorem is about deep networks with smooth activations
(preliminary versions appeared in [3‒5]). We formulate it in
the binary tree case for simplicity but it extends immediately
to functions that are compositions of constituent functions of
a fixed number of variables d instead than of d = 2 variables
as in the statement of the theorem.

Theorem 2. For f 2 Wm
n, 2 consider a deep network with the

same compositonal architecture and with an activation function
σ  : R ! R which is infinitely differentiable, and not a polyno-
mial. The complexity of the network to provide approximation
with accuracy at least σ is

 N = O ((n ¡ 1)ε –2/m). (6)

765

Theory I: Deep networks and the curse of dimensionality

Bull. Pol. Ac.: Tech. 66(6) 2018

Proof. To prove Theorem 2, we observe that each of the con-
stituent functions being in Wm

2, (1) applied with n = 2 implies
that each of these functions can be approximated from SM, 2 up
to accuracy ε = cN –m/2. Our assumption that f 2 Wm

N, 2 implies
that each of these constituent functions is Lipschitz continuous.
Hence, it is easy to deduce that, for example, if P, P1, P2 are ap-
proximations to the constituent functions h, h1, h2, respectively
within an accuracy of ε , then since kh ¡ Pk ∙ ε , kh1 ¡ P1k ∙ ε
and kh2 ¡ P2k ∙ ε , then kh(h1, h2) ¡ P(P1, P2)k = kh(h1, h2) ¡
h(P1, P2) + h(P1, P2) ¡ P(P1, P2)k ∙ kh(h1, h2) ¡ h(P1, P2)k +
kh(P1, P2) ¡ P(P1, P2)k ∙ cε by Minkowski inequality. Thus

kh(h1, h2) ¡ P(P1, P2)k ∙ cε ,

for some constant c > 0 independent of the functions involved. This,
together with the fact that there are (n ¡ 1) nodes, leads to (6). □

Also in this case the proof provides the following corollary
about the subset Tk

n of the space Pk
n which consists of compo-

sitional polynomials with a binary tree graph and constituent
polynomial functions of degree k (in 2 variables).

Corollary 2. Let σ  : R ! R be infinitely differentiable, and
not a polynomial. Let n = 2l. Then f 2 Tk

n can be realized by
a deep network with a binary tree graph and a total of r units
with r = (n ¡ 1)

¡2 + k
2

¢
 ¼ (n ¡ 1)k 2.

It is important to emphasize that the assumptions on σ in the
theorems are not satisfied by the ReLU function x  7! x+, but
they are satisfied by smoothing the function in an arbitrarily small
interval around the origin. Empirical results suggest that the The-
orem should be valid also for the non-smooth ReLU. Section 4.1
provides formal results. Stronger results than thevtheorems of
this Section (see [6]) hold for networks where each unit evaluates
a Gaussian non–linearity; i.e., Gaussian networks of the form

 G(x) = 
k=1

N

∑ ak exp(¡jx ¡ wkj2),  x 2 Rd (7)

where the approximation is on the entire Euclidean space.
In summary, when the only a priori assumption on the target

function is about the number of derivatives, then to guarantee
anvaccuracy of ε , we need a shallow network with O(ε –n/m)
trainable parameters. If we assume, however, a hierarchical
structure on the target function as in Theorem 2, then the cor-
responding deep network yields a guaranteed accuracy of ε with
O(ε –2/m) trainable parameters. Note that Theorem 2 applies to
all f with a compositional architecture given by a graph which
correspond to, or is a subgraph of, the graph associated with the
deep network – in this case the graph corresponding to Wm

n, d.
Theorem 2 leads naturally to the notion of effective dimension-
ality that we formalize in the next section.

Definition 1. The effective dimension of a class W of functions
(for a given norm) is said to be d if for every ε  > , any function
in W can be recovered within an accuracy of ε (as measured
by the norm) using an appropriate network (either shallow or
deep) with ε–d parameters.

Thus, the effective dimension for the class Wm
n is n/m, that

of Wm
n, 2 is 2/m.

4. General compositionality results: functions
composed by a hierarchy of functions
with bounded effective dimensionality

The main class of functions we considered in previous papers
consists of functions as in Fig. 1b that we called composi-
tional functions. The term “compositionality” was used with
the meaning it has in language and vision, where higher level
concepts are composed of a small number of lower level ones,
objects are composed of parts, sentences are composed of words
and words are composed of syllables. Notice that this meaning
of compositionality is narrower than the mathematical meaning
of composition of functions. The compositional functions we
have described in previous papers may be more precisely called
functions composed of hierarchically local functions.

Here we generalize formally our previous results to the
broader class of compositional functions (beyond the hierar-
chical locality of Fig. 1b to Fig. 1c and Fig. 2) by restating for-
mally a few comments of previous papers. Let us begin with
one of the previous examples. Consider

Q(x, y) = (Ax2y2 + Bx2y + Cxy2 + Dx2 + 2Exy +

Q(x, y) = + Fy2 + 2Gx + 2Hy + I)210
.

Since Q is nominally a polynomial of coordinatewise de-
gree 211, [24, Lemma 3.2] shows that a shallow network
with 211 + 1 units is able to approximate Q arbitrarily well
on I 2. However, because of the hierarchical structure of Q,
[24, Lemma 3.2] shows also that a hierarchical network with
9 units can approximate the quadratic expression, and 10 fur-
ther layers, each with 3 units can approximate the successive
powers. Thus, a hierarchical network with 11 layers and 39 units
can approximate Q arbitrarily well. We note that even if Q is
nominally of degree 211, each of the monomial coefficients in
Q is a function of only 9 variables, A, ¢¢¢, I.

