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Abstract. Convolutional neural networks (CNN) have become ubiquitous in computer vision as well as several other domains, but the sheer size 
of the modern CNNs means that for the majority of practical applications, a significant speed up and compression are often required. Speeding-up 
CNNs therefore have become a very active area of research with multiple diverse research directions pursued by many groups in academia and 
industry. In this short survey, we cover several research directions for speeding up CNNs that have become popular recently. Specifically, we 
cover approaches based on tensor decompositions, weight quantization, weight pruning, and teacher-student approaches. We also review CNN 
architectures designed for optimal speed and briefly consider automatic architecture search.
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●	Methods relying on low-precision arithmetic and other 
quantization techniques. This group includes methods that 
aim to build fully binarized neural networks.

●	Approaches that prune the weigths of larger networks to 
build their smaller and faster equivalents.

●	Teacher-student approaches, which train small networks 
with the aid of bigger ones.

●	Efficient architectures design: methods that pursue heuris-
tic-driven search for the smallest possible CNN architecture.

●	Methods for automatic architecture search that aim to re-
place human-suggested heuristics with an algorithm that 
designs neural networks automatically.
Below, each group is presented within a separate section. We 

note that factorization, quantization, and pruning approaches 
can all be grouped into a “gradual’’ speed-up super-group. Such 
approaches start with a pretrained CNN and then interleave the 
transformation of convolutional layers with fine-tuning opera-
tions. Each transformation step leads to a speed-up as well as 
to the drop in accuracy. The subsequent fine-tuning operation 
recovers part of the accuracy drop. On the other hand, methods 
aimed at fast architecture design (including those that do this 
in an automated way) aim to design an architecture that can be 
trained from scratch. Finally, the teacher-student methods take 
the middle path, as they usually design the final architecture in 
a two-step process, which first trains a slow teacher network 
and then trains a fast student network using the guidance from 
the teacher.

Several aspects related to CNN acceleration fall outside of 
the scope of this short survey. In particular, we do not discuss 
the hardware-dependent implementation details, although they 
can play a very important role in practice. This topic, among 
others, is addressed in the concurrent reviews in [8] and [9]. 
Also outside of our survey is the group of methods that design 
architectures that adapt to input samples, and in particular can 
use early-stopping for simple examples. This promising group 
of methods includes [10‒13]. Also, the focus of this survey on 

1.	 Introduction

Convolutional neural networks (CNNs) have become the most 
important computational architecture in the computer vision 
domain, where they are used for image classification, segmen-
tation, detection, filtering and image generation tasks. Beyond 
computer vision, methods based on CNNs thrive in natural lan-
guage processing [1], bioinformatics [2] and general-purpose 
reinforcement learning [3]. Although the basic ideas behind 
CNNs have emerged by the late 1980s [4, 5], successful appli-
cation of these ideas to natural images was delayed till the in-
troduction of powerful graphics processing units (GPUs) [6, 7], 
which are almost exclusively used for CNN training these days.

While GPU remains the dominant architecture for training 
CNNs within the academic community, the industrial applica-
tions of CNNs often require their use in lower-end computing 
architectures with limited computational power, limited memory 
and limited battery power. Such architectures include smart-
phones and wearable devices. For robotics and autonomous 
driving, GPU-type units may be available, but time constraints 
are often extremely stringent. For all these reasons, speeding 
up and compressing CNN models has become a very active and 
diverse area of research.

This short survey covers (a subset of) this rapidly evolving 
field, focusing on approaches that aim at building CNNs that 
are fast at inference time. In general, we group these approaches 
into six groups:
●	The approaches using tensor decompositions of the weights 

or activations.
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the general-purpose methods that are usually introduced in the 
context of image classification. At the same time, we note that 
a lot of work has been put into architectures that are specific to 
other computer vision tasks, most notably object detection and 
semantic segmentation. Such approaches also fall outside the 
scope of this survey.

2.	 Tensor decompositions

The convolution layers correspond to the bulk of the inference 
time in modern CNNs. These layers are based on the general-
ized convolution operation:

V(x, y, k) = 
i =0

dx¡1

∑
j=0

dy¡1

∑
c=0

C¡1

∑W(i, j, s, k)U(x + i, y + j, c),� (1)

where U denotes the input 3D tensor containing C 2D image 
maps, V denotes the output 3D tensor containing N 2D image 
maps, and W is a four-dimensional convolutional tensor (also 
often referred to as convolutional kernel or weight tensor) con-
taining dx£dy£C£T elements. The out-of-bounds indices in 
the summation of (1) are handled using so-called padding rou-
tines, which are out of the scope of this survey.

The generalized convolution is thus defined by its four-di-
mensional convolutional tensor W. The idea behind tensor de-
composition methods is to decompose this tensor into a product 
of low-dimensional tensors, resulting in several fast convolu-
tions with fewer operations. Decomposition for speeding-up 
convolutional filters was initially developed out of the scope of 
CNNs. Here, [14] considered denoising tasks and approximated 
convolutional filters by a shared set of separable filters, leading 
to large speedups with minimal loss in denoising accuracy.

The approach based on separable filters was then extended 
to convolutional layers of CNNs in [15]. The convolutional 
tensor with square d£d filters is approximated and replaced 
by a product of two convolutional tensors with 1£d and d£1 
filters and K feature maps between them. The parameter K (the 
decomposition rank) regulates the speed-accuracy trade-off: 
small K lead to fast but inaccurate models, while large K allow 
to reproduce original convolution closely but with high com-
putation time. Carefully tuning K for every approximated layer 
is a crucial part of speeding up the neural network within this 
algorithm. Their work describes two optimization approaches, 
depending on whether the objective minimized by the decompo-
sition procedure measures the error of the filter reconstruction 
or the error of the unit activation reconstruction. Of the two ap-
proaches, the latter is more practical as it can be made a part of 
the CNN fine-tuning process, which optimizes the training loss 
used to train CNN over all parameters of the network (although 
end-to-end fine-tuning was not pursued in [15]).

Originally, the separability was enforced on pretrained net-
work only, but [15] also note that low rank filters can be learned 
in the discriminative manner, i.e. from scratch and at the same 
time with the rest of the network. This idea was later incor-
porated into Inception architectures, starting from the second 
version [16].

