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Abstract. The landscape of the empirical risk of overparametrized deep convolutional neural networks (DCNNs) is characterized with a mix of
theory and experiments. In part A we show the existence of a large number of global minimizers with zero empirical error (modulo inconsistent
equations). The argument which relies on the use of Bezout theorem is rigorous when the RELUs are replaced by a polynomial nonlinearity. We
show with simulations that the corresponding polynomial network is indistinguishable from the RELU network. According to Bezout theorem,
the global minimizers are degenerate unlike the local minima which in general should be non-degenerate. Further we experimentally analyzed
and visualized the landscape of empirical risk of DCNNs on CIFAR-10 dataset. Based on above theoretical and experimental observations, we
propose a simple model of the landscape of empirical risk. In part B, we characterize the optimization properties of stochastic gradient descent
applied to deep networks. The main claim here consists of theoretical and experimental evidence for the following property of SGD: SGD
concentrates in probability — like the classical Langevin equation — on large volume, “’flat” minima, selecting with high probability degenerate

minimizers which are typically global minimizers.

Key words: deep learning, convolutional neural networks, loss surface, optimization.

1. Introduction

In Part A of this review we characterize the landscape of the
empirical risk, while in in part B we show how stochastic gra-
dient descent (SGD) is able to find with high probability global
minima instead of local minima'.

1.1. Part A. We study the empirical risk from three perspectives:
e Theoretical analysis (Section 3): We study the nonlinear
system of equations corresponding: a) to critical points of
the gradient of the loss (for the L, loss function) and in par-
ticular; b) to zero minimizers, associated with interpolating
solutions. The usual networks contain RELU nonlinearities.
Here we use an g-approximation of them in the sup norm
using a polynomial approximation or the corresponding
Legendre expansion. We can then invoke Bezout theorem
to conclude that there are a very large number of local and
global minima}, and that the global, zero-error minima are
highly degenerate, whereas the local non-zero minima are
— generically — not degenerate. In the case of classification,
zero error implies the existence of large margin.

e Visualizations and experimental explorations (Section 4):
The theoretical results above indicate that there are degen-

! The material of this review is based on previous publications, in particular
in [1-3].
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erate global minima in the loss surface of DCNN. However,
it is unclear how the rest of the landscape looks like. To
gain some insights into this question, we visualize the land-
scape of the entire training process using multidimensional
scaling. We also probe the landscape at different locations
by perturbation and interpolation experiments.

e A simple model of the landscape (Section 5). A simple
model for the landscape of empirical risk, shown in Fig. 1
summarizes our theoretical and experimental results. At
least in the case of overparametrized DCNNSs, the loss sur-
face might be simply a collection of (high-dimensional)
basins, which have the following interesting properties: 1.
Every basin reaches a flat global minima. 2. The basins are
rugged in such a way that most small perturbations of the
weights lead to a slightly different convergence path. 3. De-
spite being perhaps locally rugged, most basins have a rela-
tively regular overall landscape, in the sense that the average
of two model within a basin gives a model whose error is
roughly the average of (or even lower than) the errors of
the original two models. 4. Interpolation between basins, on
the other hand, usually raises the error. 5. There may not be
any local minima in a basin — we do not encounter any local
minima in CIFAR, even when training with batch gradient
descent (without noise).

1.2. Part B. Our main claim in Part B is that SGD finds with
high probability global minima, because they are degenerate.
Degenerate minima exist in general because of the results of
Part A. They are preferred by SGD because they correspond
to a large volume of the stationary Boltzman probability dis-
tribution.
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Fig. 1. The landscape of empirical risk of overparametrized DCNN may be simply a collection of (slightly rugged) basins. A) the profile view of
a basin. B) the top-down view of a basin. C) an illustration of the landscape of empirical risk. D) perturbation experiment: a small perturbation
does not move the model out of its current basin, so re-training converges back to the bottom of the same basin. If the perturbation is large,
re-training converges to another basin. E) interpolation experiment: averaging two models within a basin tend to give a error that is the average of
the two models (or less). Averaging two models between basins tend to give an error that is higher than both models. (F) branching experiment:
one can create a “branch” of a training trajectory by adding a small noise to model’s weights and continue training. As expected, the earlier the
branch is created, the more different the final model becomes. Qualitatively, early branches reach different basins while later branches do not.
See Fig. 4 for more details

Part A points, since this is how successful deep networks have been

used. Under these conditions, we will show that imposing zero

2. Framework empirical error provides a system of equations (at the zeros)
that have a large number of degenerate solutions in the weights.