A different example is

 Q(x, y) = jx2 ¡ y2j. (8)

This is obviously a Lipschitz continuous function of 2 variables.
The effective dimension of this class is 2, and hence, a shallow
network would require at least cε –2 parameters to approximate
it within ε . However, the effective dimension of the class of
univariate Lipschitz continuous functions is 1. Hence, if we
take into account the fact that Q is a composition of a poly-
nomial of degree 2 in 2 variables and the univariate Lipschitz
continuous function t  7! jtj, then it is easy to see that the same
approximation can be achieved by using a two layered network
with O

¡
ε –1
¢
 parameters.

To formulate our most general result that includes the exam-
ples above as well as the constraint of hierarchical locality, we
first define formally a compositional function in terms of a di-
rected acyclic graph. Let G be a directed acyclic graph (DAG),
with the set of nodes V. A G–function is defined as follows.
Each of the source node obtains an input from R. Each in-edge
of every other node represents an input real variable, and the
node itself represents a function of these input real variables,

766

T. Poggio and Q. Liao

Bull. Pol. Ac.: Tech. 66(6) 2018

called a constituent function. The out-edges fan out the result
of this evaluation. We assume that there is only one sink node,
whose output is the G -function. Thus, ignoring the composi-
tionality of this function, it is a function of n variables, where
n is the number of source nodes in G .

Theorem 3. Let G be a DAG, n be the number of source nodes,
and for each v 2 V, let dv be the number of in-edges of v. Let
f  : Rn  7! R be a compositional G -function, where each of the
constitutent function is in W dvmv

. Consider shallow and deep
networks with infinitely smooth activation function as in The-
orem 1. Then deep networks – with an associated graph that
corresponds to the graph of f – avoid the curse of dimensionality
in approximating f for increasing n, whereas shallow networks
cannot directly avoid the curse. In particular, the complexity
of the best approximating shallow network is exponential in n

 Ns = O
Ã

ε – n
m
!

, (9)

where m = minv 2 V mv, while the complexity of the deep net-
work is

 Nd = O
µ

v 2 V
∑ ε – dv/mv

¶
. (10)

Following definition 1 we call dv/mv the effective dimen-
sion of function v. Then, deep networks can avoid the curse of
dimensionality if the constituent functions of a compositional
function have a small effective dimension; i.e., have fixed,
“small” dimensionality or fixed, “small” “roughness. A different
interpretation of Theorem 3 is the following.

Proposition 1. If a family of functions f  : Rn  7! R of smooth-
ness m has an effective dimension < n/m, then the functions
are compositional in a manner consistent with the estimates in
Theorem 3.

Notice that the functions included in this Theorem are func-
tions that are either local or the composition of simpler func-
tions or both. Figure 2 shows some examples in addition to the
examples at the top of Fig. 1.

As before, there is a simple corollary for polynomial functions:

Corollary 3. Let σ  : R ! R be infinitely differentiable, and not
a polynomial. With the set up as in Theorem 3, let f be DAG
polynomial; i.e., a DAG function, each of whose constituent

functions is a polynomial of degree k. Then f can be repre-
sented by a deep network with O(jVNjkd) units, where jVN j is
the number of non-leaf vertices, and d is the maximal indegree
of the nodes.

For example, if G is a full binary tree with 2n leaves, then
the nominal degree of the G polynomial as in Corollary 3 is kkn

,
and therefore requires a shallow network with O(nk 2) units,
while a deep network requires only O(nk2) units.

Notice that polynomials in Sk
n are sparse with a number of

terms which is not exponential in n, that is it is not O(kn) but
linear in n (that is O(nk)) or at most polynomial in n.

4.1. Approximation results for shallow and deep networks
with (non-smooth) ReLUs. The results we described so far
use smooth activation functions. We already mentioned why
relaxing the smoothness assumption should not change our re-
sults in a fundamental way. While studies on the properties of
neural networks with smooth activation abound, the results on
non-smooth activation functions are much more sparse. Here
we briefly recall some of them.

In the case of shallow networks, the condition of a smooth
activation function can be relaxed to prove density (see [14],
Proposition 3.7):

Proposition 2. Let σ  =: R ! R be in C 0, and not a polyno-
mial. Then shallow networks are dense in C 0.

In particular, ridge functions using ReLUs of the form
∑r

i = 1ci(hwi, xi + bi)+, with wi, x 2 Rn, ci, bi 2 R are dense in C .
Networks with non-smooth activation functions are ex-

pected to do relatively poorly in approximating smooth func-
tions such as polynomials in the sup norm. “Good” degree of
approximation rates (modulo a constant) have been proved in
the L2 norm. Define B the unit ball in Rn. Call C m(Bn) the set
of all continuous functions with continuous derivative up to
degree m defined on the unit ball. We define the Sobolev space
Wp

m as the completion of C m(Bn) with respect to the Sobolev
norm p (see for details [14] page 168). We define the space
Bp

m = { f  : f 2 Wp
m, k f km, p ∙ 1} and the approximation error

E(B2
m; H; L2) = inf g 2 H k f  ¡ gkL2. It is shown in [14, Corol-

lary 6.10] that

Proposition 3. For M r :  f (x) = ∑r
i = 1ci(hwi, xi + bi)+ it holds

E(B2
m; Mr; L2) ∙ Cr– m

n for m = 1, ¢¢¢, n + 3
2 .

These approximation results with respect to the L2 norm
cannot be applied to derive bounds for compositional networks.