Several weight tensor compression methods based on clus-
tering were proposed by [17]. The common idea is to cluster the 
tensor slices along one or two of the tensor dimensions, to split 
up the tensor according to cluster boundaries and then to ap-
proximate resulting slices by centroid values (“monochromatic 
approximation”), via the SVD decomposition, or via the canon-
ical polyadic (CP) decomposition obtained by greedy approach 
(outer product decomposition). The CP decomposition is one of 
the generalization of the SVD decomposition to higher-order 
tensors (a review [20] on such decompositions is highly recom-
mended). The splitting reduces decomposition ranks required 
for good approximation, but this comes at the cost of increasing 
the number of tensors that need to be approximated. Another 
shortcoming of this approach is in a rather large number of 
hyper-parameters, which makes it increasingly hard to tune for 
optimal performance.

The work [18] presents the algorithm that also applies the 
CP-decomposition to the convolutional weight tensor. Instead of 
clustering, the focus of this work is on tuning the performance 
of CP-decomposition, which is done in two phases. The first 
phase starts with with better initial approximation obtained by 
the non-linear least squares algorithm (instead of the greedy one 
used in [17]). The second stage finetunes the whole network 
after the decomposition is applied.

Finetuning the model after decomposition is non-trivial, es-
pecially if the decomposition is applied to several layers. Even 
if the single layer is decomposed, numerical instabilities inside 
the four convolutional layers introduced by CP-decomposition 
often lead to the explosion of gradients during fine-tuning. The 
key problem is that CNN block designed to follow the structure 
of tensor decomposition does not have non-linearities between 
the convolutions. When multiple layers are decomposed, the 
fine-tuning can be done either once after all the decompositions 
are applied, or iteratively, after every single decomposition. 
The iterative approach was explored by [19], which also argues 
for tensor power method [21] to be the most appropriate for 
obtaining initial decomposition. Training from scratch with the 

Table 1 
Per-pixel operation counts for different approximations 

of convolutional layers, with the focus on CP-decomposition 
approaches. The number of operations depends on the size d  
of the square spatial kernel, the number of input channels C  

and the output channels N, as well as the hyper-parameters specific 
to approximation methods: the decomposition rank K,  

and the number of clusters C1 and N1 for input and output  
channels for the clustering methods from [17]

method operations

full convolution CNd2

two-component [37] Kd(C + N )

monochromatic approximation [16] CC1 + Nd2

biclustering + svd [16] CC1K1 + C1N1K1K2d2 + NN1K2

biclustering + outer product [16] K(CC1 + C1N1d2 + N1N )

cp-decomposition [44] K(C + 2d + N )

cp-decomposition [4] K(C + 2d + N )
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architecture closely related to one obtained with CP-decompo-
sition was implemented in [22].

The work [23] suggests an alternative way to speed up 
neural networks by applying the low-rank assumption to activa-
tions rather than to the weight tensor. This assumption splits one 
convolutional layer in two, while the weights of each of the two 
new layers are obtained by solving optimization problems. The 
focus on activations instead of the weights has two advantages: 
first, the nonlinearities can be taken into account in the optimi-
zation problem formulation, and secondly, in case of multiple 
layers approximations, the activations of the original network 
can be used as a target. This idea, called the asymmetric recon-
struction limits the accumulation of error from layer to layer. 
Finally, as in the previous approaches, the whole network can 
be fine-tuned.

All the methods listed above replace single convolutional 
layer by a block of smaller convolutions. The comparison of 
these blocks is presented in Fig. 1.

Other higher-order tensor decompositions have been used 
for CNN speed-up. Tucker decomposition was applied for 
speeding up and compression of CNNs in [24] and [25]. Tensor 
Train (TT) decomposition was applied to fully connected layers 
of convolutional neural networks by [26]. The main focus of 
that work is compression, not the speed-up, but the achieved 
compression rates of up to 200 000 times are impressive.

3.	 Fast architecture design

The research in CNNs has lead to the emergence of several 
popular families of the architectures. Historically, the search 
for architectures was driven by the desire to push the clas-
sification accuracy (most importantly in the annual ILSVRC 
[27] challenge), while the inference speed was of a secondary 
concern. Figure 2 shows runtimes and the ILSVRC accuracies 

of the resulting architectures. Many of the approaches surveyed 
below take the architectures reflected in this chart as a starting 
point for the design process.

The tensor decomposition approaches are closely related to 
the task of designing of optimal architectures, which is the topic 
of this subsection. The methods, described in this section, how-
ever, train the designed architectures from scratch. The design 
choices are often directly influenced by preceeding works on 
tensor decomposition, such as in the case of [22].

One of the first prominent attempts at building an architec-
ture, which emphasizes efficiency is the Network-In-Network 
(NIN) architecture proposed in [29]. The basic idea behind NIN 
is to replace non-linearities within the convolutional network 
with a more complex function. Multilayer (two-layer) percep-
tron, which is known to be a universal aproximator, is chosen as 
a replacement. By sharing the weights of the perceptrons across 
spatial dimensions one ends up with two 1£1 convolutional 
layers interleaved with standard non-linearities.

The SqueezeNet [30] is a compact architecture that achieves 
AlexNet-level performance with 50£ less parameters. The ide-
ology behind SqueezeNet is based on three principles:
1.	Utilize 1£1 filters instead of 3£3 filters whenever possi-

ble. Smaller filters have fewer parameters and need fewer 
operations.

2.	When 3£3 filtering has to be applied, minimize the number 
of input channels.

3.	Downsample late in the network to give most layers chance 
to work with large high-resolution maps.

Fig. 1. CNN blocks used by tensor decomposition methods to replicate 
a single convolutional layer. Each layer here is labeled with its kernel 
shape and the number of filters. ‘dw’ stands for depthwise convolution, 
in which case the number of the channels in the input is the same as 

on the output
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Fig. 1: CNN blocks used by tensor decomposition methods
to replicate a single convolutional layer. Each layer here is
labeled with its kernel shape and the number of filters. ’dw’
stands for depthwise convolution, in which case the number of
the channels in the input is the same as on the output.

ric reconstruction limits the accumulation of error from layer
to layer. Finally, as in the previous approaches, the whole net-
work can be fine-tuned.

