
799Bull. Pol. Ac.: Tech. 66(6) 2018

Abstract. Convolutional neural networks (CNN) have become ubiquitous in computer vision as well as several other domains, but the sheer size
of the modern CNNs means that for the majority of practical applications, a significant speed up and compression are often required. Speeding-up
CNNs therefore have become a very active area of research with multiple diverse research directions pursued by many groups in academia and
industry. In this short survey, we cover several research directions for speeding up CNNs that have become popular recently. Specifically, we
cover approaches based on tensor decompositions, weight quantization, weight pruning, and teacher-student approaches. We also review CNN
architectures designed for optimal speed and briefly consider automatic architecture search.

Key words: convolutional neural networks, resource-efficient computation, algorithm optimization..

Speeding-up convolutional neural networks: A survey

V. LEBEDEV1, 2* and V. LEMPITSKY1

1Skolkovo Insitute of Science and Technology, Moscow, Russia
2Yandex, Moscow, Russia

●	Methods relying on low-precision arithmetic and other
quantization techniques. This group includes methods that
aim to build fully binarized neural networks.

●	Approaches that prune the weigths of larger networks to
build their smaller and faster equivalents.

●	Teacher-student approaches, which train small networks
with the aid of bigger ones.

●	Efficient architectures design: methods that pursue heuris-
tic-driven search for the smallest possible CNN architecture.

●	Methods for automatic architecture search that aim to re-
place human-suggested heuristics with an algorithm that
designs neural networks automatically.
Below, each group is presented within a separate section. We

note that factorization, quantization, and pruning approaches
can all be grouped into a “gradual’’ speed-up super-group. Such
approaches start with a pretrained CNN and then interleave the
transformation of convolutional layers with fine-tuning opera-
tions. Each transformation step leads to a speed-up as well as
to the drop in accuracy. The subsequent fine-tuning operation
recovers part of the accuracy drop. On the other hand, methods
aimed at fast architecture design (including those that do this
in an automated way) aim to design an architecture that can be
trained from scratch. Finally, the teacher-student methods take
the middle path, as they usually design the final architecture in
a two-step process, which first trains a slow teacher network
and then trains a fast student network using the guidance from
the teacher.

Several aspects related to CNN acceleration fall outside of
the scope of this short survey. In particular, we do not discuss
the hardware-dependent implementation details, although they
can play a very important role in practice. This topic, among
others, is addressed in the concurrent reviews in [8] and [9].
Also outside of our survey is the group of methods that design
architectures that adapt to input samples, and in particular can
use early-stopping for simple examples. This promising group
of methods includes [10‒13]. Also, the focus of this survey on

1.	 Introduction

Convolutional neural networks (CNNs) have become the most
important computational architecture in the computer vision
domain, where they are used for image classification, segmen-
tation, detection, filtering and image generation tasks. Beyond
computer vision, methods based on CNNs thrive in natural lan-
guage processing [1], bioinformatics [2] and general-purpose
reinforcement learning [3]. Although the basic ideas behind
CNNs have emerged by the late 1980s [4, 5], successful appli-
cation of these ideas to natural images was delayed till the in-
troduction of powerful graphics processing units (GPUs) [6, 7],
which are almost exclusively used for CNN training these days.

While GPU remains the dominant architecture for training
CNNs within the academic community, the industrial applica-
tions of CNNs often require their use in lower-end computing
architectures with limited computational power, limited memory
and limited battery power. Such architectures include smart-
phones and wearable devices. For robotics and autonomous
driving, GPU-type units may be available, but time constraints
are often extremely stringent. For all these reasons, speeding
up and compressing CNN models has become a very active and
diverse area of research.

This short survey covers (a subset of) this rapidly evolving
field, focusing on approaches that aim at building CNNs that
are fast at inference time. In general, we group these approaches
into six groups:
●	The approaches using tensor decompositions of the weights

or activations.