We assume a deep polynomial network of the convolutional =~ The equations are polynomial in the weights, with coefficients
type with overparametrization, that is more weights than data  reflecting components of the data vectors (one vector per data
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point). The system of equations is underdetermined (more un-
knowns than equations, e.g. data points) because of the assumed
overparametrization. Because the global minima are degenerate,
that is flat in many of the dimensions, they are more likely to
be found by SGD than local minima which are less degenerate.

3. Landscape of the empirical risk:
Theoretical analyses

The following theoretical analysis of the landscape of the em-
pirical risk is based on a few assumptions: (1) We assume that
the network is overparametrized, typically using several times
more parameters (the weights of the network) than data points.
In practice, even with data augmentation (in most of the exper-
iments in this paper we do not use data augmentation), it is an
empirical observation that it is usually possible to increase the
number of parameters making training easier without sacrificing
generalization performance in classification and while. (2) This
section assumes a regression framework. We study how many
solutions in weights lead to perfect prediction of training labels.
For simplicity our analysis is focused on the square loss.

Among the critical points of the gradient of the empirical
loss, we consider first the zeros of the loss function given by
the set of equations f(x;) —y; = 0 fori =1, ---, N, where N is
the number of training examples.

The function f realized by a deep neural network is polyno-
mial if each of RELU units is replaced by a univariate polyno-
mial. Each RELU can be approximated within any desired ¢ in
the sup norm by a polynomial. In the well-determined case (as
many unknown weights as equations, that is data points), Bezout
theorem provides an upper bound on the number of solutions.
The number of distinct zeros (counting points at infinity, using
projective space, assigning an appropriate multiplicity to each
intersection point, and excluding degenerate cases) would be
equal to Z — the product of the degrees of each of the equations.
Since the system of equations is usually underdetermined — as
many equations as data points but more unknowns (the weights)
—we expect an infinite number of global minima, under the
form of Z regions of zero empirical error. If the equations are
inconsistent, there are still many global minima of the squared
error that are solutions of systems of equations with a similar
form. The degree of each approximating equation £9(¢) is de-
termined by the desired accuracy ¢ for approximating the ReLU
activation by a univariate polynomial P of degree £(¢) and by
the number of layers d.

The argument based on RELUs approximation for esti-
mating the number of zeros is a qualitative one since good
approximation of the f(x;) does not imply by itself good ap-
proximation — via Bezout theorem — of the number of its zeros.
Notice, however, that we can abandon the approximation argu-
ment and just consider the number of zeros when the RELUs are
replaced by a low order univariate polynomial. The argument
then would not strictly apply to RELU networks but would
still carry weight because the two types of networks — with
polynomial activation and with RELUs — behave empirically
(see Fig. 2) in a similar way.
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Fig. 2. One can convert a deep network into a polynomial function by

using polynomial nonlinearity. As long as the nonlinearity approximates

ReLU well (especially near 0), the ”polynomial net” performs similarly
to a ReLU net. Our theory applies rigorously to a ”polynomial net”
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Even in the non-degenerate case (as many data as param-
eters), Bezout theorem suggests that there are many solutions.
With d layers the degree of the polynomial equations is £¢. With
N datapoints the Bezout upper bound in the zeros of the weights
is #¥_Even if the number of real zero — corresponding to zero
empirical error — is much smaller (Smale and Shub estimate [4]
INd/y), the number is still enormous: for a CIFAR situation this
may be as high as 2'*".