Fig. 2. The figure shows the graphs of functions that may have small effective dimensionality, depending on the number of units per node
required for good approximation

x1 x2 x3 x4 x5 x6 x7 x8

+

x1 x2 x3 x4 x5 x6 x7 x8

+

x1 x2 x3 x4 x5 x6 x7 x8

+

x1 x2 x3 x4 x5 x6 x7 x8

767

Theory I: Deep networks and the curse of dimensionality

Bull. Pol. Ac.: Tech. 66(6) 2018

Indeed, in the latter case, as we remarked already, estimates
in the uniform norm are needed to control the propagation of
the errors from one layer to the next, see Theorem 2. Results
in this direction are given in [27], and more recently in [28]
and [6] (see Theorem 3.1). In particular, using a result in [28]
and following the proof strategy of Theorem 2 it is possible to
derive the following results on the approximation of Lipshitz
continuous functions with deep and shallow ReLU networks
that mimics our Theorem 2:

Theorem 4. Let f be a L-Lipshitz continuous function of n
variables. Then, the complexity of a network which is a linear
combination of ReLU providing an approximation with accu-
racy at least ε is

Ns = O
µÃ

ε
L

!–n¶
,

wheres that of a deep compositional architecture is

Nd = O
µ¡

n ¡ 1
¢Ã ε

L

!–2
¶

.

The general Theorem 3 can be extended in a similar way.
Theorem 4 is an example of how the analysis of smooth acti-
vation functions can be adapted to ReLU. Indeed, it shows
how deep compositional networks with standard ReLUs can
avoid the curse of dimensionality. In the above results, the
regularity of the function class is quantified by the magnitude
of Lipshitz constant. Whether the latter is the best notion of
smoothness for ReLU based networks, and if the above esti-
mates can be improved, are interesting questions that we defer
to a future work. An informal result that is more intuitive

and may reflect what networks actually do is described in the
Appendix of [1].

Figures 3‒6 provide a sanity check and empirical support for
our main results and for the claims in the introduction. Further
details can be found in the original paper [1].

Fig. 3. The figure shows on the top the graph of the function to be
approximated, while the bottom part of the figure shows a deep neural
network with the same graph structure. The left and right node inf
the first layer has each n units giving a total of 2n units in the first
layer. The second layer has a total of 2n units. The first layer has
a convolution of size n to mirror the structure of the function to be
learned. The compositional function we approximate has the form
f (x1, x2, x3, x4) = h2(h11(x1, x2), h12(x3, x4)) with h11, h12 and h2 as

indicated in the figure

Fig. 4. An empirical comparison of shallow vs 2-layers binary tree networks in the approximation of compositional functions. The loss function
is the standard mean square error (MSE). There are several units per node of the tree. In our setup here the network with an associated binary
tree graph was set up so that each layer had the same number of units and shared parameters. The number of units for the shallow and binary
tree neural networks had the same number of parameters. On the left the function is composed of a single ReLU per node and is approximated
by a network using ReLU activations. On the right the compositional function is f (x1, x2, x3, x4) = h2(h11(x1, x2), h12(x3, x4)) and is approximated
by a network with a smooth ReLU activation (also called softplus). The functions h1, h2, h3 are as described in Fig. 3. In order to be close to
the function approximation case, a large data set of 60 K training examples was used for both training sets. We used for SGD the Adam [29]
optimizer. In order to get the best possible solution we ran 200 independent hyper parameter searches using random search [30] and reported
the one with the lowest training error. The hyper parameters search was over the step size, the decay rate, frequency of decay and the mini-
batch size. The exponential decay hyper parameters for Adam were fixed to the recommended values according to the original paper [29]. The

implementations were based on TensorFlow [31]

768

T. Poggio and Q. Liao

Bull. Pol. Ac.: Tech. 66(6) 2018

Fig. 6. We show that the main advantage of deep Convolutional Networks (ConvNets) comes from “hierarchical locality” instead of weight
sharing. We train two 5-layer ConvNets with and without weight sharing on CIFAR-10. ConvNet without weight sharing has different filter
parameters at each spatial location. There are 4 convolutional layers (filter size 3£3, stride 2) in each network. The number of feature maps
(i.e., channels) are 16, 32, 64 and 128 respectively. There is an additional fully-connected layer as a classifier. The performances of a 2-layer
and 5-layer fully-connected networks are also shown for comparison. Each hidden layer of the fully-connected network has 512 units. The
models are all trained for 60 epochs with cross-entropy loss and standard shift and mirror flip data augmentation (during training). The training
errors are higher than those of validation because of data augmentation. The learning rates are 0.1 for epoch 1 to 40, 0.01 for epoch 41 to 50
and 0.001 for rest epochs. The number of parameters for each model are indicated in the legends. Models with hierarchical locality significantly

outperform shallow and hierarchical non-local networks

0 10 20 30 40 50 60

Epoch

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

T
ra

in
in

g
 e

rr
o

r
o

n
 C

IF
A

R
-1

0

ShallowFC, 2 Layers, #Params 1577984

DeepFC, 5 Layers, #Params 2364416

DeepConv, No Sharing, #Params 563888

DeepConv, Sharing, #Params 98480

0 10 20 30 40 50 60

Epoch

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

V
a

lid
a

ti
o

n
 e

rr
o

r
o

n
 C

IF
A

R
-1

0

ShallowFC, 2 Layers, #Params 1577984

DeepFC, 5 Layers, #Params 2364416

DeepConv, No Sharing, #Params 563888

DeepConv, Sharing, #Params 98480

Fig. 5. Another comparison of shallow vs 2-layers binary tree networks in the learning of compositional functions. The set up of the experiment
was the same as in the one in Fig 4 except that the compositional function had two ReLU units per node instead of only one. The right part of
the figure shows a cross Section of the function f (x1, x2, 0.5, 0.25) in a bounded interval x1 2 [–1, 1], x2 2 [–1, 1]. The shape of the function is

piecewise linear as it is always the case for ReLUs networks

769

Theory I: Deep networks and the curse of dimensionality

Bull. Pol. Ac.: Tech. 66(6) 2018

4.2. Lower bounds and gaps. So far we have shown that there
are deep networks – for instance of the convolutional type – that
can avoid the curse of dimensionality if the functions they are
learning are blessed with compositionality. There are no similar
guarantee for shallow networks: for shallow networks approx-
imating generic continuous functions the lower and the upper
bound are both exponential [14]. From the point of view of ma-
chine learning, it is obvious that shallow networks, unlike deep
ones, cannot exploit in their architecture the reduced number
of parameters associated with priors corresponding to composi-
tional functions. In past papers we listed a few examples, some
of which are also valid lower bounds from the point of view of
approximation theory:
● The polynomial considered earlier

