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Abstract. The landscape of the empirical risk of overparametrized deep convolutional neural networks (DCNNs) is characterized with a mix of 
theory and experiments. In part A we show the existence of a large number of global minimizers with zero empirical error (modulo inconsistent 
equations). The argument which relies on the use of Bezout theorem is rigorous when the RELUs are replaced by a polynomial nonlinearity. We 
show with simulations that the corresponding polynomial network is indistinguishable from the RELU network. According to Bezout theorem, 
the global minimizers are degenerate unlike the local minima which in general should be non-degenerate. Further we experimentally analyzed 
and visualized the landscape of empirical risk of DCNNs on CIFAR-10 dataset. Based on above theoretical and experimental observations, we 
propose a simple model of the landscape of empirical risk. In part B, we characterize the optimization properties of stochastic gradient descent 
applied to deep networks. The main claim here consists of theoretical and experimental evidence for the following property of SGD: SGD 
concentrates in probability – like the classical Langevin equation – on large volume, ”flat” minima, selecting with high probability degenerate 
minimizers which are typically global minimizers.
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erate global minima in the loss surface of DCNN. However, 
it is unclear how the rest of the landscape looks like. To 
gain some insights into this question, we visualize the land-
scape of the entire training process using multidimensional 
scaling. We also probe the landscape at different locations 
by perturbation and interpolation experiments.

●	A simple model of the landscape (Section 5). A simple 
model for the landscape of empirical risk, shown in Fig. 1 
summarizes our theoretical and experimental results. At 
least in the case of overparametrized DCNNs, the loss sur-
face might be simply a collection of (high-dimensional) 
basins, which have the following interesting properties: 1. 
Every basin reaches a flat global minima. 2. The basins are 
rugged in such a way that most small perturbations of the 
weights lead to a slightly different convergence path. 3. De-
spite being perhaps locally rugged, most basins have a rela-
tively regular overall landscape, in the sense that the average 
of two model within a basin gives a model whose error is 
roughly the average of (or even lower than) the errors of 
the original two models. 4. Interpolation between basins, on 
the other hand, usually raises the error. 5. There may not be 
any local minima in a basin – we do not encounter any local 
minima in CIFAR, even when training with batch gradient 
descent (without noise).

1.2. Part B. Our main claim in Part B is that SGD finds with 
high probability global minima, because they are degenerate. 
Degenerate minima exist in general because of the results of 
Part A. They are preferred by SGD because they correspond 
to a large volume of the stationary Boltzman probability dis-
tribution.

1.	 Introduction

In Part A of this review we characterize the landscape of the 
empirical risk, while in in part B we show how stochastic gra-
dient descent (SGD) is able to find with high probability global 
minima instead of local minima1.

1.1. Part A. We study the empirical risk from three perspectives:
●	Theoretical analysis (Section 3): We study the nonlinear 

system of equations corresponding: a) to critical points of 
the gradient of the loss (for the L2 loss function) and in par-
ticular; b) to zero minimizers, associated with interpolating 
solutions. The usual networks contain RELU nonlinearities. 
Here we use an ε-approximation of them in the sup norm 
using a polynomial approximation or the corresponding 
Legendre expansion. We can then invoke Bezout theorem 
to conclude that there are a very large number of local and 
global minima}, and that the global, zero-error minima are 
highly degenerate, whereas the local non-zero minima are 
– generically – not degenerate. In the case of classification, 
zero error implies the existence of large margin.

●	Visualizations and experimental explorations (Section 4): 
The theoretical results above indicate that there are degen-

1 �The material of this review is based on previous publications, in particular 
in [1‒3].
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Fig. 1. The landscape of empirical risk of overparametrized DCNN may be simply a collection of (slightly rugged) basins. A) the profile view of 
a basin. B) the top-down view of a basin. C) an illustration of the landscape of empirical risk. D) perturbation experiment: a small perturbation 
does not move the model out of its current basin, so re-training converges back to the bottom of the same basin. If the perturbation is large, 
re-training converges to another basin. E) interpolation experiment: averaging two models within a basin tend to give a error that is the average of 
the two models (or less). Averaging two models between basins tend to give an error that is higher than both models. (F) branching experiment: 
one can create a ”branch” of a training trajectory by adding a small noise to model’s weights and continue training. As expected, the earlier the 
branch is created, the more different the final model becomes. Qualitatively, early branches reach different basins while later branches do not. 