As mentioned, in several cases we expect absolute zeros to
exist with zero empirical error. If the equations are inconsistent
it seems likely that global minima with similar properties exist.

It is interesting now to consider the critical points of the gradient.
The critical points of the gradient are V,, >V, V( f(x), y,—) =0,
which gives K equations: Y lVWV(f (x)), y,-)VW f(x;) =0, where
V(., .) is the loss function.

Approximating within ¢ in the sup norm each ReLU in f'(x;)
with a fixed polynomial P(z) yields a system of K polynomial
equations in the weights. They are of course satisfied by the
degenerate zeros of the empirical error but also by additional
non-degenerate (in the general case) solutions.

Thus, we have Proposition 1: There are a very large number
of zero-error minima which are highly degenerate unlike the
local non-zero minima which are usually not degenerate.

4. The Landscape of the empirical risk:
visualizing and analysing the loss surface
during the entire training process
(on CIFAR-10)

4.1. Experimental Settings. In the empirical work described
below we analyze a classification problem with cross entropy
loss. Our theoretical analyses with the regression framework
provide a lower bound of the number of solutions of the clas-
sification problem.

Unless mentioned otherwise, we trained a 6-layer (with the
Ist layer being the input) Deep Convolutional Neural Network
(DCNN) on CIFAR-10. All the layers are 3x3 convolutional
layers with stride 2. No pooling nor shortcut connection is
used. Batch Normalizations (BNs) [5] are used between hidden
layers. The shifting and scaling parameters in BNs are not
used. No data augmentation is performed, so that the training
set is fixed (size = 50,000). There are 188,810 parameters in
the DCNN.

Multidimensional Scaling. The core of our visualization
approach is Multidimensional Scaling (MDS) [6]. We record
a large number of intermediate models during the process of
several training schemes. Each model is a high dimensional
point with the number of dimensions being the number of pa-
rameters. The strain-based MDS algorithm is applied to such
points and a corresponding set of 2D points are found such that
the dissimilarity matrix between the 2D points are as similar to
those of the high-dimensional points ascpossible. One minus the
cosine distance is used as the dissimilaritycmetric. This is more
robust to scaling of the weights, which is usually normalized
out by BNs, though the euclidean distance gives qualitatively
similar results.
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4.2. Visualization of SGD training trajectories. We show
in Fig. 3 the optimization trajectories of Stochastic Gradient
Descent (SGD) throughout the entire optimization process of
training a DCNN on CIFAR-10. The SGD trajectories follow
the mini-batch approximations of the training loss surface.
Although the trajectories are noisy, the collected points along
the trajectories provide a good visualization of the landscape
of the empirical risk. We show the visualization based on the
weights of layer 2. The results from other layers (e.g., layer 5)
are qualitatively similar.

4.3. Visualization of training loss surface with batch gradient
descent. Next, we visualize in Fig. 4 the training loss surface
by training the models using Batch Gradient Descent (BGD). In
addition to training, we also performed perturbation and interpo-
lation experiments as described in Fig. 4. The main trajectory, its
branches and the interpolated models together provide another
way of visualizing the landscape of the empirical risk.

5. The landscape of the empirical risk:
towards an intuitive baseline model

In this section, we propose a simple baseline model for the
landscape of empirical risk that is consistent with all of our
theoretical and experimental findings. In the case of over-
parametrized DCNNs, here is a recapitulation of our main
observations so far:

e Theoretically, we show that there are a large number of
global minimizers with zero empirical error. The same
minimizers are degenerate, that is they correspond to mul-
tidimensional valleys.

e Regardless of the use of Stochastic Gradient Descent (SGD)
or Batch Gradient Descent (BGD), a small perturbation of
the model almost always leads to a slightly different con-
vergence path. The earlier the perturbation is in the training
process, the more different the final model becomes.

e Interpolating two “nearby” convergence paths lead to a con-
vergence path with similar errors at every epoch. Interpo-
lating two “distant” models lead to raised errors.

e We do not observe local minima, even when training with
BGD.