All the methods listed above replace single convolutional
layer by a block of smaller convolutions. The comparison of
these blocks is presented in Figure 1.

Other higher-order tensor decompositions have been used
for CNN speed-up. Tucker decomposition was applied for
speeding up and compression of CNNs in [40] and [75]. Ten-
sor Train (TT) decomposition was applied to fully connected
layers of convolutional neural networks by [57]. The main
focus of that work is compression, not the speed-up, but the
achieved compression rates of up to 200000 times are impres-
sive.

3. Fast Architecture Design
The research in CNNs has lead to the emergence of several
popular families of the architectures. Historically, the search
for architectures was driven by the desire to push the classifi-
cation accuracy (most importantly in the annual ILSVRC [65]
challenge), while the inference speed was of a secondary con-
cern. Figure 2 shows runtimes and the ILSVRC accuracies of
the resulting architectures. Many of the approaches surveyed
below take the architectures reflected in this chart as a starting
point for the design process.

The tensor decomposition approaches are closely related to
the task of designing of optimal architectures, which is the
topic of this subsection. The methods, described in this sec-
tion, however, train the designed architectures from scratch.
The design choices are often directly influenced by preceeding
works on tensor decomposition, such as in the case of [39].

One of the first prominent attempts at building an architec-
ture, which emphasizes efficiency is the Network-In-Network
(NIN) architecture proposed in [49]. The basic idea behind
NIN is to replace non-linearities within the convolutional net-
work with a more complex function. Multilayer (two-layer)

Fig. 2: The trade-off between the inference time on Tesla
K40m GPU and the ILSVRC [65] Top-1 classification error
for the popular CNN architecutres (PyTorch [58] implemen-
tations). Color lines connect groups of similar architectures.
Many of the speed-up approaches take some of the charted ar-
chitectures as starting points.
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The first and the second principles ensure that the model 
is both small and fast, while the third design principle boosts 
the accuracy. All three principles combined yield a very small 
model with a slightly smaller inference time than AlexNet 
(which serves as the base model).

The MobileNet architecture [31] is prominent among CNN 
architectures designed for optimal size and inference time. The 
main idea is to separate filtering and feature construction func-
tions of a convolutional layer into two layers: the depthwise 
convolution and 1£1 convolution (i.e. a pointwise convolu-
tion). This combination is called a depthwise separable convo-
lution and was first popularized in [32].

The MobileNet also employs simple but effective tricks 
to control architecture performance: the network width (the 
number of channels) is controlled by the width multipler α, 
and the input resolution is controlled by the resolution multi-
plier ρ. In general, changing the network width and the input 
resolution is a simple way to control trade-offs between the 
speed and the number of parameters on one hand and the accu-
racy on the other. Such knob, however, had not been thoroughly 
investigated in research papers prior to [31].

In comparison with SqueezeNet, MobileNet is capable of 
achieving higher accuracy with approximately same model size 
and one tenth of mult-add operations. This advantage in opera-
tion number, however, is hard to translate into actual inference 
speed-up on GPU because depth-wise convolution is not as 
efficiently implemented on GPU as a regular convolution.

Still, separating the depth-wise and intra-channel convolu-
tions within an architecture has become a popular idea. In modern 
architectures, this idea leads to 1£1 convolution being domi-
nant in the total computation cost of the model. The only way to 
squeeze 1£1 convolutions even further is to turn them into group 
convolutions [7], which only mix channels within certain groups 
of channels. Such grouping, however, would mean that the whole 
network is divided into thin columns with no connection between 
them. ShuffleNets [33] address this problem by using the channel 
shuffle operation. Shuffling of channels between the convolutions 
allows to enjoy the low costs of group convolutions without split-
ting the network into disjoint parts. The ShuffleNet architecture 
uses even smaller number of operations for the same accuracy 
level compared to MobileNet. Whether this advantage translates 
to actual timings depends on the efficiency of the available im-
plementations of depthwise and group convolutions.

Yet another variation of MobileNet building block is the 
EffNet architecture [34], motivated by a careful study. EffNet 
utilizes depthwise separable convolutions, and pushes it even 
further by splitting 3£3 convolution into pair of convolutions 
with 1£3 and 3£1 kernels. The downsampling along one di-
mension is perfomed with strided convolution, and along other 
– via 2£1 pooling.

The final logical step in the movement towards smaller fil-
ters in CNNs would be a complete rejection of convolutions 
with filers larger than 1£1. The problem with this kind of CNN 
is that adjacent pixels would not be connected, and the receptive 
fields will always be 1£1. ShiftNets [35] solve this problem 
using channel shifts, which allows adjacent pixels in different 
channels to connect through 1£1 convolutions. Channel shift 

Fig. 3. Sequences of convolutional layers used for fast and compact 
architectures described in Section 3. The notation follows Fig. 1. In 

case of ShuffleNet, 1£1 convolutions are also group convolutions
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is a cheap operation, but ShiftNet often requires to increase 
the number of channels in the network to achieve comparable 
performance. The proposed building blocks of ShiftNet and 
other architectures listed above are shown in Fig. 3.

The principles of efficient lightweight architecture design 
are also very useful for the design of large “heavy-weight’’ 
architectures. In practical setting, the memory on the GPU 
and the time for the experiments are always limited, so the 
depth of the CNN architecture is limited as well. Since the 
CNN performance usually increases with depth, it is desirable 
to stretch this limit by designing architectures efficiently. In this 
arena, the Inception architecture [36] is built on the premise of 
approximating sparsity with existing building blocks. It was 
gradually refined [16] to minimize the computational cost and 
to maximize the performance. Towards this end, convolution 
decomposition was introduced in the fourth version [37]. Fi-
nally, depthwise convolutions were introduced to the Inception 
architecture in [38]. The ResNet architecture [39] (as well as its 
futher development ResNeXt [32]) also makes use of similar 
efficient architecture principles. The training of extremelly deep 
CNNs (150 layers for ImageNet-sized inputs) simply cannot be 
done without careful management of computation resources.