*e-mail: vadim.lebedev@skoltech.ru

Manuscript submitted 2018-05-07, initially accepted for publication 2018-05-30,
published in December 2018.

BULLETIN OF THE POLISH ACADEMY OF SCIENCES
TECHNICAL SCIENCES, Vol. 66, No. 6, 2018
DOI: 10.24425/bpas.2018.125927

DEEP LEARNING: THEORY AND PRACTICE

800

V. Lebedev and V. Lempitsky

Bull. Pol. Ac.: Tech. 66(6) 2018

the general-purpose methods that are usually introduced in the
context of image classification. At the same time, we note that
a lot of work has been put into architectures that are specific to
other computer vision tasks, most notably object detection and
semantic segmentation. Such approaches also fall outside the
scope of this survey.

2.	 Tensor decompositions

The convolution layers correspond to the bulk of the inference
time in modern CNNs. These layers are based on the general-
ized convolution operation:

V(x, y, k) = 
i =0

dx¡1

∑
j=0

dy¡1

∑
c=0

C¡1

∑W(i, j, s, k)U(x + i, y + j, c),� (1)

where U denotes the input 3D tensor containing C 2D image
maps, V denotes the output 3D tensor containing N 2D image
maps, and W is a four-dimensional convolutional tensor (also
often referred to as convolutional kernel or weight tensor) con-
taining dx£dy£C£T elements. The out-of-bounds indices in
the summation of (1) are handled using so-called padding rou-
tines, which are out of the scope of this survey.

The generalized convolution is thus defined by its four-di-
mensional convolutional tensor W. The idea behind tensor de-
composition methods is to decompose this tensor into a product
of low-dimensional tensors, resulting in several fast convolu-
tions with fewer operations. Decomposition for speeding-up
convolutional filters was initially developed out of the scope of
CNNs. Here, [14] considered denoising tasks and approximated
convolutional filters by a shared set of separable filters, leading
to large speedups with minimal loss in denoising accuracy.

The approach based on separable filters was then extended
to convolutional layers of CNNs in [15]. The convolutional
tensor with square d£d filters is approximated and replaced
by a product of two convolutional tensors with 1£d and d£1
filters and K feature maps between them. The parameter K (the
decomposition rank) regulates the speed-accuracy trade-off:
small K lead to fast but inaccurate models, while large K allow
to reproduce original convolution closely but with high com-
putation time. Carefully tuning K for every approximated layer
is a crucial part of speeding up the neural network within this
algorithm. Their work describes two optimization approaches,
depending on whether the objective minimized by the decompo-
sition procedure measures the error of the filter reconstruction
or the error of the unit activation reconstruction. Of the two ap-
proaches, the latter is more practical as it can be made a part of
the CNN fine-tuning process, which optimizes the training loss
used to train CNN over all parameters of the network (although
end-to-end fine-tuning was not pursued in [15]).

Originally, the separability was enforced on pretrained net-
work only, but [15] also note that low rank filters can be learned
in the discriminative manner, i.e. from scratch and at the same
time with the rest of the network. This idea was later incor-
porated into Inception architectures, starting from the second
version [16].

Several weight tensor compression methods based on clus-
tering were proposed by [17]. The common idea is to cluster the
tensor slices along one or two of the tensor dimensions, to split
up the tensor according to cluster boundaries and then to ap-
proximate resulting slices by centroid values (“monochromatic
approximation”), via the SVD decomposition, or via the canon-
ical polyadic (CP) decomposition obtained by greedy approach
(outer product decomposition). The CP decomposition is one of
the generalization of the SVD decomposition to higher-order
tensors (a review [20] on such decompositions is highly recom-
mended). The splitting reduces decomposition ranks required
for good approximation, but this comes at the cost of increasing
the number of tensors that need to be approximated. Another
shortcoming of this approach is in a rather large number of
hyper-parameters, which makes it increasingly hard to tune for
optimal performance.