A simple model of the landscape of the empirical risk is
consistent with the above observations: the landscape is a col-
lection of (hyper) basins, each containing a flat global minima.
[lustrations are provided in Fig. 1.

There are of course other variants of this model that can ex-
plain our experimental findings. In Fig. 5, we show an alterna-
tive model that we call ”basin-fractal”. This model is consistent
with most of the above observations. The key difference be-
tween the simple basins model and the “’basin-fractal” model is
that in the latter case, one should be able to find "walls” (raised
errors) between two models within the same basin. Since it is
a fractal, these “walls” should be present at any level of errors.
So far, we only discovered “walls” between two models when
the trajectories leading to them are very different (obtained ei-
ther by splitting very early in training, as shown in Fig. 4 branch

Bull. Pol. Ac.: Tech. 66(6) 2018
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Fig. 5. Discussion: does the loss surface look like simple basins or

a basin fractal? The main difference is that whether there are “walls”

(raised errors) within each basin. Experimentally we have not observed
such "walls”

1 or by performing a very large perturbation to the weights).
We did not find significant “walls” in all other perturbation and
interpolation experiments.

Another surprising finding about the basins is that they do
not show any local minima, even when training with batch gra-
dient descent. When the training is long enough with a small
enough learning rate, we always achieve zero classification
error and negligible cross entropy loss.

Part B

6. SGD: Basic setting

Let Z be a probability space with an unknown measure p.
A training set S,, is a set of i.i.d. samples z;, i = 1, ---, n from p.
Assumethat a hypothesis .77 is chosen in advance of training.
Here we assume 7 is a p-dimensional Hilbert space, and iden-
tify elements of 7# with p-dimensional vectors in R”. A loss
function is a map V: s xZ — R,. Moreover, we assume the
expected loss

1(f) =

exists for all f € .7. We consider the problem of finding a min-
imizer of /() in a closed subset K C 7. We denote this min-
imizer by fx so that

](fK) =

In general, the existence and uniqueness of a minimizer is not
guaranteed unless some further assumptions are specified.

Since p is unknown, we are not able evaluate 7( f). Instead,
we try to minimize the empirical loss

E.V(/.z) (1

min /(f). (2)

feK

ISn(f): ZNSVfZ vazz (3)

1*1
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as a proxy. In deep learning, the most commonly used algorithm
is SGD and its variants. The basic version of SGD is defined
by the following iterations:
Jeer=Tg(fi = nVV (/i 21) @)
where z, is a sampled from the training set S, uniformly at
random, and VV( f,, z,) is an unbiased estimator of the full gra-
dient of the empirical loss at f;:
IEﬂ"z,NS,, [VV(f[, Zt)] = Vi(ft)
7; 18 a decreasing sequence of non-negative numbers, usually
called the learning rates or step sizes. [1y : 5 — K is the pro-
jection map into K, and when K = 7, it becomes the identity
map. It is interesting that the following equation, labeled SGDL,
and studied by several authors, including [7], seem to work as

well as or better than the usual repeat SGD used to train deep
networks, as discussed in Section 5:

ft+1:fz_

Here W, is a standard Gaussian vector in R” and 7, is a sequence
going to zero.

We consider a situation in which the expected cost function
I(f) can have, possibly multiple, global minima. As argued
by [8] there are two ways to prove convergence of SGD. The
first method consists of partitioning the parameter space into
several attraction basins, assume that after a few iterations the
algorithm confines the parameters in a single attraction basin,
and proceed as in the convex case. A simpler method, instead
of proving that the function f converges, proves that the cost
function /() and its gradient & VV(f, z,) converge.

Existing results show that when the learning rates decrease
with an appropriate rate, and subject to relatively mild assump-
tions, stochastic gradient descent converges almost surely to
a global minimum when the objective function is convex or
pseudoconvex?, and otherwise converges almost surely to
a local minimum. This direct optimization shortcuts the usual
discussion for batch ERM about differences between optimizing
the empirical risk on S, and the expected risk.