Q(x1, x2, x3, x4) = (Q1(Q2(x1, x2), Q3(x3, x4))
1024,

can be approximated by deep networks with a smaller number
of parameters than shallow networks is based on polynomial
approximation of functions of the type g(g(g( ))). Here,
however, a formal proof of the impossibility of good approx-
imation by shallow networks is not available. For a lower
bound we need at least one example of a compositional func-
tion which cannot be approximated by shallow networks with
a non-exponential degree of approximation.

● Such an example, for which a proof of the lower bound exists
since a few decades, consider a function which is a linear
combination of n tensor product Chui–Wang spline wave-
lets, where each wavelet is a tensor product cubic spline. It
is shown in [12, 13] that is impossible to implement such
a function using a shallow neural network with a sigmoidal
activation function using O(n) neurons, but a deep network
with the activation function (x+)2 can do so. In this case,
as we mentioned, there is a formal proof of a gap between
deep and shallow networks. Similarly, Eldan and Shamir [32]
show other cases with separations that are exponential in the
input dimension.

● As we mentioned earlier, Telgarsky proves an exponential gap
between certain functions produced by deep networks and
their approximation by shallow networks. The Theorem [22]
can be summarized as saying that a certain family of classi-
fication problems with real-valued inputs cannot be approx-
imated well by shallow networks with fewer than exponen-
tially many nodes whereas a deep network achieves zero
error. His upper bound can be proved directly from our main
theorem by considering a different function – the real-valued
polynomial x1x2 … xd defined on the cube (–1, 1)d which can
be seen as a compositional function with a binary tree graph.

● We exhibit here another example to illustrate a limitation of
shallow networks in approximating a compositional function.
Let n ¸ 2 be an integer, B ½ Rn be the unit ball of Rn. We
consider the class W of all compositional functions f = f2 ± f1,
where f1 : Rn ! R, and ∑jkj ≤ 4kDk f1k1 ∙ 1, f2 : R ! R and
kD4 f2k1 ∙ 1. We consider

∆(AN) := sup
f 2 W

inf
P 2 AN

k f ¡ Pk1, B ,

where AN is either the class SN of all shallow networks with N
units or DN of deep networks with two layers, the first with n in-
puts, and the next with one input. The both cases, the activation
function is a C1 function σ  =: R ! R that is not a polynomial.

Theorem 5. There exist constants c1 > 0 such that for N ¸ c1,

	 ∆(SN) ¸  2– N/(n ¡ 1) , (11)

In contrast, there exists c3 > 0 such that

	 ∆(DN) ¸ c3N – 4/n. (12)

The constants c1, c2, c3 may depend upon n.

Proof. The estimate (12) follows from the estimates already
given for deep networks. To prove (11), we use Lemma 3.2
in [13]. Let φ be a C1 function supported on [0, 1], and we
consider fN(x) = φ(j4Nxj2). We may clearly choose φ so that
k fNk1 = 1. Then it is clear that each fN  2 W. Clearly,

	 ∆(SN) ¸  inf
P 2 SN

max
x 2 B

j fN(x) ¡ P(x)j. (13)

We choose P¤(x) = ∑N
k = 1σ (hwk

¤, xibk
¤) such that

inf

P 2 SN

max
x 2 B

j fN(x) ¡ P(x)j ¸

¸ (1/2)max
x 2 B

j fN(x) ¡ P¤(x)j.
 (14)

Since fN is supported on {x 2 Rn : jxj ∙ 4– N}, we may imitate the
proof of Lemma 3.2 in [13] with gk

¤(t) = σ (t + bk
¤). Let x0 2 B

be such that (without loss of generality) fN(x0) = max x 2 Bj fN(x)j,
and µ0 be the Dirac measure supported at x0. We group {wk

¤}
in m = dN/(n ¡ 1)e disjoint groups of n ¡ 1 vectors each. For
each group, we take vectors {v`} such that v` is orthogonal to
the wk

¤’s in group `. The argument in the proof of Lemma 3.2
in [13] can be modified to get a measure µ with total variation
2m such that
Z

B
fN(x)dµ(x) = k fNk1 , 

Z

B
gk

¤(x)dµ(x) = 0, k = 1, ¢¢¢, N.

It is easy to deduce from here as in [13] using the duality prin-
ciple that

max
x 2 B

j fN(x) ¡ P¤(x)j ¸ c2–m.

Together with [13] and [14], this implies [11]. □
So by now plenty of examples of lower bounds exist showing

a gap between shallow and deep networks. A particularly in-
teresting case is the product function, that is the monomial
f (x1, ¢¢¢, xn) = x1x2 ¢¢¢ xn which is, from our point of view, the
prototypical compositional functions. Keeping in mind the issue
of lower bounds, the question here has to do with the minimum
integer r(n) such that the function f is in the closure of the span
of σ (hwk, xibk), with k = 1, ¢¢¢, r(n), and wk, bk ranging over
their whole domains. Such a result has been claimed for the
case of smooth ReLUs [33].