See Fig. 4 for more details
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Part A

2.	 Framework

We assume a deep polynomial network of the convolutional 
type with overparametrization, that is more weights than data 

points, since this is how successful deep networks have been 
used. Under these conditions, we will show that imposing zero 
empirical error provides a system of equations (at the zeros) 
that have a large number of degenerate solutions in the weights. 
The equations are polynomial in the weights, with coefficients 
reflecting components of the data vectors (one vector per data 
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point). The system of equations is underdetermined (more un-
knowns than equations, e.g. data points) because of the assumed 
overparametrization. Because the global minima are degenerate, 
that is flat in many of the dimensions, they are more likely to 
be found by SGD than local minima which are less degenerate.

3.	 Landscape of the empirical risk:  
Theoretical analyses

The following theoretical analysis of the landscape of the em-
pirical risk is based on a few assumptions: (1) We assume that 
the network is overparametrized, typically using several times 
more parameters (the weights of the network) than data points. 
In practice, even with data augmentation (in most of the exper-
iments in this paper we do not use data augmentation), it is an 
empirical observation that it is usually possible to increase the 
number of parameters making training easier without sacrificing 
generalization performance in classification and while. (2) This 
section assumes a regression framework. We study how many 
solutions in weights lead to perfect prediction of training labels. 
For simplicity our analysis is focused on the square loss.

Among the critical points of the gradient of the empirical 
loss, we consider first the zeros of the loss function given by 
the set of equations f (xi) ¡ yi = 0 for i = 1, ¢¢¢, N, where N is 
the number of training examples.

The function f  realized by a deep neural network is polyno-
mial if each of RELU units is replaced by a univariate polyno-
mial. Each RELU can be approximated within any desired ε in 
the sup norm by a polynomial. In the well-determined case (as 
many unknown weights as equations, that is data points), Bezout 
theorem provides an upper bound on the number of solutions. 
The number of distinct zeros (counting points at infinity, using 
projective space, assigning an appropriate multiplicity to each 
intersection point, and excluding degenerate cases) would be 
equal to Z – the product of the degrees of each of the equations. 
Since the system of equations is usually underdetermined – as 
many equations as data points but more unknowns (the weights) 
– we expect an infinite number of global minima, under the 
form of Z regions of zero empirical error. If the equations are 
inconsistent, there are still many global minima of the squared 
error that are solutions of systems of equations with a similar 
form. The degree of each approximating equation `d(ε) is de-
termined by the desired accuracy ε for approximating the ReLU 
activation by a univariate polynomial P of degree `(ε) and by 
the number of layers d.

The argument based on RELUs approximation for esti-
mating the number of zeros is a qualitative one since good 
approximation of the f (xi) does not imply by itself good ap-
proximation – via Bezout theorem – of the number of its zeros. 
Notice, however, that we can abandon the approximation argu-
ment and just consider the number of zeros when the RELUs are 
replaced by a low order univariate polynomial. The argument 
then would not strictly apply to RELU networks but would 
still carry weight because the two types of networks – with 
polynomial activation and with RELUs – behave empirically 
(see Fig. 2) in a similar way.