VnVV(fta Zt) + %W, Q)

7. SGD implicit bias in the case
of overparametrization

We conjecture that SGD, while minimizing the empirical loss,
also implicitely maximizes the volume, that is “flatness”, of
the minima.

Our argument can be loosely described as follows. The zero
minimizers are unique for n >> W and become degenerate , that

2In convex analysis, a pseudoconvex function is a function that behaves like
a convex function with respect to finding its local minima, but need not
actually be convex. Informally, a differentiable function is pseudoconvex if
it is increasing in any direction where it has a positive directional derivative.
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is flat, for n << W. Of course counting effective parameters is
tricky in the case of deep net so the inequalities above should
be considered just guidelines.

We consider the steps of our argument, starting with proper-
ties of SGD that have been mostly neglected from the machine
learning point of view, to the best of our knowledge.

7.1. SGD as an approximate Langevin equation. We consider
the usual SGD update defined by the recursion

ﬁ+l - ﬁ - ytvv(ﬁ: Zt): (6)

where z, is fixed, VV(f,, z,) is the gradient of the loss with re-
spect to f at z,, and ; is a suitable decreasing sequence. When
z, C [n] is a minibatch, we overload the notation and write

VV(fts Zt) = ﬁZzeztvv(ﬁ> Z)'

We define an “equivalent pseudo noise”

&= VV(foz) = VI (/) ™)

where it is clear that £&, = 0.
We then rewrite Equation 6 as

fror=fi—n(VIs,(f) + &). (®)

With typical values used in minibatch (each minibatch cor-
responding to z,) training, it turns out that the vector of gradient
updates VV(f,, z;) empirically shows components with an ap-
proximate Gaussian distributions (see Fig. 6). This is expected
because of the Central Limit Theorem (each minibatch involves
sum over many random choices of datapoints).

Training error: 0.000965

1000 1000 1000 1000 1000
(@]
$ 500 500 500 H 500 500
—
0 0 0 0 0
5 0 5 5 0 5 5 0 5 5 0 5 5 0 5
1000 1000 1000 1000 1000
o
$ 500 500 “ 500 500 \ 500
=
—
0 0 0 0 d
5 0 5 2 0 2 5 0 5 2 0 2 2 0 2
1000 1000 1000 1000 1000
<
5 500 L 500 500 500 500 JL
=
—
0 0 0 0 0
5 0 5 2 0 2 2 0 2 2 0 2 2 0 2
1000 1000 2000 1000 2000
L
$ 500 500 H 1000 500 1000
—
0 0 0 0 0
-1 0 -1 0 1 5 0 5 2 2 -1 0 1
2000 2000 2000 2000 2000
O
$ 1000 ‘Jt 1000 JL 1000 H 1000 1000
—
0 0 0 0 0
2 0 5 0 5 2 0 2 2 2 2 0 2

Fig. 6. Histograms of some of the components of VV/( £, z;) over i for fixed 7 in the asymptotic regime. Notice that the average corresponds to the
gradient of the full loss, which is empirically very small. The histograms look approximatively Gaussian, as expected (see text) for minibatches
that are not too small and not too large
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Fig. 7. Equation 5 — that is SGD with added Gaussian (with constant
power) — behaves in a similar way to standard SGD. Notice that SGDL
has slightly better validation performance than SGD

Now we observe that (8) is similar to a stochastic Langevin
equation, witha noisescaled as y, rather than [y, In fact, the contin-
uous SGD dynamics corresponds to a stochastic gradient equation
using a potential function defined by U = I [f/] = %Zf: V(S 2)
(see Proposition 3 and section 5 in [9]). If the noise were the
derivative of the Brownian motion, this is a Langevin equation
with an associated Fokker-Planck equation yielding the proba-
bility distributions of f,. In particular, the stationary asympotic
probability distribution is the Boltzman distribution given by