Finally, we note once again, that efficient architecture de-
sign is not limited to classification tasks, as segmentation and 
detection require specialized architectures that nevertheless may 
share the same principles. This subject is outside of scope of 
this review, but good benchmarks that track both speed and 
accuracy are provided for the Cityscapes dataset [40] in the case 
of segmentation and the KITTI benchmark [41] in the case of 
2D and 3D detection.
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4.	 Automatic architecture search

Usually, the neural network architectures are hand-constructed 
by human experts, who are guided by general principles of ef-
ficient architecture design. A lot of choices in the architecture 
construction are left to intuition and guessing. The situation 
asks for automatic algorithms for architecture search that are 
reviewed in this section. This section thus naturally comple-
ments and expands Section 3. As automated architecture search 
is a rapidly developing field at the spearhead of modern deep 
learning research, this section only covers the most influential 
works in this sub-field.

Automatic architecture search is essentially a hyperpa-
rameter optimization, which is a general problem that can be 
tackled by several approaches, such as grid search or Bayesian 
optimization [42]. The case of CNN brings several complica-
tions. First, the function evaluation becomes very expensive. 
Second, the number of hyperparameters is very large and may 
vary across the optimization space. Thus, hyperparameter op-
timization for CNN requires specialized approaches.

Perhaps the first successful attempt at automatic architec-
ture search is a neural architecture search (NAS) algorithm [43] 
which utilizes reinforcement learning. The CNN architecture is 
predicted by a recurrent neural network that sequentially pro-
duces CNN hyperparameters: filer sizes, strides, numbers of 
filters. Possible branchings and skip connections are modelled 
using an attention mechanism that decides which connection 
between the current layers and the previous layers are to be 
introduced in the next step.

NAS requires extremely large amount of computational 
resources even when performed on small datasets. Thus in 
the experiments with CIFAR-10 dataset, the authors report 
testing 12 800 architectures during the search process and using 
800 GPUs simultaneously. This makes architecture search for 
larger datasets such as ImageNet impossible.

Larger datasets can be approached in two ways: by de-
signing more efficient search algorithms, or by ensuring that the 
results obtained on small dataset are transferrable to the larger 
datasets. Both approaches are implemented in [44]. First, the 
modular structure is imposed on a target CNN. This way, only 
the architecture of a block has to be predicted instead of the 
whole network, making the search space much smaller. Second, 
CIFAR-10 and ImageNet versions of architectures can be made 
of the same blocks with different number of poolings (or strided 
convolutions) between them. Architectures built this way beat 
human-constructed architectures on ImageNet.

The neural architecture search can be further accelerated by 
sharing parameters between different architectures [45, 46] or 
by predicting the final performance of architecture based on the 
first epochs in the beginning of the training process [47]. With 
these enhancement, hundreds GPUs are no longer necessary 
for automatic architecture search. Thus, [46] reports closely 
reproducing the original neural archtecture search results using 
five GPUs instead of 800.

Still, all the variations of approaches which divide architec-
ture construction and evaluation require evaluating thousands of 
CNNs. The resource consumption can be drastically reduced if 

the architecture search and CNN training are done at the same 
time. MorhNets [48] simultaneously learns CNN weights and 
changes its architecture by iterating between the two stages. In 
the first stage, the network is thinned by sparsity induced regu-
larizes. In the second stage, new channels are added uniformly 
to all layers. This algorithm allows CNN to adapt thickness of 
its layers to the particular task. The running time is comparable 
with regular CNN training, so it can be directly applied on Im-
ageNet. The downside of this approach is that the search space 
is limited to changing layer widths.

5.	 Quantization

A switch to low-precision arithmetic or quantization is 
a straightforward way to speed up computations, as well as to 
compress and to minimize memory requirement for a neural 
network. This general idea produces a spectrum of approaches, 
which starts from using slightly lower precision and ends with 
the complete switch to binary weights and activation. While the 
binarization offers a compelling perspective of extremely low 
time and memory cost, it is not possible yet to fully transition 
to binary CNNs without substantial accuracy drops.

The problems faced by quantization and binarization are 
apparent. First, in the case of quantized weights, it is hard to 
implement gradient descent, since the idea of quantization con-
tradicts the process of accumulating small changes. Second (and 
related), if the activations are quantized, the backpropagation 
process becomes complicated. This section surveys some of the 
ways to deal with these problems.

The list of approaches for improving the speed of neural 
networks on CPUs [49] includes 8-bit quantization. Several 
facts which facilitate quantization are listed. Firstly, because 
of the sigmoid activation function, activations stay in the [0, 1] 
interval, so no scaling is needed. Secondly, because of the 
linear nature of the operation together with range compression 
by sigmoid, quantization errors tend to propagate sublinearly. 
That said, modern CNNs rarely use sigmoid activations, so 
this argument may no longer be valid, although sublinearity 
of error propagation still holds with ReLU activation. More-
over, [50] notes that neural networks are not only robust to-
wards noise, but the training performance can be enhanced 
by noise injection. Thus, noise-like distortions injected by 
the quantization process may not be detrimental if this pro-
cess is properly tuned. Therefore, if the hardware allows it, 
low precision arithmetic is a viable technique for speeding up 
neural networks.

The problem of the compression of fully-connected weights 
matrix W was addressed in [51]. The compression often goes 
hand-in-hand with the improvement of the speed, and some tech-
niques are applicable both to convolutional and fully connected 
layers, so this work turns out to be very influential for speeding 
up CNNs. The following approaches are compared in [51]:
●	SVD-decomposition that approximates weights matrix 

W 2 Rn×c as a product smaller matrices with truncated SVD:

	 W ̂  = USVT = U 0VT� (2)
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where U, U 0 2 Rn×k and V 2 Rc×k. The input multiplication 
by W is then replaced by two multiplications with U 0 and 
VT. The compression and speed-up rate are controlled by the 
number of components in the decomposition k.

●	Binarization, which is the simplest and the most radical way 
to compress parameters by applying thresholding:

	
	 1� Wij > 0

	–1� Wij < 0
� (3)

Binarization compresses data from full 32 bit precision to 1 
bit, with the fixed compression rate of 32£.