Fig. 2. One can convert a deep network into a polynomial function by 
using polynomial nonlinearity. As long as the nonlinearity approximates 
ReLU well (especially near 0), the ”polynomial net” performs similarly 
to a ReLU net. Our theory applies rigorously to a ”polynomial net”
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Even in the non-degenerate case (as many data as param-
eters), Bezout theorem suggests that there are many solutions. 
With d layers the degree of the polynomial equations is `d. With 
N datapoints the Bezout upper bound in the zeros of the weights 
is `Nd. Even if the number of real zero – corresponding to zero 
empirical error – is much smaller (Smale and Shub estimate [4] 
l Nd/2), the number is still enormous: for a CIFAR situation this 
may be as high as 2105

.
As mentioned, in several cases we expect absolute zeros to 

exist with zero empirical error. If the equations are inconsistent 
it seems likely that global minima with similar properties exist.

It is interesting now to consider the critical points of the gradient. 
The critical points of the gradient are ∇w∑N

i =1V( f (xi), yi) = 0, 
which gives K equations: ∑N

i =1∇wV( f (xi), yi)∇w f (xi) = 0, where 
V(., .) is the loss function.

Approximating within ε in the sup norm each ReLU in f (xi) 
with a fixed polynomial P(z) yields a system of K polynomial 
equations in the weights. They are of course satisfied by the 
degenerate zeros of the empirical error but also by additional 
non-degenerate (in the general case) solutions.

Thus, we have Proposition 1: There are a very large number 
of zero-error minima which are highly degenerate unlike the 
local non-zero minima which are usually not degenerate.

4.	 The Landscape of the empirical risk: 
visualizing and analysing the loss surface 
during the entire training process  
(on CIFAR-10)

4.1. Experimental Settings. In the empirical work described 
below we analyze a classification problem with cross entropy 
loss. Our theoretical analyses with the regression framework 
provide a lower bound of the number of solutions of the clas-
sification problem.

Unless mentioned otherwise, we trained a 6-layer (with the 
1st layer being the input) Deep Convolutional Neural Network 
(DCNN) on CIFAR-10. All the layers are 3£3 convolutional 
layers with stride 2. No pooling nor shortcut connection is 
used. Batch Normalizations (BNs) [5] are used between hidden 
layers. The shifting and scaling parameters in BNs are not 
used. No data augmentation is performed, so that the training 
set is fixed (size = 50,000). There are 188,810 parameters in 
the DCNN.

Multidimensional Scaling. The core of our visualization 
approach is Multidimensional Scaling (MDS) [6]. We record 
a large number of intermediate models during the process of 
several training schemes. Each model is a high dimensional 
point with the number of dimensions being the number of pa-
rameters. The strain-based MDS algorithm is applied to such 
points and a corresponding set of 2D points are found such that 
the dissimilarity matrix between the 2D points are as similar to 
those of the high-dimensional points ascpossible. One minus the 
cosine distance is used as the dissimilaritycmetric. This is more 
robust to scaling of the weights, which is usually normalized 
out by BNs, though the euclidean distance gives qualitatively 
similar results.

4.2. Visualization of SGD training trajectories. We show 
in Fig. 3 the optimization trajectories of Stochastic Gradient 
Descent (SGD) throughout the entire optimization process of 
training a DCNN on CIFAR-10. The SGD trajectories follow 
the mini-batch approximations of the training loss surface. 
Although the trajectories are noisy, the collected points along 
the trajectories provide a good visualization of the landscape 
of the empirical risk. We show the visualization based on the 
weights of layer 2. The results from other layers (e.g., layer 5) 
are qualitatively similar.

4.3. Visualization of training loss surface with batch gradient 
descent. Next, we visualize in Fig. 4 the training loss surface 
by training the models using Batch Gradient Descent (BGD). In 
addition to training, we also performed perturbation and interpo-
lation experiments as described in Fig. 4. The main trajectory, its 
branches and the interpolated models together provide another 
way of visualizing the landscape of the empirical risk.

5.	 The landscape of the empirical risk:  
towards an intuitive baseline model

In this section, we propose a simple baseline model for the 
landscape of empirical risk that is consistent with all of our 
theoretical and experimental findings. In the case of over-
parametrized DCNNs, here is a recapitulation of our main 
observations so far:
●	Theoretically, we show that there are a large number of 

global minimizers with zero empirical error. The same 
minimizers are degenerate, that is they correspond to mul-
tidimensional valleys.