770

T. Poggio and Q. Liao

Bull. Pol. Ac.: Tech. 66(6) 2018

4.3. Densely connected deep networks. As mentioned already,
the approximating deep network does not need to exactly match
the architecture of the compositional function as long as the
graph or tree associated with the function is contained in the
graph associated with the network. This is of course good news.
We have shown that for a given class of compositional func-
tions characterized by an associated graph there exist a deep
network that approximates such a function better than a shallow
network. The same network approximates well functions char-
acterized by subgraphs of the original class.

The proofs of our theorems show that linear combinations
of compositional functions are universal in the sense that they
can approximate any function; deep networks with a number of
units that increases exponentially with layers can approximate
any function.

As an aside, note that the simplest compositional function
– addition – is trivial in the sense that it offers no approximation
advantage to deep networks. The key function is multiplication
which is for us the prototypical compositional functions. Poly-
nomial functions are indeed linear combinations of monomials
which are compositional. However, their compositional struc-
ture does not confer any advantage in terms of approximation,
because of the exponential number of compositional terms.

As we mentioned earlier, networks corresponding to graphs
that include the graph of the function to be learned can exploit
compositionality. The relevant number of parameters to be op-
timized, however, is the number of parameters r in the network
and not the number of parameters r¤ (r¤ < r) of the optimal
deep network with a graph exactly matched to the graph of
the function to be learned. In Theory III we will show that
overparametrization of deep networks for classification does
not need to pay any overfitting price if the data sets are nice.

In this sense, some of the densely connected deep networks
used in practice – which contain sparse graphs possibly relevant
for the function to be learned and which are still “smaller”
than the exponential number of units required to represent a ge-
neric function of n variables – may be capable in some cases
of exploiting an underlying compositionality structure without
paying an exhorbitant price in terms of required complexity.

5. Connections with the theory of Boolean functions

The approach followed in our main theorems suggest the fol-
lowing considerations. The structure of a deep network is re-
flected in polynomials that are best approximated by it – for
instance generic polynomials or sparse polynomials (in the
coefficients) in d variables of order k. The tree structure of
the nodes of a deep network reflects the structure of a specific
sparse polynomial. Generic polynomial of degree k in d vari-
ables are difficult to learn because the number of terms, train-
able parameters and associated VC-dimension are all exponen-
tial in d. On the other hand, functions approximated well by
sparse polynomials can be learned efficiently by deep networks
with a tree structure that matches the polynomial. We recall that
in a similar way several properties of certain Boolean functions
can be “read out” from the terms of their Fourier expansion

corresponding to “large” coefficients, that is from a polynomial
that approximates well the function.

Classical results [34, 35] about the depth-breadth tradeoff
in circuits design show that deep circuits are more efficient in
representing certain Boolean functions than shallow circuits.
Hastad proved that highly-variable functions (in the sense of
having high frequencies in their Fourier spectrum), in particular
the parity function cannot even be decently approximated by
small constant depth circuits (see also [36]).

Notice that Hastad’s results on Boolean functions have been
often quoted in support of the claim that deep neural networks
can represent functions that shallow networks cannot. For in-
stance Bengio and LeCun [37] write “We claim that most func-
tions that can be represented compactly by deep architectures
cannot be represented by a compact shallow architecture”. It
is important however to observe that circuits composed of RE-
LU’s have different properties than Hastad circuits. In partic-
ular, the boolean parity function can be represented efficiently
by a shallow circuit of RELUs.

Finally, we want to mention a few other observations on
Boolean functions that suggest interesting connections with our
results. It is known that within Boolean functions the AC 0 class
of polynomial size constant depth circuits is characterized by
Fourier transforms where most of the power spectrum is in
the low order coefficients. Such functions can be approximated
well by a polynomial of low degree and can be learned well by
considering only such coefficients. There are two algorithms
[38] that allow learning of certain Boolean function classes:
1. the low order algorithm that approximates functions by con-

sidering their low order Fourier coefficients and
2. the sparse algorithm which learns a function by approximat-

ing its significant coefficients.
Decision lists and decision trees can be learned by the first
algorithm. Functions with small L1 norm can be approximated
well by the second algorithm. Boolean circuits expressing DNFs
can be approximated by the first one but even better by the
second. In fact, in many cases a function can be approximated
by a small set of coefficients but these coefficients do not cor-
respond to low-order terms. All these cases are consistent with
the notes about sparse functions in Section 6.

6. Notes on a theory of compositional computation

The key property of the theory of compositional functions
sketched here is that certain deep networks can learn them
avoiding the curse of dimensionality because of the blessing
of compositionality via a small effective dimension.

We state here several comments and conjectures.

6.1. Compositionality, smoothness and curse of dimensionality.
Properties of the compositionality type may have a more signifi-
cant impact than smoothness properties in countering the curse of
dimensionality in practical cases of learning and approximation.

6.2. Extension to vector nodes and functions. The main ques-
tion that may be asked about the relevance of the theoretical re-

771

Theory I: Deep networks and the curse of dimensionality

Bull. Pol. Ac.: Tech. 66(6) 2018

sults of this paper and networks used in practice has to do with the
many “channels” used in the latter and with our assumption that
each node in the networks computes a scalar function – the linear
combination of r units (Equation 3). The following extension of
Theorem 1 to vector-valued functions says that the number of
hidden units required for a given accuracy in each component of
the function is the same as in the scalar case considered in our
previous theorems (of course the number of weigths is larger):

Corollary 4. Let σ  : R ! R be infinitely differentiable, and not
a polynomial. For a vector-valued function f  : Rn ! Rq with
components fi 2 Wm

n, i = 1, ¢¢¢, q the number of hidden units in
shallow networks with n inputs, q outputs that provide accuracy
at least ε in each of the components of f is

 N = O (ε –n/m). (15)

The demonstration amounts to realizing that the hidden units
(or linear combinations of them) can be equivalent to the mo-
nomials of a generic polynomial of degree k in n variables that
can be used by a different set of coefficients for each of the fi.
This argument of course does not mean that during learning this
is what happens; it provides one way to perform the approx-
imation and an associated upper bound. The corollary above
leads to a simple argument that generalizes our binary tree re-
sults to standard, multi-channel deep convolutional networks
by introducing a set of virtual linear units as ouputs of one
layer and inputs of the next one. This in turn leads to the fol-
lowing prediction: for consistent approximation accuracy across
the layers, the rank of the weights matrices between units in
successive layers should be in the order of the number of the
dimensionality in the first layer (inputs and outputs have to be
defined wrt support of the convolution kernel).