The work [18] presents the algorithm that also applies the
CP-decomposition to the convolutional weight tensor. Instead of
clustering, the focus of this work is on tuning the performance
of CP-decomposition, which is done in two phases. The first
phase starts with with better initial approximation obtained by
the non-linear least squares algorithm (instead of the greedy one
used in [17]). The second stage finetunes the whole network
after the decomposition is applied.

Finetuning the model after decomposition is non-trivial, es-
pecially if the decomposition is applied to several layers. Even
if the single layer is decomposed, numerical instabilities inside
the four convolutional layers introduced by CP-decomposition
often lead to the explosion of gradients during fine-tuning. The
key problem is that CNN block designed to follow the structure
of tensor decomposition does not have non-linearities between
the convolutions. When multiple layers are decomposed, the
fine-tuning can be done either once after all the decompositions
are applied, or iteratively, after every single decomposition.
The iterative approach was explored by [19], which also argues
for tensor power method [21] to be the most appropriate for
obtaining initial decomposition. Training from scratch with the

Table 1
Per-pixel operation counts for different approximations

of convolutional layers, with the focus on CP-decomposition
approaches. The number of operations depends on the size d
of the square spatial kernel, the number of input channels C

and the output channels N, as well as the hyper-parameters specific
to approximation methods: the decomposition rank K,

and the number of clusters C1 and N1 for input and output
channels for the clustering methods from [17]

method operations

full convolution CNd2

two-component [37] Kd(C + N)

monochromatic approximation [16] CC1 + Nd2

biclustering + svd [16] CC1K1 + C1N1K1K2d2 + NN1K2

biclustering + outer product [16] K(CC1 + C1N1d2 + N1N)

cp-decomposition [44] K(C + 2d + N)

cp-decomposition [4] K(C + 2d + N)

801

Speeding-up convolutional neural networks: A survey

Bull. Pol. Ac.: Tech. 66(6) 2018

architecture closely related to one obtained with CP-decompo-
sition was implemented in [22].

The work [23] suggests an alternative way to speed up
neural networks by applying the low-rank assumption to activa-
tions rather than to the weight tensor. This assumption splits one
convolutional layer in two, while the weights of each of the two
new layers are obtained by solving optimization problems. The
focus on activations instead of the weights has two advantages:
first, the nonlinearities can be taken into account in the optimi-
zation problem formulation, and secondly, in case of multiple
layers approximations, the activations of the original network
can be used as a target. This idea, called the asymmetric recon-
struction limits the accumulation of error from layer to layer.
Finally, as in the previous approaches, the whole network can
be fine-tuned.

All the methods listed above replace single convolutional
layer by a block of smaller convolutions. The comparison of
these blocks is presented in Fig. 1.

Other higher-order tensor decompositions have been used
for CNN speed-up. Tucker decomposition was applied for
speeding up and compression of CNNs in [24] and [25]. Tensor
Train (TT) decomposition was applied to fully connected layers
of convolutional neural networks by [26]. The main focus of
that work is compression, not the speed-up, but the achieved
compression rates of up to 200 000 times are impressive.

3.	 Fast architecture design

The research in CNNs has lead to the emergence of several
popular families of the architectures. Historically, the search
for architectures was driven by the desire to push the clas-
sification accuracy (most importantly in the annual ILSVRC
[27] challenge), while the inference speed was of a secondary
concern. Figure 2 shows runtimes and the ILSVRC accuracies

of the resulting architectures. Many of the approaches surveyed
below take the architectures reflected in this chart as a starting
point for the design process.

The tensor decomposition approaches are closely related to
the task of designing of optimal architectures, which is the topic
of this subsection. The methods, described in this section, how-
ever, train the designed architectures from scratch. The design
choices are often directly influenced by preceeding works on
tensor decomposition, such as in the case of [22].

One of the first prominent attempts at building an architec-
ture, which emphasizes efficiency is the Network-In-Network
(NIN) architecture proposed in [29]. The basic idea behind NIN
is to replace non-linearities within the convolutional network
with a more complex function. Multilayer (two-layer) percep-
tron, which is known to be a universal aproximator, is chosen as
a replacement. By sharing the weights of the perceptrons across
spatial dimensions one ends up with two 1£1 convolutional
layers interleaved with standard non-linearities.