●	Regardless of the use of Stochastic Gradient Descent (SGD) 
or Batch Gradient Descent (BGD), a small perturbation of 
the model almost always leads to a slightly different con-
vergence path. The earlier the perturbation is in the training 
process, the more different the final model becomes.

●	 Interpolating two ”nearby” convergence paths lead to a con-
vergence path with similar errors at every epoch. Interpo-
lating two ”distant” models lead to raised errors.

●	We do not observe local minima, even when training with 
BGD.
A simple model of the landscape of the empirical risk is 

consistent with the above observations: the landscape is a col-
lection of (hyper) basins, each containing a flat global minima. 
Illustrations are provided in Fig. 1.

There are of course other variants of this model that can ex-
plain our experimental findings. In Fig. 5, we show an alterna-
tive model that we call ”basin-fractal”. This model is consistent 
with most of the above observations. The key difference be-
tween the simple basins model and the ”basin-fractal” model is 
that in the latter case, one should be able to find ”walls” (raised 
errors) between two models within the same basin. Since it is 
a fractal, these ”walls” should be present at any level of errors. 
So far, we only discovered ”walls” between two models when 
the trajectories leading to them are very different (obtained ei-
ther by splitting very early in training, as shown in Fig. 4 branch 
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1 or by performing a very large perturbation to the weights). 
We did not find significant “walls” in all other perturbation and 
interpolation experiments.

Another surprising finding about the basins is that they do 
not show any local minima, even when training with batch gra-
dient descent. When the training is long enough with a small 
enough learning rate, we always achieve zero classification 
error and negligible cross entropy loss.

Part B

6.	 SGD: Basic setting

Let Z be a probability space with an unknown measure ρ. 
A training set Sn is a set of i.i.d. samples zi, i = 1, ¢¢¢, n from ρ. 
Assumethat a hypothesis H  is chosen in advance of training. 
Here we assume H  is a p-dimensional Hilbert space, and iden-
tify elements of H  with p-dimensional vectors in Rp. A loss 
function is a map V: H £Z ! R+. Moreover, we assume the 
expected loss

	 I( f ) = EzV( f , z)� (1)

exists for all f  2 H . We consider the problem of finding a min-
imizer of I( f ) in a closed subset K ½ H . We denote this min-
imizer by fK so that

	 I( fK) = min
f 2 K

I( f ).� (2)

In general, the existence and uniqueness of a minimizer is not 
guaranteed unless some further assumptions are specified.

Since ρ is unknown, we are not able evaluate I( f ). Instead, 
we try to minimize the empirical loss

	 ISn
( f ) = E ̂ z » Sn

V( f , z) =  1
n i =1

n

∑V( f , zi)� (3)

as a proxy. In deep learning, the most commonly used algorithm 
is SGD and its variants. The basic version of SGD is defined 
by the following iterations:

	 ft + 1 = ΠK( ft ¡ γt∇V( ft, zt))� (4)

where zt is a sampled from the training set Sn uniformly at 
random, and ∇V( ft, zt) is an unbiased estimator of the full gra-
dient of the empirical loss at ft:

E ̂ zt » Sn[∇V( ft, zt)] = ∇I ̂ ( ft)

γt is a decreasing sequence of non-negative numbers, usually 
called the learning rates or step sizes. ΠK : H  ! K is the pro-
jection map into K, and when K = H , it becomes the identity 
map. It is interesting that the following equation, labeled SGDL, 
and studied by several authors, including [7], seem to work as 
well as or better than the usual repeat SGD used to train deep 
networks, as discussed in Section 5:

	 ft + 1 =  ft ¡ γn∇V( ft, zt) + γt′Wt .� (5)

Here Wt is a standard Gaussian vector in Rp and γt′ is a sequence 
going to zero.