Histogram of W_ for 1 D experiment

0.3 1 0.3

0.2 0.2

0.1 0.1

0-— L 0
) 5 10 15 20 0 5

Weights
Histogram of W1 for 4 D experiment

0.3 03

0.2 0.2

0.1 1 0.1

0 0
0 5 10 15 20 0 5

Weights

Histogram of W1 for 2 D experiment

Weights

Histogram of W1 for 5 D experiment

Weights

~ e7 . For more details on stochastic dynamical systems, see
for instance section 5 of [10]. Several proofs that adding a white
noise term to equation (6) will make it converge to a global min-
imum are available (see [11]). Notice that the discrete version of
the Langevin dynamics is equivalent to a Metropolis-Hastings
algorithm for small learning rate (when the rejection step can
be neglected).

7.2. SGDL concentrates at large volume, ”flat” minima. The
argument about convergence of SGDL to large volume minima
that we call “flat”, is straighforward. The asymptotic distri-
bution reached by a Langevin equation (GDL) —as well as by
SGDL — is the Boltzman distribution that is

P(f)=LeT

= —e T
VA

where Z is a normalization constant, U is the loss and T re-
flects the noise power. The equation implies, and Fig. 9 shows,
that SGD selects in probability degenerate minima rather than
non-degenerate ones of the same depth. Among two minimum
basins of equal depth, the one with a larger volume, is much
more likely in high dimensions (Fig. 8). Taken together, these
two facts suggest that SGD selects degenerate minimizers and,
among those, the ones corresponding to larger flat valleys of the
loss. If we assume that the landscape of the empirical minima
is well-behaved in the sense that deeper minima have broader
basin of attraction, we can then prove that SDGL shows con-
centration in probability — because of the high dimensionality
— of its asymptotic distribution Equation 9 — to minima that are
the most robust to perturbations of the weights. Notice that
these assumptions are satisfied in the zero error case: among
zero-minimizer, SGDL selects the ones that are flatter, i.e. have
the larger volume.

; )

Histogram of W1 for 3 D experiment
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15 20 00 5 10 15 20
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10— et 5 20
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Fig. 8. The figure shows the histogram of a one-dimensional slice of the asymptotic distribution obtained by running Langevin Gradient Descent

(GDL) on the potential surface on the right. The potential function has two minima with the same depth: one is wider (by a factor 2 in each

dimension). The histogram for the first weight coordinate is shown here for dimensionality 1, 2, 3, 4 and 5. The figures show — as expected

from the Boltzman distribution — that noisy gradient descent selects with high probability larger volume minimizers among minima of the same
depth. As expected, higher dimensionality implies higher probability of selecting the flatter minimum
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Fig. 9. Langevin Gradient Descent (GDL) on the 2D potential function shown above leads to an asymptotic distribution with the histogram

shown on the left. As expected from the form of the Boltzman distribution, the Langevin dynamics prefers degenerate minima to non-degenrate

minima of the same depth. In high dimensions we expect the asymptotic distribution to concentrate strongly around the degenerate minima as
confirmed by Fig. 10

In [2] we review qualitative arguments of why flat min-  a flat, degenerate minimum, one may ask where SGD will
ima”may” imply robust optimization and maximization converge to. For situations such as in Fig. 10 and for a min-
of margin. Here we claim that SGDL and SGD maximize imum such as in Fig. 11, Theory III suggests a locally min-
volume and “flatness” of the loss in weight space. Given imum norm solution.
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Fig. 10. The figure shows the histogram of a one-dimensional slice of the asymptotic distribution obtained by running Langevin Gradient Descent
(GDL) on the potential surface on the right
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Fig. 11. Stochastic Gradient Descent and Langevin Stochastic Gradient Descent (SGDL) on the 2D potential function shown above leads to an
asymptotic distribution with the histograms shown on the left. As expected from the form of the Boltzman distribution, both dynamics prefers
degenerate minima to non-degenerate minima of the same depth

8. Random labels

For this case, Part A predicts that it is in fact possible to in-
terpolate the data on the training set, that is to achieve zero
empirical error (because of overparametrization) and that this
is in fact easy — because of the very high number of zeros of
the polynomial approximation of the network— assuming that
the target function is in the space of functions realized by the
network. For n going to infinity we expect that the empirical
error will converge to the expected (which is at chance level
here), as shown in the figures. For finite n < W, the fact that
the empirical error (which is zero) is so different from the ex-
pected seems puzzling, as observed by [12], especially because
the algorithm is capable of low expected error with the same
n for natural labels.