The SqueezeNet [30] is a compact architecture that achieves
AlexNet-level performance with 50£ less parameters. The ide-
ology behind SqueezeNet is based on three principles:
1.	Utilize 1£1 filters instead of 3£3 filters whenever possi-

ble. Smaller filters have fewer parameters and need fewer
operations.

2.	When 3£3 filtering has to be applied, minimize the number
of input channels.

3.	Downsample late in the network to give most layers chance
to work with large high-resolution maps.

Fig. 1. CNN blocks used by tensor decomposition methods to replicate
a single convolutional layer. Each layer here is labeled with its kernel
shape and the number of filters. ‘dw’ stands for depthwise convolution,
in which case the number of the channels in the input is the same as

on the output

Speeding-up Convolutional Neural Networks: A Survey

d ×d,N

(a) full

d ×1,K

1×d,N

(b) two components
[37]

d ×d,K

1×1 N

(c) response
approximation [82]

1×1,K

1×d dw

d ×1 dw

1×1,N

(d) CPD [44]

1×1,K

d ×d dw

1×1,N

(e) CPD [4]

Fig. 1: CNN blocks used by tensor decomposition methods
to replicate a single convolutional layer. Each layer here is
labeled with its kernel shape and the number of filters. ’dw’
stands for depthwise convolution, in which case the number of
the channels in the input is the same as on the output.

ric reconstruction limits the accumulation of error from layer
to layer. Finally, as in the previous approaches, the whole net-
work can be fine-tuned.

All the methods listed above replace single convolutional
layer by a block of smaller convolutions. The comparison of
these blocks is presented in Figure 1.

Other higher-order tensor decompositions have been used
for CNN speed-up. Tucker decomposition was applied for
speeding up and compression of CNNs in [40] and [75]. Ten-
sor Train (TT) decomposition was applied to fully connected
layers of convolutional neural networks by [57]. The main
focus of that work is compression, not the speed-up, but the
achieved compression rates of up to 200000 times are impres-
sive.

3. Fast Architecture Design
The research in CNNs has lead to the emergence of several
popular families of the architectures. Historically, the search
for architectures was driven by the desire to push the classifi-
cation accuracy (most importantly in the annual ILSVRC [65]
challenge), while the inference speed was of a secondary con-
cern. Figure 2 shows runtimes and the ILSVRC accuracies of
the resulting architectures. Many of the approaches surveyed
below take the architectures reflected in this chart as a starting
point for the design process.

The tensor decomposition approaches are closely related to
the task of designing of optimal architectures, which is the
topic of this subsection. The methods, described in this sec-
tion, however, train the designed architectures from scratch.
The design choices are often directly influenced by preceeding
works on tensor decomposition, such as in the case of [39].

One of the first prominent attempts at building an architec-
ture, which emphasizes efficiency is the Network-In-Network
(NIN) architecture proposed in [49]. The basic idea behind
NIN is to replace non-linearities within the convolutional net-
work with a more complex function. Multilayer (two-layer)

Fig. 2: The trade-off between the inference time on Tesla
K40m GPU and the ILSVRC [65] Top-1 classification error
for the popular CNN architecutres (PyTorch [58] implemen-
tations). Color lines connect groups of similar architectures.
Many of the speed-up approaches take some of the charted ar-
chitectures as starting points.

d ×d,N

1×1,N

1×1,N

(a) NiN

1×1, N
4

1×1,3×3, N
2

concat

(b) SqueezeNet

3×3, dw

1×1,N

(c) MobileNet

1×1, N
4

shuffle

3×3 dw

1×1,N

(d) ShuffleNet

1×1, N
2

1×3, dw

2×1 pooling

3×1, dw

2×1,N

(e) EffNet

1×1,N

shift

1×1,N

(f) ShiftNet

Fig. 3: Sequences of convolutional layers used for fast and
compact architectures described in section 3. The notation fol-
lows Figure 1. In case of ShuffleNet, 1× 1 convolutions are
also group convolutions.