We consider a situation in which the expected cost function 
I( f ) can have, possibly multiple, global minima. As argued 
by [8] there are two ways to prove convergence of SGD. The 
first method consists of partitioning the parameter space into 
several attraction basins, assume that after a few iterations the 
algorithm confines the parameters in a single attraction basin, 
and proceed as in the convex case. A simpler method, instead 
of proving that the function f  converges, proves that the cost 
function I( f ) and its gradient Ez∇V( ft, zt) converge.

Existing results show that when the learning rates decrease 
with an appropriate rate, and subject to relatively mild assump-
tions, stochastic gradient descent converges almost surely to 
a global minimum when the objective function is convex or 
pseudoconvex2, and otherwise converges almost surely to 
a local minimum. This direct optimization shortcuts the usual 
discussion for batch ERM about differences between optimizing 
the empirical risk on Sn and the expected risk.

7.	 SGD implicit bias in the case 
of overparametrization

We conjecture that SGD, while minimizing the empirical loss, 
also implicitely maximizes the volume, that is ”flatness”, of 
the minima.

Our argument can be loosely described as follows. The zero 
minimizers are unique for n >> W and become degenerate , that 

2 �In convex analysis, a pseudoconvex function is a function that behaves like 
a convex function with respect to finding its local minima, but need not 
actually be convex. Informally, a differentiable function is pseudoconvex if 
it is increasing in any direction where it has a positive directional derivative.

Fig. 5. Discussion: does the loss surface look like simple basins or 
a basin fractal? The main difference is that whether there are ”walls” 
(raised errors) within each basin. Experimentally we have not observed 

such ”walls”

Darker Color: Lower Loss
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is flat, for n << W. Of course counting effective parameters is 
tricky in the case of deep net so the inequalities above should 
be considered just guidelines.

We consider the steps of our argument, starting with proper-
ties of SGD that have been mostly neglected from the machine 
learning point of view, to the best of our knowledge.

7.1. SGD as an approximate Langevin equation. We consider 
the usual SGD update defined by the recursion

	 ft + 1 =  ft ¡ γt∇V( ft, zt),� (6)

where zt is fixed, ∇V( ft, zt) is the gradient of the loss with re-
spect to f  at zt, and γt is a suitable decreasing sequence. When 
zt ½ [n] is a minibatch, we overload the notation and write 
∇V( ft, zt) =  1

jztj∑z 2 zt
∇V( ft, z).

We define an ”equivalent pseudo noise”

	 ξt = ∇V( ft, zt) ¡ ∇ISn
( ft),� (7)

where it is clear that Eξt = 0.
We then rewrite Equation 6 as

	 ft + 1 =  ft ¡ γt(∇ISn
( ft) + ξt).� (8)

With typical values used in minibatch (each minibatch cor-
responding to zt) training, it turns out that the vector of gradient 
updates ∇V( ft, zt) empirically shows components with an ap-
proximate Gaussian distributions (see Fig. 6). This is expected 
because of the Central Limit Theorem (each minibatch involves 
sum over many random choices of datapoints).

Fig. 6. Histograms of some of the components of ∇V( ft, zi) over i for fixed t in the asymptotic regime. Notice that the average corresponds to the 
gradient of the full loss, which is empirically very small. The histograms look approximatively Gaussian, as expected (see text) for minibatches 

that are not too small and not too large
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Now we observe that (8) is similar to a stochastic Langevin 
equation, with a noise scaled as γn rather than γn . In fact, the contin-
uous SGD dynamics corresponds to a stochastic gradient equation 
using a potential function defined by U = ISn[ ft] = 1n∑

n
i =1V( f, zi)  

(see Proposition 3 and section 5 in [9]). If the noise were the 
derivative of the Brownian motion, this is a Langevin equation 
with an associated Fokker-Planck equation yielding the proba-
bility distributions of ft. In particular, the stationary asympotic 
probability distribution is the Boltzman distribution given by 

¼ e
–U
γK . For more details on stochastic dynamical systems, see 

for instance section 5 of [10]. Several proofs that adding a white 
noise term to equation (6) will make it converge to a global min-
imum are available (see [11]). Notice that the discrete version of 
the Langevin dynamics is equivalent to a Metropolis-Hastings 
algorithm for small learning rate (when the rejection step can 
be neglected).