6.3. Invariances. Both shallow and deep representations may
or may not reflect invariance to group transformations of the
inputs of the function ([39, 40]). Invariance – also called weight
sharing – decreases the complexity of the network. Since we
are interested in the comparison of shallow vs deep architec-
tures, we have considered the generic case of networks (and
functions) for which invariance is not assumed. In fact, the
key advantage of deep vs. shallow network – as shown by the
proof of the Theorem – is the associated hierarchical locality
(the constituent functions in each node are local that is have
a small dimensionality) and not invariance (which designates
shared weights that is nodes at the same level sharing the same
function). One may then ask about the relation of these results
with i-theory [41]. The original core of i-theory describes how
pooling can provide either shallow or deep networks with in-
variance and selectivity properties. Invariance of course helps
but not exponentially as hierarchical locality does.

6.4. Neuroscience. There are several properties that follow
from the theory here which are attractive from the point of
view of neuroscience. A main one is the robustness of the results
with respect to the choice of nonlinearities (linear rectifiers,
sigmoids, Gaussians etc.) and pooling.

6.5. Spline approximations and Boolean functions.
● Consider again the case of a multivariate function

f  : [0, 1]d ! R. Suppose to discretize it by a set of piece-
wise constant splines and their tensor products. Each coor-
dinate is effectively replaced by n boolean variables.This
results in a d-dimensional table with N = nd entries. This
in turn corresponds to a boolean function f  : {0, 1}N ! R.
Here, the assumption of compositionality corresponds
to compressibility of a d-dimensional table in terms of
a hierarchy of d ¡ 1 2-dimensional tables. Instead of nd
entries there are (d ¡ 1)n2 entries.

● Every function f can be approximated by an epsilon-close
binary function fB. Binarization of f  : Rn ! R is done by
using k partitions for each variable xi and indicator func-
tions. Thus f   7! fB : {0, 1}kn ! R and supj f ¡ fBj ∙ ε ,
with ε depending on k and bounded Df .

● fB can be written as a polynomial (a Walsh decomposi-
tion) fB ¼ pB. It is always possible to associate a pb to
any f, given ε .

6.6. Tensors. One can think of tensors as d-dimensional tables
representing or approximating a d-dimensional function. The
framework of hierarchical decompositions of tensors – in par-
ticular the Hierarchical Tucker format – is closely connected to
our notion of compositionality. Interestingly, the hierarchical
Tucker decomposition has been the subject of recent papers
on Deep Learning (for instance see [21]). This work, as well
more classical papers [42], does not characterize directly the
class of functions for which these decompositions are effec-
tive. From recent discussions with Hrushikesh Mhaskar and Or
Sharir, it seems clear that tensors with a HT decomposition of
low complexity are a subset of our compositional functions. In
particular, the following (informal) statement holds.

Proposition 4.
1. There exist functions which can be approximated well – that

is, avoiding the curse of dimensionality – by deep nets, that
do not have a low complexity HT decomposition;

2. all tensors with a low complexity HT decomposition can be
approximated well by deep nets.
Notice that tensor decompositions assume that the sum of

polynomial functions of order d is sparse (see eq. at top of page
2030 of [42]). Our results may provide a rigorous grounding for
the tensor work related to deep learning.

6.7. Theory of computation, locality and compositionality:
● From the computer science point of view, feedforward

multilayer networks are equivalent to finite state machines
running for a finite number of time steps [43, 44]. This re-
sult holds for almost any fixed nonlinearity in each layer.
Feedforward networks are equivalent to cascades without
loops (with a finite number of stages) and all other forms of
loop free cascades (i.e. McCulloch-Pitts nets without loops,
perceptrons, analog perceptrons, linear threshold machines).
Finite state machines, cascades with loops, and difference
equation systems which are Turing equivalent, are more
powerful than multilayer architectures with a finite number

772

T. Poggio and Q. Liao

Bull. Pol. Ac.: Tech. 66(6) 2018

of layers. The latter networks, however, are practically uni-
versal computers, since every machine we can build can be
approximated as closely as we like by defining sufficiently
many stages or a sufficiently complex single stage. Recur-
rent networks as well as differential equations are Turing
universal.
In other words, all computable functions (by a Turing ma-
chine) are recursive, that is composed of a small set of prim-
itive operations. In this broad sense all computable functions
are compositional (composed from elementary functions).
Conversely a Turing machine can be written as a composi-
tional function y =  f (d)(x, p) where f  : Zn£Pm  7! Zh£Pk,
P being parameters that are inputs and outputs of f. If t is
bounded we have a finite state machine, otherwise a Turing
machine, in terms of elementary functions. As mentioned
above, each layer in a deep network correspond to one time
step in a Turing machine. In a sense, this is sequential com-
positionality, as in the example of Fig. 1c.