Bull. Pol. Ac.: Tech. XX(Y) 2016 3

Fig. 2. The trade-off between the inference time on Tesla K40m GPU
and the ILSVRC [27] Top-1 classification error for the popular CNN
architecutres (PyTorch [28] implementations). Color lines connect
groups of similar architectures. Many of the speed-up approaches take

some of the charted architectures as starting points

tim
e

[m
s]

top-1 error [%]

802

V. Lebedev and V. Lempitsky

Bull. Pol. Ac.: Tech. 66(6) 2018

The first and the second principles ensure that the model
is both small and fast, while the third design principle boosts
the accuracy. All three principles combined yield a very small
model with a slightly smaller inference time than AlexNet
(which serves as the base model).

The MobileNet architecture [31] is prominent among CNN
architectures designed for optimal size and inference time. The
main idea is to separate filtering and feature construction func-
tions of a convolutional layer into two layers: the depthwise
convolution and 1£1 convolution (i.e. a pointwise convolu-
tion). This combination is called a depthwise separable convo-
lution and was first popularized in [32].

The MobileNet also employs simple but effective tricks
to control architecture performance: the network width (the
number of channels) is controlled by the width multipler α,
and the input resolution is controlled by the resolution multi-
plier ρ. In general, changing the network width and the input
resolution is a simple way to control trade-offs between the
speed and the number of parameters on one hand and the accu-
racy on the other. Such knob, however, had not been thoroughly
investigated in research papers prior to [31].

In comparison with SqueezeNet, MobileNet is capable of
achieving higher accuracy with approximately same model size
and one tenth of mult-add operations. This advantage in opera-
tion number, however, is hard to translate into actual inference
speed-up on GPU because depth-wise convolution is not as
efficiently implemented on GPU as a regular convolution.

Still, separating the depth-wise and intra-channel convolu-
tions within an architecture has become a popular idea. In modern
architectures, this idea leads to 1£1 convolution being domi-
nant in the total computation cost of the model. The only way to
squeeze 1£1 convolutions even further is to turn them into group
convolutions [7], which only mix channels within certain groups
of channels. Such grouping, however, would mean that the whole
network is divided into thin columns with no connection between
them. ShuffleNets [33] address this problem by using the channel
shuffle operation. Shuffling of channels between the convolutions
allows to enjoy the low costs of group convolutions without split-
ting the network into disjoint parts. The ShuffleNet architecture
uses even smaller number of operations for the same accuracy
level compared to MobileNet. Whether this advantage translates
to actual timings depends on the efficiency of the available im-
plementations of depthwise and group convolutions.

Yet another variation of MobileNet building block is the
EffNet architecture [34], motivated by a careful study. EffNet
utilizes depthwise separable convolutions, and pushes it even
further by splitting 3£3 convolution into pair of convolutions
with 1£3 and 3£1 kernels. The downsampling along one di-
mension is perfomed with strided convolution, and along other
– via 2£1 pooling.

The final logical step in the movement towards smaller fil-
ters in CNNs would be a complete rejection of convolutions
with filers larger than 1£1. The problem with this kind of CNN
is that adjacent pixels would not be connected, and the receptive
fields will always be 1£1. ShiftNets [35] solve this problem
using channel shifts, which allows adjacent pixels in different
channels to connect through 1£1 convolutions. Channel shift

Fig. 3. Sequences of convolutional layers used for fast and compact
architectures described in Section 3. The notation follows Fig. 1. In

case of ShuffleNet, 1£1 convolutions are also group convolutions

Speeding-up Convolutional Neural Networks: A Survey

d ×d,N

(a) full

d ×1,K

1×d,N

(b) two components
[37]

d ×d,K

1×1 N

(c) response
approximation [82]

1×1,K

1×d dw

d ×1 dw

1×1,N

(d) CPD [44]

1×1,K

d ×d dw

1×1,N

(e) CPD [4]

Fig. 1: CNN blocks used by tensor decomposition methods
to replicate a single convolutional layer. Each layer here is
labeled with its kernel shape and the number of filters. ’dw’
stands for depthwise convolution, in which case the number of
the channels in the input is the same as on the output.

ric reconstruction limits the accumulation of error from layer
to layer. Finally, as in the previous approaches, the whole net-
work can be fine-tuned.