7.2. SGDL concentrates at large volume, ”flat” minima. The 
argument about convergence of SGDL to large volume minima 
that we call ”flat”, is straighforward. The asymptotic distri-
bution reached by a Langevin equation (GDL) –as well as by 
SGDL – is the Boltzman distribution that is

	 P( f ) =  1
Z

e– U
T ,� (9)

where Z is a normalization constant, U is the loss and T re-
flects the noise power. The equation implies, and Fig. 9 shows, 
that SGD selects in probability degenerate minima rather than 
non-degenerate ones of the same depth. Among two minimum 
basins of equal depth, the one with a larger volume, is much 
more likely in high dimensions (Fig. 8). Taken together, these 
two facts suggest that SGD selects degenerate minimizers and, 
among those, the ones corresponding to larger flat valleys of the 
loss. If we assume that the landscape of the empirical minima 
is well-behaved in the sense that deeper minima have broader 
basin of attraction, we can then prove that SDGL shows con-
centration in probability – because of the high dimensionality 
– of its asymptotic distribution Equation 9 – to minima that are 
the most robust to perturbations of the weights. Notice that 
these assumptions are satisfied in the zero error case: among 
zero-minimizer, SGDL selects the ones that are flatter, i.e. have 
the larger volume.

Fig. 7. Equation 5 – that is SGD with added Gaussian (with constant 
power) – behaves in a similar way to standard SGD. Notice that SGDL 

has slightly better validation performance than SGD
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Fig. 8. The figure shows the histogram of a one-dimensional slice of the asymptotic distribution obtained by running Langevin Gradient Descent 
(GDL) on the potential surface on the right. The potential function has two minima with the same depth: one is wider (by a factor 2 in each 
dimension). The histogram for the first weight coordinate is shown here for dimensionality 1, 2, 3, 4 and 5. The figures show – as expected 
from the Boltzman distribution – that noisy gradient descent selects with high probability larger volume minimizers among minima of the same 

depth. As expected, higher dimensionality implies higher probability of selecting the flatter minimum
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In [2] we review qualitative arguments of why flat min-
ima”may” imply robust optimization and maximization 
of margin. Here we claim that SGDL and SGD maximize 
volume and ”flatness” of the loss in weight space. Given 

a flat, degenerate minimum, one may ask where SGD will 
converge to. For situations such as in Fig. 10 and for a min-
imum such as in Fig. 11, Theory III suggests a locally min-
imum norm solution.

Fig. 10. The figure shows the histogram of a one-dimensional slice of the asymptotic distribution obtained by running Langevin Gradient Descent 
(GDL) on the potential surface on the right

Fig. 9. Langevin Gradient Descent (GDL) on the 2D potential function shown above leads to an asymptotic distribution with the histogram 
shown on the left. As expected from the form of the Boltzman distribution, the Langevin dynamics prefers degenerate minima to non-degenrate 
minima of the same depth. In high dimensions we expect the asymptotic distribution to concentrate strongly around the degenerate minima as 

confirmed by Fig. 10
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8.	 Random labels

For this case, Part A predicts that it is in fact possible to in-
terpolate the data on the training set, that is to achieve zero 
empirical error (because of overparametrization) and that this 
is in fact easy – because of the very high number of zeros of 
the polynomial approximation of the network– assuming that 
the target function is in the space of functions realized by the 
network. For n going to infinity we expect that the empirical 
error will converge to the expected (which is at chance level 
here), as shown in the figures. For finite n < W, the fact that 
the empirical error (which is zero) is so different from the ex-
pected seems puzzling, as observed by [12], especially because 
the algorithm is capable of low expected error with the same 
n for natural labels.