● Hierarchically local compositionality can be related to the
notion of local connectivity of a network. Local processing
may be a key constraint also in neuroscience. One of the
natural measures of connectivity that can be introduced
is the order of a node defined as the number of its dis-
tinct inputs. The order of a network is then the maximum
order among its nodes. The term “order” dates back to the
Perceptron book ([45], see also [44]), where it was used
for a very specific type of shallow networks. In this case
many interesting visual computations have low order (e.g.
recognition of isolated figures), since they can be imple-
mented in a single layer by units that have a small number
of inputs. More complex visual computations require inputs
from the full visual field. For a deep networkthe situation
is different: effective high order at the top can be achieved
using units with low order. The network architecture of
Fig. 1b has low order: each node in the intermediate layers
is connected to just 2 other nodes, rather than (say) all nodes
in the previous layer (notice that the connections in the
trees of the figures may reflect linear combinations of the
input units).

● Low order may be a key constraint for cortex. If it captures
what is possible in terms of connectivity between neurons,
it may determine by itself the hierarchical architecture of
cortex which in turn may impose compositionality to lan-
guage and speech.

● The idea of functions that are compositions of “simpler”
functions extends in a natural way to recurrent computa-
tions and recursive functions. For instance h(f (t)g((x))) rep-
resents t iterations of the algorithm f (h and g match input
and output dimensions to f).

7. Why are compositional functions so common?

Let us provide a couple of simple examples of compositional
functions. Addition is compositional but the degree of approx-
imation does not improve by decomposing addition in different
layers of a network; all linear operators are compositional with

no advantage for deep networks; multiplication as well as the
AND operation (for Boolean variables) is the prototypical com-
positional function that provides an advantage to deep networks.
So compositionality is not enough: we need certain sublasses
of compositional functions (such as the hierarchically local
functions we described) in order to avoid the curse of dimen-
sionality.

It is not clear, of course, why problems encountered in
practice should involve this class of functions. Though we and
others have argued that the explanation may be in either the
physics or the neuroscience of the brain, these arguments [1]
are not rigorous. Our conjecture at present is that composition-
ality is imposed by the wiring of our cortex and is reflected in
language and the common problems we worry about. Thus com-
positionality of several – but not all – computations on images
many reflect the way we describe and think about them. More
details about these arguments as well as numerical experiments
and other topics related to this paper can be found in the original
contribution [1].

Acknowledgment. This work was supported in part by the
Center for Brains, Minds and Machines (CBMM), funded by
NSF STC award CCF – 1231216 and in part by C-BRIC, one
of six centers in JUMP, a Semiconductor Research Corporation
(SRC) program sponsored by DARPA, the National Science
Foundation, Intel Corporation, and the DoD Vannevar Bush
Fellowship. We gratefully acknowledge the support of NVIDIA
Corporation with the donation of the DGX-1 used for this re-
search.

References
 [1] T. Poggio, H. Mhaskar, L. Rosasco, B. Miranda, and Q. Liao,

“Theory i: Why and when can deep networks avoid the curse of
dimensionality?,” tech. rep., MIT Center for Brains, Minds and
Machines, 2016.

 [2] F. Anselmi, L. Rosasco, C. Tan, and T. Poggio, “Deep convo-
lutional network are hierarchical kernel machines,” Center for
Brains, Minds and Machines (CBMM) Memo No. 35, also in
arXiv, 2015.

 [3] T. Poggio, L. Rosasco, A. Shashua, N. Cohen, and F. Anselmi,
“Notes on hierarchical splines, dclns and i-theory,” tech. rep.,
MIT Computer Science and Artificial Intelligence Laboratory,
2015.

 [4] T. Poggio, F. Anselmi, and L. Rosasco, “I-theory on depth vs
width: hierarchical function composition,” CBMM memo 041,
2015.

 [5] H. Mhaskar, Q. Liao, and T. Poggio, “Learning real and boolean
functions: When is deep better than shallow?,” Center for Brains,
Minds and Machines (CBMM) Memo No. 45, also in arXiv,
2016.

 [6] H. Mhaskar and T. Poggio, “Deep versus shallow networks: an
approximation theory perspective,” Center for Brains, Minds
and Machines (CBMM) Memo No. 54, also in arXiv, 2016.

 [7] D. L. Donoho, “High-dimensional data analysis: The curses and
blessings of dimensionality,” in AMS CONFERENCE ON MATH
CHALLENGES OF THE 21ST CENTURY, 2000.

 [8] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature,
pp. 436–444, 2015.

773

Theory I: Deep networks and the curse of dimensionality

Bull. Pol. Ac.: Tech. 66(6) 2018

 [9] K. Fukushima, “Neocognitron: A self-organizing neural network
for a mechanism of pattern recognition unaffected by shift in po-
sition,” Biological Cybernetics, vol. 36, no. 4, pp. 193–202, 1980.

 [10] M. Riesenhuber and T. Poggio, “Hierarchical models of object rec-
ognition in cortex,” Nature Neuroscience, vol. 2, pp. 1019–1025,
Nov. 1999.

 [11] H. Mhaskar, “Approximation properties of a multilayered feed-
forward artificial neural network,” Advances in Computational
Mathematics, pp. 61–80, 1993.

 [12] C. Chui, X. Li, and H. Mhaskar, “Neural networks for localized
approximation,” Mathematics of Computation, vol. 63, no. 208,
pp. 607–623, 1994.

 [13] C. K. Chui, X. Li, and H. N. Mhaskar, “Limitations of the ap-
proximation capabilities of neural networks with one hidden
layer,” Advances in Computational Mathematics, vol. 5, no. 1,
pp. 233–243, 1996.

 [14] A. Pinkus, “Approximation theory of the mlp model in neural
networks,” Acta Numerica, vol. 8, pp. 143–195, 1999.

 [15] T. Poggio and S. Smale, “The mathematics of learning: Dealing
with data,” Notices of the American Mathematical Society
(AMS), vol. 50, no. 5, pp. 537–544, 2003.

 [16] B.B. Moore and T. Poggio, “Representations properties of multi-
layer feedforward networks,” Abstracts of the First annual INNS
meeting, vol. 320, p. 502, 1998.