All the methods listed above replace single convolutional
layer by a block of smaller convolutions. The comparison of
these blocks is presented in Figure 1.

Other higher-order tensor decompositions have been used
for CNN speed-up. Tucker decomposition was applied for
speeding up and compression of CNNs in [40] and [75]. Ten-
sor Train (TT) decomposition was applied to fully connected
layers of convolutional neural networks by [57]. The main
focus of that work is compression, not the speed-up, but the
achieved compression rates of up to 200000 times are impres-
sive.

3. Fast Architecture Design
The research in CNNs has lead to the emergence of several
popular families of the architectures. Historically, the search
for architectures was driven by the desire to push the classifi-
cation accuracy (most importantly in the annual ILSVRC [65]
challenge), while the inference speed was of a secondary con-
cern. Figure 2 shows runtimes and the ILSVRC accuracies of
the resulting architectures. Many of the approaches surveyed
below take the architectures reflected in this chart as a starting
point for the design process.

The tensor decomposition approaches are closely related to
the task of designing of optimal architectures, which is the
topic of this subsection. The methods, described in this sec-
tion, however, train the designed architectures from scratch.
The design choices are often directly influenced by preceeding
works on tensor decomposition, such as in the case of [39].

One of the first prominent attempts at building an architec-
ture, which emphasizes efficiency is the Network-In-Network
(NIN) architecture proposed in [49]. The basic idea behind
NIN is to replace non-linearities within the convolutional net-
work with a more complex function. Multilayer (two-layer)

Fig. 2: The trade-off between the inference time on Tesla
K40m GPU and the ILSVRC [65] Top-1 classification error
for the popular CNN architecutres (PyTorch [58] implemen-
tations). Color lines connect groups of similar architectures.
Many of the speed-up approaches take some of the charted ar-
chitectures as starting points.

d ×d,N

1×1,N

1×1,N

(a) NiN

1×1, N
4

1×1,3×3, N
2

concat

(b) SqueezeNet

3×3, dw

1×1,N

(c) MobileNet

1×1, N
4

shuffle

3×3 dw

1×1,N

(d) ShuffleNet

1×1, N
2

1×3, dw

2×1 pooling

3×1, dw

2×1,N

(e) EffNet

1×1,N

shift

1×1,N

(f) ShiftNet

Fig. 3: Sequences of convolutional layers used for fast and
compact architectures described in section 3. The notation fol-
lows Figure 1. In case of ShuffleNet, 1× 1 convolutions are
also group convolutions.

Bull. Pol. Ac.: Tech. XX(Y) 2016 3

is a cheap operation, but ShiftNet often requires to increase
the number of channels in the network to achieve comparable
performance. The proposed building blocks of ShiftNet and
other architectures listed above are shown in Fig. 3.

The principles of efficient lightweight architecture design
are also very useful for the design of large “heavy-weight’’
architectures. In practical setting, the memory on the GPU
and the time for the experiments are always limited, so the
depth of the CNN architecture is limited as well. Since the
CNN performance usually increases with depth, it is desirable
to stretch this limit by designing architectures efficiently. In this
arena, the Inception architecture [36] is built on the premise of
approximating sparsity with existing building blocks. It was
gradually refined [16] to minimize the computational cost and
to maximize the performance. Towards this end, convolution
decomposition was introduced in the fourth version [37]. Fi-
nally, depthwise convolutions were introduced to the Inception
architecture in [38]. The ResNet architecture [39] (as well as its
futher development ResNeXt [32]) also makes use of similar
efficient architecture principles. The training of extremelly deep
CNNs (150 layers for ImageNet-sized inputs) simply cannot be
done without careful management of computation resources.