●	Scalar quantization: here all entries of matrix W are clus-
tered by the k-means algorithm, and the centroid values ct 
are used for the approximation

	 W ̂ ij = ct   where   t = argmin
z

jWij ¡ czj� (4)

●	Product quantization [52] divides matrix W into several sub-
matrices [W1, W2 … Ws], then each submatrix is clustered 
by kmeans and compressed independently.
As opposed to the previous results for the convolutional 

layers, matrix decomposition performed poorly. Simple scalar 
quantization and product quantization achieved much better 
results, and, surprisingly, the simplest binarization techinque 
also worked reasonably well. Simplicity and high compression 
rate make binarization a very promising approach, but its ca-
pabilities are limited unless one can properly train binarized 
networks and recoup the accuracy drop incurred by binarization. 
A multitude of attempts at reconciling binarization with back-
propagation and gradient descent were done in the recent years.

The initial development of algorithms for neural network 
quantization was mostly done in the area of speech recognition, 
which is outside of the scope of this work. For images, [53] 
presents an algorithm for training quantized CNNs. The basic 
idea is to keep two versions of the weights: quantized W ̂  and 
full precision W. The algorithms repeats the following steps:
1.	Obtain quantized weights with some sort of quantization 

procedure q applied to high-precision weights:

	 W ̂  = q(W)� (5)

2.	Perform a feed-forward pass with quantized weights and 
compute the loss function. The activations are kept in full 
precision.

3.	Backpropagate the error gradients with quantized weights 
and full precision activations. The gradients are then used 
to update the full-precision weights.
This sequence allows to circumvent the problems with 

backpropagation and gradient descent for quantized weights. 
Different quantization levels are used for different layers and 
the main benefit here is the model compression.

The presented results on MNIST and CIFAR10 datasets 
exceed uncompressed CNNs in some cases. This effect is at-
tributed to the regularizing effect of quantization which reduces 
the CNN capacity (similar effect was reported in [50]). At the 
same time, there are other well-studied ways to reduce capacity, 

such as regularization, dropout, and simply reducing the number 
of filters inside CNN. The latter method also leads to speed-up 
and compression. Overall, the main disadvantage of [53], shared 
with many others in the field, is that the experiments are lim-
ited to small networks with 32£32 inputs. Such CNNs have 
relatively low capacity and are quick to experiment with. And 
yet, the main challenge of speeding up CNNs lies in the area 
of big CNNs (such as those trained for ImageNet classification 
and other similar tasks), to which good results on small images 
do not always transfer.

The BinaryConnect [54] approach pushes the principle of 
splitting high-precision and quantized weights further to achieve 
full binarization, i.e. training networks with binary weights in 
the convolutionals tensors. The binarization procedure (3) is 
modified in a probabilistic fashion:

	
	 1	 with probability	 p = σ (w)

	–1	 with probability	 1 ¡ p
� (6)

where σ  is the hard version of sigmoid function

	 σ (x) = clip
³

x + 1
2

, 0, 1
´

� (7)

which is chosen because it is much less computationally expen-
sive compared to the regular sigmoid function. The high-preci-
sion weight are clipped into [–1; +1] interval during training. 
A probabilistic approach is in general desirable from theoretical 
point of view. On the other hand, the cost of random number 
generation accumulates if used on every step.

At train time, BinaryConnect repeats the following steps:
1.	For every high-precision weight w, pick +1 or –1 accord-

ing to (6).
2.	Do feed-forward pass with binarized weights w ̂ .
3.	Do backpropagation with binarized weights w ̂  and update 

high-precision weights w.
At test time, naturally, only the binarized weight are used 

since only the forward propagation is needed. The paper [54] 
proposes generating binarized weights multiple times as test 
time to obtain the ensemble of models, but ensembling con-
tradicts with the speed-up task and preserving full-precision 
weights contradicts compression. Forward propagation with bi-
nary weights can be much faster since it replaces floating-point 
multiplications by multiplications with ±1, which is just a sign 
change. Competitive results are presented for CIFAR10, SVHN 
and permutation-invariant MNIST. Again, as in the case with 
[53], classification accuracy sometimes exceeds the full-preci-
sion baseline for small datasets.

Two extensions of this approach are presented in the fol-
low-up paper [55]. First of all, ternary weight are introduced. 
Ternary weights are obtained by a stochastic procedure similar 
to (6). Every weight w is assumed to lie in the interval [–1; 1]. 
This interval is divided into two sub-intervals [–1; 0] and [0; 1] 
and the probability of picking 1, 0 or –1 is determined by the 
procedure (6) applied to the respective interval. The second 
important innovation is the elimination of multiplications in 
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backward pass. The layer activations are quantized into 3 or 4 
bits and multiplication is replaced by bit-shifts.

The comparison of learning curves shows that binary and 
ternary networks behave similarly both with and without back-
ward pass quantization: initially, convergence is slower, but 
the final result can be better. Again, this is attributed to the 
regularizing effect of quantization.

Subsequent paper on binarized neural networks [56] pro-
vides the details on the practical implementation and timings. 
Shift-based versions for batch normalization [57] and ADAM 
optimization [58] algorithm are presented. A custom CUDA 
kernel is written for binary matrix multiplication, and its speed 
is compared to cuBlas on 8192£8192 matrix multiplication. 
The binary kernel is reported to be 3.4£ faster. The preliminary 
results on the ILSVRC challenge with AlexNet architecture is 
36.1% top-1 accuracy, which corresponds to » 20% accuracy 
drop compared to the full-precision architecture.

Another interesting and more successful attempt at bina-
rizing large CNNs is the XNOR-Net [59]. Here, the weight 
binarization setting is considered as an approximation problem 
of the following kind:

	 I ¤W  ' α(I ¤B),� (8)

where ¤ denotes convolution, I is the input tensor, α is a scaling 
factor, W is high-precision weights tensor and B is its binary 
version. It can be shown that the optimal values of elements 
of W are indeed obtained by the simple binarization procedure 
(3), and the optimal value for the scaling factor is an average 
of the absolute values of W. Training the binary weights net-
work is done by repeating the same tree steps from [53, 54], 
i.e. obtaining binarized weights from high precision weights, 
doing forward and backward passes with binarized weights, and 
applying updates to the full precision weights.

The next step is to binarize both weights and activation, 
resulting in the so-called XNOR-networks. The approximation 
problem of the following form is considered:

	 I ¤W  ' (sign(I )¤ sign(W )) ¯ Kα ,� (9)

where ¯ is an element-wise multiplication and K is a tensor 
with scaling factors for every patch in I. This approximation 
leads to £58 speed-up in terms of the number of the floating 
point operations, while the actual timings will depend on the 
cost of binary operations, which depends on the hardware and 
implementation details.