A larger margin is found for natural labels than for random 
labels as shown in Table 1 and in Fig. 12 and Fig. 13. Figure 12 
shows ”three-point interpolation” plots to illustrate the flatness 
of the landscape around global minima of the empirical loss 

found by SGD, on CIFAR-10, with natural labels and random 
labels, respectively. Specifically, let w1, w2, w3 be three mini-
mizers for the empirical loss found by SGD. For λ = (λ1, λ2, λ3) 
on the simplex ∆3, let

	 wλ = λ1w1 + λ2w2 + λ3w3.� (10)

Fig. 11. Stochastic Gradient Descent and Langevin Stochastic Gradient Descent (SGDL) on the 2D potential function shown above leads to an 
asymptotic distribution with the histograms shown on the left. As expected from the form of the Boltzman distribution, both dynamics prefers 

degenerate minima to non-degenerate minima of the same depth

Fig. 12. Illustration of the landscape of the empirical loss on CIFAR-10
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Table 1 
The ”flatness test”: at the minimizer, we move the weights around 
in a random direction, and measure the furthest distance until the 
objective function is increased by ε  (0.05), and then measure the 

average distance

MNIST CIFAR-10

all params
all params (random label)

45.4 ± 2.7
46.9 ± 1.0

17.0 ± 2.4
45.7 ± 1.0

top layer
top layer (random label)

15.0 ± 1.7
43.0 ± 0.1

19.5 ± 4.0
12.1 ± 2.6
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We then evaluate the training accuracy for the model defined 
by each interpolated weights wλ and make a surface plot by 
embedding ∆3 in the 2D X-Y plane. As we can see, the nat-
ural label case depict a larger flatness region around each of 
the three minima than the random label case. There is a direct 
relation between the range of flatness and the norm λ of the 
perturbations.

The same phenomenon could be observed more clearly on 
the MNIST dataset, where the images of the same category are 
already quite similar to each other in the pixel space, making 
it more difficult to fit when random labels are used. Therefore, 
the difference in the characteristics of the landscapes is am-
plified. As shown in Fig. 13, large flat regions are observed in 

the natural label case, while the landscape for the random label 
experiment shows sharper wells.

It is  difficult to visualize the  flatness of the landscape when 
the weights are typically in the scale of one million dimensions. 
To assess  flatness, we employ the following procedure around 
a minimum found by SGD: choose a random  direction δw with 
kδwk = 1, perform a line search to find the ”flatness radius” 
in that direction:

	 r(w, δw, ε) = sup{r : jI ̂ (w) ¡ I ̂ (w + rδw)j ∙ ε}.� (11)

The procedure is repeated T times and the average radius is 
calculated. The overall procedure is also repeated multiple times 
to test the average flatness at different minima. The results are 
shown in Table 1. For both CIFAR-10 and MNIST, we observe 
a difference between the natural label and random label.

9.	 Part A and Part B: summary

In this paper (as a review of [1‒3]), we have described prop-
erties of the landscape of the empirical risk, for the case of 
overparametrized convolutional deep networks. Zero empir-
ical error yields a system of polynomial equations that yields 
a very large number of global minima – when is not inconsistent 
– which are degenerate, that is flat in several of the dimensions 
(in CIFAR there are about 106 unknown parameters for 6£104 
equations. The zero empirical error minimizers are global and 
degenerate while the local minima are in general not degenerate. 
Consistently with this predictions, we empirically observe that 
zero-minimizers correspond to flat valleys. We furthermore 
show that SGD, with respect to GD, is biased to find with high 
probability degenerate minimizers – flat “valleys” in the land-
scape – which are likely to be global minima.