A larger margin is found for natural labels than for random
labels as shown in Table 1 and in Fig. 12 and Fig. 13. Figure 12
shows “’three-point interpolation” plots to illustrate the flatness
of the landscape around global minima of the empirical loss

a) Natural label

Table 1
The flatness test”: at the minimizer, we move the weights around
in a random direction, and measure the furthest distance until the
objective function is increased by ¢ (0.05), and then measure the
average distance

MNIST CIFAR-10
all params 454 2.7 17.0+2.4
all params (random label) 69+1.0 5.7+1.0
top layer 15.0£1.7 19.5£4.0
top layer (random label) 3.0+0.1 12.1£2.6

found by SGD, on CIFAR-10, with natural labels and random
labels, respectively. Specifically, let w;, w,, ws be three mini-
mizers for the empirical loss found by SGD. For A = (4, 4, 4;)
on the simplex A, let

w, = /IIW] + lez + A3W3.

(10)

b) Random label

Fig. 12. Illustration of the landscape of the empirical loss on CIFAR-10

Bull. Pol. Ac.: Tech. 66(6) 2018
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a) Natural label

b) Random label

1.50
1.25

1.50
1'21“‘.087 0,50
5.58'25’ 00 002'(5).0
"~0.25 ;

£0.50 7050

Fig. 13. Illustration of the landscape of the empirical loss on MNIST

We then evaluate the training accuracy for the model defined
by each interpolated weights w; and make a surface plot by
embedding Aj in the 2D X-Y plane. As we can see, the nat-
ural label case depict a larger flatness region around each of
the three minima than the random label case. There is a direct
relation between the range of flatness and the norm A of the
perturbations.

The same phenomenon could be observed more clearly on
the MNIST dataset, where the images of the same category are
already quite similar to each other in the pixel space, making
it more difficult to fit when random labels are used. Therefore,
the difference in the characteristics of the landscapes is am-
plified. As shown in Fig. 13, large flat regions are observed in
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the natural label case, while the landscape for the random label
experiment shows sharper wells.

Itis difficult to visualize the flatness of the landscape when
the weights are typically in the scale of one million dimensions.
To assess flatness, we employ the following procedure around
a minimum found by SGD: choose a random direction 6w with
[[6w|| =1, perform a line search to find the flatness radius”
in that direction:

r(w, dw, &) = sup{r | Fw) — T(w + r5w)‘ < s}. (11)
The procedure is repeated 7 times and the average radius is
calculated. The overall procedure is also repeated multiple times
to test the average flatness at different minima. The results are
shown in Table 1. For both CIFAR-10 and MNIST, we observe
a difference between the natural label and random label.

9. Part A and Part B: summary

In this paper (as a review of [1-3]), we have described prop-
erties of the landscape of the empirical risk, for the case of
overparametrized convolutional deep networks. Zero empir-
ical error yields a system of polynomial equations that yields
a very large number of global minima — when is not inconsistent
— which are degenerate, that is flat in several of the dimensions
(in CIFAR there are about 10® unknown parameters for 6 x 10*
equations. The zero empirical error minimizers are global and
degenerate while the local minima are in general not degenerate.
Consistently with this predictions, we empirically observe that
zero-minimizers correspond to flat valleys. We furthermore
show that SGD, with respect to GD, is biased to find with high
probability degenerate minimizers — flat “valleys” in the land-
scape — which are likely to be global minima.
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