XNOR-Nets training also requires the following rearrange-
ment of the traditional CNN block sequence, in order to mini-
mize the information loss in binarization:
1.	Batch normalizations are put in the beginning of the block.
2.	Following batch normaliztion, the binary activation layer 

computes K and sign(I ).
3.	Binary convolution is applied to the result of the binary 

activation layer.
4.	Optionally, pooling is applied.

The blocks of layers composed in the same way are then applied 
several times.

Overall, the accuracy of binarized XNOR-networks is 
shown in the Table 2. Interestingly, the accuracy for full-preci-
sion AlexNet and its version with binarized weights is the same, 
although this effect does not hold for larger architectures. Thus 
for ResNet-18, XNOR-Net loses more then 10% of accuracy 
compared to the full-precision network.

Table 2 
ImageNet (ILSVRC) classification accuracy of binarized CNNs 

from [59]. The accuracy drop is large compared to tensor 
decomposition methods, but the speed-up and compression rates 

assosiated with binarization are much higher

full precision binary weights XNOR-Nets

AlexNet 56.6 56.8 44.2

ResNet-18 69.3 60.8 51.2

Generally speaking, binarization is an approach with low 
flexibility: it promises extremely large speedups, but often 
incurs substantial accuracy drop which may be unacceptable 
in practical applications. One way to cover this gap is to dial 
compression rate back and return from binarization to low-bit 
quantization. Towards this end, quantization with different 
compression rates is considered in [60]. Quantized version of 
AlexNet with 1-bit weights and 2-bit activations achieves 51% 
accuracy. Varying quantization levels for weights, activations 
and gradients are tried in [61]. Another way to boost accuracy 
of binarized CNN is by increasing number of channels. This 
approach was found beneficial in [62].

Yet another quantization based approach with more flexi-
bility is Lookup-based CNN (LCNN) introduced in [63]. Inter-
estingly, LCNN utilizes ideas of decomposition, quantization 
and sparsity at the same time. First of all, the convolutional 
kernel W is decomposed into the sum of vectors of the dictio-
nary matrix D, with coefficients C and indices I:

	 W(i, j, :, t) = 
ξ=1

s

∑C(ξ, i,  j)D(I (ξ, i,  j), :)� (10)

The two spatial dimensions and the last dimension corre-
sponding to the output channel index are not affected by the 
decomposition. Following this insight, one may take advantage 
of the fact that the general convolution can be expressed trough 
1£1 convolutions and shift operations:

	 V(x, y, t) = 
i =0

d

∑
j =0

d

∑
s=1

S

∑W(i, j, s, t)
h
shift

ij
U
i
(x, y, s),� (11)

where shift i, j indicates the spatial shift operation. Combining 
(10) and (11) yields the following way to perform generalized 
convolutions:

	 V(x, y, t) = 
i =0, j=0

d, d

∑ shift i, j
ξ=1

s

∑C(ξ, i,  j)S� (12)
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where the tensor S contains the result of 1£1 convolutions of 
the input U with the filters from D. Shifts, scaling and 1£1 
convolution, which is implemented through matrix multiplica-
tion, are all relatively inexpensive multiplication. The cost of 
this pipeline can be regulated by changing the dictionary size.

Direct training of the proposed lookup based convolution 
is a combinatorial optimization problem. To get around this, 
the lookup and scale stage are reformulated using a standard 
convolution with sparsity constraints. Reported speedups of 
LCNN reach 37.6£, as shown in the Table 3. However, this 
value refers to the number of floating point operations, which 
may not translate well to actual timings, especially for the ar-
chitecture that heavily relies on the lookups (which are known 
to be relatively slow on most architectures).

Table 3 
LCNN accuracy on ImageNet (ILSVRC) classification task.  

The performance of LCNN can be tuned by changing dictionary  
size and the number of components in the decomposition.  

Two variants of the algorithm are shown in this table. The speed-ups 
are measured in terms of FLOPs, and the actual “wall-clock’’  
speed-ups are likely to be much lower on most architectures

AlexNet ResNet-18

accuracy speedup accuracy speedup

CNN 56.6 1£ 69.3 1£

LCNN-accurate 55.4 3.2£ 62.2 5£

LCNN-fast 44.3 37.6£ 51.8 29.2£

To summarize, weight quantization or binarization is an ef-
fective technique for CNN compression. As for the speed-up, 
the published works paint a mixed picture. It is clear that 
quantization of CNN weights or activations allows for faster 
computations, but the actual speed up depends on a particular 
low-level implementation. Most of the time researchers do not 
publish such implementations, and when they do, it appears that 
existing implementations of floating point operations are very 
well optimized and the actual speed ups brought by quantization 
methods are not nearly as high as the operation-count based 
prediction suggests.

6.	 Pruning

Pruning away parts of the convolutional tensor is a natural way 
to reduce the complexity of the convolutional operation. This 
approach, applied for speeding up convolutions in neural net-
works, is a popular research topic with a very large number 
of publications. Starting from the optimal brain damage [64], 
this is perhaps the oldest approach among listed in this review.

Most of the pruning approaches follow the same pipeline. 
Starting from the pretrained baseline, the following two steps 
are applied, possibly iteratively. First, the importance of neurons 
is calculated according to some criterion. The least important 
neurons are pruned. Then, the network is fine-tuned leading to 
partial recovery of the accuracy drop. In the case of the iterative 

process, sparsity inducing regularizer may be applied during 
the fine-tuning stage.

Three basic choices have to be made to implement this 
pipeline. First, the desired sparsity structure must be chosen. 
Second, the importance (pruning) criterion should be selected. 
Finally, a sparsity-inducing regularizer should be chosen (if the 
approach uses one). Below, we review different design choices 
along these three axes.

6.1. Sparsity structure. We first note that pruning individual 
weights does not necessarily results in a speed-up. Assume the 
convolution is implemented through im2col and matrix mul-
tiplication, as described by [65]. In this implementation, most 
of computation time is spent inside the matrix multiplication

	 V ̂  = W ̂ U ̂ � (13)

where V ̂  is the output in the matrix-reshaped form, W ̂  is the 
convolutional weights tensor also reshaped as a matrix and 
U ̂  = im2col(U ) is the patch matrix obtaining by copying and 
rearranging of input tensor U by the im2col operation. The col-
umns of the patch matrix correspond to input tensor patches of 
size dx£dy£S.