Acknowledgment. This work was supported in part by the 
Center for Brains, Minds and Machines (CBMM), funded by 
NSF STC award CCF – 1231216 and in part by C-BRIC, one 
of six centers in JUMP, a Semiconductor Research Corporation 
(SRC) program sponsored by DARPA, the National Science 
Foundation, Intel Corporation, and the DoD Vannevar Bush 
Fellowship. We gratefully acknowledge the support of NVIDIA 
Corporation with the donation of the DGX-1 used for this re-
search.

References
	 [1]	 T. Poggio and Q. Liao, “Theory II: Landscape of the empirical 

risk in deep learning,” arXiv preprint arXiv:1703.09833, 2017.
	 [2]	 C. Zhang, Q. Liao, A. Rakhlin, B. Miranda, N. Golowich, and 

T. Poggio, “Musings on deep learning: Properties of SGD”.
	 [3]	 C. Zhang, Q. Liao, A. Rakhlin, B. Miranda, N. Golowich, and T. 

Poggio, “Theory of deep learning IIB: Optimization properties 
of SGD,” arXiv preprint arXiv:1801.02254, 2018.

	 [4]	 M. Shub and S. Smale, “Complexity of bezout theorem V: 
Polynomial time,” Theoretical Computer Science, no. 133, pp. 
141–164, 1994.

Fig. 13. Illustration of the landscape of the empirical loss on MNIST

Tomaso Poggio and Qianli Liao

(a) natural label (b) random label

Fig. 12: Illustration of the landscape of the empirical loss on CIFAR-10.

(a) natural label (b) random label

Fig. 13: Illustration of the landscape of the empirical loss on MNIST.

12 Bull. Pol. Ac.: Tech. XX(Y) 2016

Tomaso Poggio and Qianli Liao

(a) natural label (b) random label

Fig. 12: Illustration of the landscape of the empirical loss on CIFAR-10.

(a) natural label (b) random label

Fig. 13: Illustration of the landscape of the empirical loss on MNIST.

12 Bull. Pol. Ac.: Tech. XX(Y) 2016

a) Natural label

Tomaso Poggio and Qianli Liao

(a) natural label (b) random label

Fig. 12: Illustration of the landscape of the empirical loss on CIFAR-10.

(a) natural label (b) random label

Fig. 13: Illustration of the landscape of the empirical loss on MNIST.

12 Bull. Pol. Ac.: Tech. XX(Y) 2016

b) Random label



787

Theory II: Deep learning and optimization

Bull.  Pol.  Ac.:  Tech.  66(6)  2018

	 [5]	 S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep 
network training by reducing internal covariate shift,” arXiv pre-
print arXiv:1502.03167, 2015.

	 [6]	 I. Borg and P.J. Groenen, Modern Multidimensional Scaling: Theory 
and Applications. Springer Science & Business Media, 2005.

	 [7]	 S. Gelfand and S. Mitter, “Recursive stochastic algorithms for 
global optimization in Rd”, Siam J. Control and Optimization, 
vol. 29, pp. 999–1018, September 1991.

	 [8]	 L. Bottou, “Online algorithms and stochastic approximations,” in 
Online Learning and Neural Networks (D. Saad, ed.), Cambridge, 
UK: Cambridge University Press, 1998, revised, oct 2012.

	 [9]	 D. Bertsekas and J. Tsitsiklis, “Gradient convergence in gradient 
methods with errors,” SIAM J. Optim. 10, 627–642 (2000).

	[10]	 D.P. Bertsekas and J.N. Tsitsiklis, Neuro-dynamic Programming. 
Athena Scientific, Belmont, MA, 1996.

	[11]	 B. Gidas, “Global optimization via the Langevin equation,” Pro-
ceedings of the 24th IEEE Conference on Decision and Control, 
pp. 774–778, 1985.

	[12]	 C. Zhang, S. Bengio, M. Hardt, B. Recht, and O. Vinyals, “Un-
derstanding deep learning requires rethinking generalization,” in 
International Conference on Learning Representations (ICLR), 
2017.