 [17] R. Livni, S. Shalev-Shwartz, and O. Shamir, “A provably ef-
ficient algorithm for training deep networks,” CoRR, vol.
abs/1304.7045, 2013.

 [18] O. Delalleau and Y. Bengio, “Shallow vs. deep sum-product net-
works,” in Advances in Neural Information Processing Systems
24: 25th Annual Conference on Neural Information Processing
Systems 2011. Proceedings of a meeting held 12‒14 December
2011, Granada, Spain., pp. 666–674, 2011.

 [19] R. Montufar, G.F. Pascanu, K. Cho, and Y. Bengio, “On the
number of linear regions of deep neural networks,” Advances in
Neural Information Processing Systems, vol. 27, pp. 2924–2932,
2014.

 [20] H.N. Mhaskar, “Neural networks for localized approximation of
real functions,” in Neural Networks for Processing [1993] III.
Proceedings of the 1993 IEEE-SP Workshop, pp. 190–196, IEEE,
1993.

 [21] N. Cohen, O. Sharir, and A. Shashua, “On the expressive power
of deep learning: a tensor analysis,” CoRR, vol. abs/1509.0500,
2015.

 [22] M. Telgarsky, “Representation benefits of deep feedforward
networks,” arXiv preprint arXiv:1509.08101v2 [cs.LG] 29 Sep
2015, 2015.

 [23] I. Safran and O. Shamir, “Depth separation in relu net-
works for approximating smooth non-linear functions,” arX-
iv:1610.09887v1, 2016.

 [24] H.N. Mhaskar, “Neural networks for optimal approximation of
smooth and analytic functions,” Neural Computation, vol. 8,
no. 1, pp. 164–177, 1996.

 [25] E. Corominas and F.S. Balaguer, “Condiciones para que una
funcion infinitamente derivable sea un polinomio,” Revista
matemática hispanoamericana, vol. 14, no. 1, pp. 26–43, 1954.

 [26] R.A. DeVore, R. Howard, and C.A. Micchelli, “Optimal non-
linear approximation,” Manuscripta mathematica, vol. 63, no. 4,
pp. 469–478, 1989.

 [27] H.N. Mhaskar, “On the tractability of multivariate integration
and approximation by neural networks,” J. Complex., vol. 20,
pp. 561–590, Aug. 2004.

 [28] F. Bach, “Breaking the curse of dimensionality with convex
neural networks,” arXiv:1412.8690, 2014.

 [29] D.P. Kingma and J. Ba, “Adam: A method for stochastic optimi-
zation,” CoRR, vol. abs/1412.6980, 2014.

 [30] J. Bergstra and Y. Bengio, “Random search for hyper-parameter
optimization,” J. Mach. Learn. Res., vol. 13, pp. 281–305, Feb.
2012.

 [31] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro,
G.S. Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat,
I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefo-
wicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané, R. Monga,
S Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner,
I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan,
F. Viégas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke,
Y. Yu, and X. Zheng, “TensorFlow: Large-scale machine learning
on heterogeneous systems,” 2015. Software available from ten-
sorflow.org.

 [32] R. Eldan and O. Shamir, “The power of depth for feedforward
neural networks,” arXiv preprint arXiv:1512.03965v4, 2016.

 [33] M. Lin and H. Tegmark, “Why does deep and cheap learning
work so well?,” arXiv:1608.08225, pp. 1–14, 2016.

 [34] J.T. Hastad, Computational Limitations for Small Depth Circuits.
MIT Press, 1987.

 [35] M. Furst, J. Saxe, and M. Sipser, “Parity, circuits, and the polyno-
mial-time hierarchy,” Math. Systems Theory, vol. 17, pp. 13–27,
1984.

 [36] N. Linial, M. Y., and N. N., “Constant depth circuits, fourier
transform, and learnability,” Journal of the ACM, vol. 40, no. 3,
p. 607–620, 1993.

 [37] Y. Bengio and Y. LeCun, “Scaling learning algorithms towards
ai,” in Large-Scale Kernel Machines (L. Bottou, O. Chapelle,
and J. DeCoste, D. Weston, eds.), MIT Press, 2007.

 [38] Y. Mansour, “Learning boolean functions via the fourier trans-
form,” in Theoretical Advances in Neural Computation and
Learning (V. Roychowdhury, K. Siu, and A. Orlitsky, eds.), pp.
391–424, Springer US, 1994.

 [39] S. Soatto, “Steps Towards a Theory of Visual Information: Active
Perception, Signal-to-Symbol Conversion and the Interplay Be-
tween Sensing and Control,” arXiv:1110.2053, pp. 0–151, 2011.

 [40] F. Anselmi, J.Z. Leibo, L. Rosasco, J. Mutch, A. Tacchetti, and
T. Poggio, “Unsupervised learning of invariant representations,”
Theoretical Computer Science, 2015.

 [41] F. Anselmi and T. Poggio, Visual Cortex and Deep Networks.
MIT Press, 2016.

 [42] L. Grasedyck, “Hierarchical Singular Value Decomposition of
Tensors,” SIAM J. Matrix Anal. Appl., no. 31,4, pp. 2029–2054,
2010.

 [43] S. Shalev-Shwartz and S. Ben-David, Understanding Machine
Learning: From Theory to Algorithms. Cambridge eBooks, 2014.

 [44] T. Poggio and W. Reichardt, “On the representation of multi-
input systems: Computational properties of polynomial algo-
rithms.,” Biological Cybernetics, 37, 3, 167‒186., 1980.

 [45] M. Minsky and S. Papert, Perceptrons: An Introduction to Com-
putational Geometry. Cambridge MA: The MIT Press, ISBN
0‒262‒63022‒2, 1972.