As some elements of W will be replaced by zeros by the 
pruning algorithm, one can switch to some sparse representa-
tion for W. However, in the lack of the structure of the sparsity, 
sparse matrix multiplication carries significant overhead com-
pared to dense matrix multiplication. Usually, sparse version 
becomes faster only if the density of W is below 0.1, which is 
unreachable in practical setting without a significant drop in 
accuracy. The only way to overcome this problem is to arrange 
elements of W into groups and to use structured sparsity.

The consideration discussed above calls for the use of 
structured sparsity during pruning. The finest possible division 
into groups is considered in [66] and [67]. Their algorithms 
remove columns from weight matrix W ̂  and corresponding rows 
from patch matrix U ̂ . The removal is facilitated by the custom 
version of the im2col function which omits elements corre-
sponding to deleted parts of W ̂  while constructing the patch 
matrix. With this kind of structured sparsity, the original ma-
trix multiplication is replaced with multiplication of smaller 
matrices, which are still dense. This leads to the speed ups that 
are almost directly proportional to density.

A related but orthogonal approach to structured sparsity 
called perforation was proposed in [68]. The main idea is to 
remove columns from the patch matrix U ̂ . Since columns corre-
spond to image patches, this means the convolution will not be 
computed for some subsets of points in the image. The output 
value in these points can be interpolated or effectively omitted 
if the next layer performs the pooling operation.

Several additional ways to organize sparsity are proposed 
in [69] and [70]. Each of them is defined by the specific way 
of slicing the four dimensional weight tensor W:
●	Slicing in the form of W(i, j, s, :) is the same as in the group-

wise sparsity approach and produces non-square filters. It is 
the finest division that can be implemented efficiently, but 
it requires specialized implementation.
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●	Removing W(i, j, : , :) cuts all filters in the layer simulta-
neously. This slicing can be used to trim the filter size, for 
example from 5£5 to 3£3.

●	A whole filter corresponds to slice W(: , : , s, :). With such 
slice set to zero, the s-th channel in the output tensor will be 
filled with zeros. The complexity of the network then can 
be decreased by removing slices from weight tensors of the 
current and the next convolutional layers.

●	Removing W(:, :, :, t) cuts all the connection with t-th input 
channel, which means this channel can be removed.

●	Removing W(:, :, s, t) cuts all the ties between the s-th input 
and the t-th output channels. This slicing can be used to turn 
full convolution into group convolution [7].

●	Finally, in case of residual architecture, the convolutional 
tensor W can be set to zeros completely. This operation re-
moves the whole residual block of the network.

5.2. Pruning criteria. Here, we follow [71], which contains 
a similar review of criteria, and denote the pruning criterion by 
Θ. The simplest criterion is the absolute value of the weight:

	 Θ(w) = jw j.� (14)

It was succesfully used in [72] for pruning individual weights, 
and then in [18] for groups. This criterion is consistent in the 
sense that if the weight already equals zero it can be safely 
pruned, but small nonezero weight can be disproportionally 
important if it acts on a large activation or pushes some points 
across the decision surface.

Another choice is to focus not on the weights, but on the 
activations a:

	 Θ(a) = 
i
∑ai

2.� (15)

Since ReLU non-linearity naturally produces sparse activations, 
there is a realistic chance to find groups of neurons which can 
be safely pruned. Average percentage of zeros is a different 
metric proposed in [73] for this situation.

Mutual information measures the dependence of two 
random variables. In theory, mutual information between acti-
vation group and targets I(a, y) would be an excellent pruning 
criterion, but the direct computation is too complex, and avail-
able approximations are not performing well according to [71].

Taylor expansion of the objective function can be used to 
estimate its change after the perturbation caused by the pruning 
process. For example, the original Optimal Brain Damage paper 
[64] used the criterion based on the second-order Taylor de-
composition. Assuming that C is the learning objective, the 
approach makes an assumption that ∂C

∂wi
 = 0 (“extremal approx-

imation’’), which holds when the learning has fully converged. 
Assuming that the mixed derivatives could be neglected, the 
approach then uses the non-mixed second-order derivatives as 
the pruning criterion:

	 Θ(wi) = 
1
2
∂2C
∂wi

2 wi .� (16)

The necessity to compute second derivatives makes this method 
inconvenient in practice. The works [68, 71] avoid the extremal 
approximation and use the following criterion:

	 Θ(ai) = 
∂C
∂ai

ai .� (17)

This criterion is expressed through the values which can be 
computed by the standard back-propagation process. In gen-
eral, a comparison of pruning criteria listed above performed by 
[71] demonstrated a superiority of the Taylor-expansion based 
criteria.

The ThiNet approach [74] focuses on pruning filters and 
proposes a special criterion for this case. The key observation is 
that if the filter is pruned from the i-th layer, the corresponding 
output channel will be empty, and the same channel should be 
pruned in the kernel of the (i + 1)-th layer. The next, (i + 2)-th 
layer will then be the first subsequent layer, whose input tensor 
size is not affected by the change. Thus, a natural pruning cri-
terion relies on the reconstruction error of the input tensor to 
the (i + 2)-th layer. After the pruning, the channel scaling com-
puted via least squares can be used to reduce the error, although 
this step cannot replace the fine-tuning.

6.1. Regularizer. The pruning process can work without spar-
sity-inducing regularization, but the sparsity-inducing regular-
ization can help the pruning process while incurring a minimal 
computational overhead. The L1 reguarizer Ω1(w) = λjwj in-
duces unstructured sparsity, but for structured sparsity, L2, 1 
regularization can be used:

	 Ω2, 1(w) = λ
i
∑

j 2 gi
∑wi .� (18)

Here, gi are the weight groups, defined by one of the ways de-
scribed above. A smart approach for achieving filter-level spar-
sity was proposed in [75]. They notice that in modern CNNs, 
convolutions are almost always followed by batch normaliza-
tion. The filter level sparsity can then be achieved simply by the 
L1 regularization imposed on the scaling factors within batch 
normalization.

7.	 Teacher-student approaches

Teacher-student approaches follow the idea that a CNN model 
can be trained on the outputs of another model (a teacher), as 
opposed to regular training on labeled data. This approach al-
lows to transfer knowledge from one model to another and to 
incorporate unlabelled or synthetic data into the training process 
(as an unlabeled example can still be passed through the pre-
trained teacher model). Originally, such transfer was performed 
from a non-interpreTable model such as a neural network, to 
more interpreTable ones, such as decision trees [76], or a set 
of rules [77]. Another natural purpose for the teacher-student 
approach would be to transfer knowledge from large, slow and 
accurate models to small and fast ones.
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Towards this end, [78] proposes to compress an ensemble of 
models into a single neural network. First, an ensemble of clas-
sification models is trained on a certain annotated dataset. An 
ensemble is expected to be more resistant to overfitting com-
pared to a single model. This ensemble is used to label a large 
amount of synthetic data, generated by several simple random 
sampling procedures, and finally a single model is learned on 
the resulting synthetic dataset. Authors of [78] state that this 
approach can alleviate overfitting problem for neural networks 
without time and memory costs of building an ensemble. It 
should be noted, though, that this work was done on small data-
sets with fully-connected neural nets, and utilized data gener-
ation methods that are not directly applicable to images. With 
modern CNNs, the viability of this approach is limited by the 
following facts: datasets are already very large and the models 
are too large to build large ensembles.

A specific way of representing labels for synthetic data is 
a key detail of knowledge transfer algorithm. The description 
of same ensemble compression idea in [79] elaborates on the 
importance of preserving not just the labels, but whole vectors 
of posterior probability distribution over the output classes. 
Such vectors capture richer information about the actual con-
tent of data samples, making knowledge transfer process more 
efficient.

This idea of utilizing full probability distribution is further 
expanded in [80]. The proposed distillation procedure requires 
training a student model on the soft version of the outputs of 
the original (teacher) model. Let zi be the raw outputs of neural 
network, and pi be the output probabilities. These probabilities 
are then calculated according to the softmax formula:

	 pi = 
expzi/τ

∑ j expzj/τ
z ,� (19)

where τ is the temperature parameter. Let pS be the probabilities 
for the student model, and pT be the probabilities of original 
teacher model. The student model is trained to approximate both 
the correct labels y and the outputs of teacher model using the 
following loss function:

	 L = H(pS, p y) + λH(pS, qT) ,� (20)

where H is the the cross-entropy and p y is the one-hot distri-
bution corresponding to the ground truth. A high temperature τ 
effectively regularizes the student model, while the lower tem-
perature allows to transfer knowledge in finer detail. In practice, 
the temperature parameter τ has to be tuned manually. It can 
be shown that in the limit of high temperature this procedure is 
equivalent to training on raw outputs zi (the regime which was 
utilized in [81] for acoustic model compression). Results on 
MNIST, an automatic speech recognition task and large scale 
image classification task are presented, and significant rate 
of model compression is achieved for all tasks. Most impres-
sively, it is shown that knowledge transfer can be successful 
even if one of the classes is missing from the dataset used for 
the transfer, since the information about this class is still carried 
through soft labels of other classes.

The idea of distillation was extended to multiple layers of 
deep networks in the Fitnets approach [82], which introduces 
the notion of a hint, defined as the output uT of the teacher’s 
hidden layer, and used to guide the training of a hidden layer of 
the student CNN, called the guided layer. The guidance process 
is implemented via addition of the euclidean distance between 
the hint and the guided layer output uS to the loss function (20). 
When the layer sizes of the hint and the guided layer differ, 
the linear regressor r that maps the hints to the guided layer 
activations is added into the training leading to the following 
term (the guidance loss):

	 Lh = 
1
2
kuT ¡ r(uS)k

2
.� (21)

The fact that the student now not only has access to the outputs 
of the teacher, but also receives insights from the internal data 
representation, leads to faster convergence and better perfor-
mance of the method.

Teacher-student approach is a powerful tool which can be 
used to help training of quantized networks. It has been suc-
cessfully applied to training of quantized networks [83] and 
ternary networks [84]. Moreover, while most papers focus on 
the situation where both the teacher and the student are neural 
networks, the need for the faster student may lead to different 
kinds of models. Thus, [85] proposes to use soft decision tree 
as a student model. Decision tree in theory can provide very 
high speed-ups, but in this paper only results on MNIST and 
Connect4 datasets are presented, and the achieved MNIST ac-
curacy of 96.76% is below modern standards.

8.	 Discussion

As can be seen from this non-exhaustive survey, a wide variety 
of approaches has been tried to speed up CNNs. The modern 
CNN architectures are more efficient than ones available a few 
years ago, but still a lot of improvement is required to use them 
fully on low-end hardware and/or real-time constraints.

Some approaches, such as tensor decomposition based 
methods, seem to reach saturation, as virtually all decomposi-
tions have been tried. With other approaches, e.g. those based 
on binarization, there is a lot of work on algorithms and imple-
mentation that can be done in future. Here, transferring impres-
sive speed-ups in terms of number of operations into actual wall 
clock speed-ups remains a challenge.

Designing efficient architectures is probably the most 
practical approach, as it does not require complex multi-stage 
processes that interleave modifications and finetuning stages. 
While it seems that in the future these architectures will be con-
structed automatically, some basic modules or design ideas are 
likely to come from humans rather than from automated search. 
Still, while automatic architecture search is a young area of 
research, it has already made an impact and it is safe to assume 
that it will continue to grow in importance in the nearest future.

There is probably a reasonable space for the search of op-
timal combination of approaches from several groups, notably 
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from those that speed-up existing architectures (tensor decom-
position, quantization, pruning, teacher-student approaches). 
While these groups are not “orthogonal’’ as they exploit similar 
kind of redundancy in the original architecture, there may still 
be considerable benefits in combining approaches from dif-
ferent groups. Automated discovery of optimal mix-and-match 
combinations may be promising.

Overall, we believe that in general the area of research 
concerned with speeding up CNNs (as well as designing ef-
ficient architectures “from scratch’’) is far from saturation, 
and significant improvements can and will be made in the 
nearest future.
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