Finally, we note once again, that efficient architecture de-
sign is not limited to classification tasks, as segmentation and
detection require specialized architectures that nevertheless may
share the same principles. This subject is outside of scope of
this review, but good benchmarks that track both speed and
accuracy are provided for the Cityscapes dataset [40] in the case
of segmentation and the KITTI benchmark [41] in the case of
2D and 3D detection.

803

Speeding-up convolutional neural networks: A survey

Bull. Pol. Ac.: Tech. 66(6) 2018

4.	 Automatic architecture search

Usually, the neural network architectures are hand-constructed
by human experts, who are guided by general principles of ef-
ficient architecture design. A lot of choices in the architecture
construction are left to intuition and guessing. The situation
asks for automatic algorithms for architecture search that are
reviewed in this section. This section thus naturally comple-
ments and expands Section 3. As automated architecture search
is a rapidly developing field at the spearhead of modern deep
learning research, this section only covers the most influential
works in this sub-field.

Automatic architecture search is essentially a hyperpa-
rameter optimization, which is a general problem that can be
tackled by several approaches, such as grid search or Bayesian
optimization [42]. The case of CNN brings several complica-
tions. First, the function evaluation becomes very expensive.
Second, the number of hyperparameters is very large and may
vary across the optimization space. Thus, hyperparameter op-
timization for CNN requires specialized approaches.

Perhaps the first successful attempt at automatic architec-
ture search is a neural architecture search (NAS) algorithm [43]
which utilizes reinforcement learning. The CNN architecture is
predicted by a recurrent neural network that sequentially pro-
duces CNN hyperparameters: filer sizes, strides, numbers of
filters. Possible branchings and skip connections are modelled
using an attention mechanism that decides which connection
between the current layers and the previous layers are to be
introduced in the next step.

NAS requires extremely large amount of computational
resources even when performed on small datasets. Thus in
the experiments with CIFAR-10 dataset, the authors report
testing 12 800 architectures during the search process and using
800 GPUs simultaneously. This makes architecture search for
larger datasets such as ImageNet impossible.

Larger datasets can be approached in two ways: by de-
signing more efficient search algorithms, or by ensuring that the
results obtained on small dataset are transferrable to the larger
datasets. Both approaches are implemented in [44]. First, the
modular structure is imposed on a target CNN. This way, only
the architecture of a block has to be predicted instead of the
whole network, making the search space much smaller. Second,
CIFAR-10 and ImageNet versions of architectures can be made
of the same blocks with different number of poolings (or strided
convolutions) between them. Architectures built this way beat
human-constructed architectures on ImageNet.

The neural architecture search can be further accelerated by
sharing parameters between different architectures [45, 46] or
by predicting the final performance of architecture based on the
first epochs in the beginning of the training process [47]. With
these enhancement, hundreds GPUs are no longer necessary
for automatic architecture search. Thus, [46] reports closely
reproducing the original neural archtecture search results using
five GPUs instead of 800.

Still, all the variations of approaches which divide architec-
ture construction and evaluation require evaluating thousands of
CNNs. The resource consumption can be drastically reduced if

the architecture search and CNN training are done at the same
time. MorhNets [48] simultaneously learns CNN weights and
changes its architecture by iterating between the two stages. In
the first stage, the network is thinned by sparsity induced regu-
larizes. In the second stage, new channels are added uniformly
to all layers. This algorithm allows CNN to adapt thickness of
its layers to the particular task. The running time is comparable
with regular CNN training, so it can be directly applied on Im-
ageNet. The downside of this approach is that the search space
is limited to changing layer widths.

5.	 Quantization

A switch to low-precision arithmetic or quantization is
a straightforward way to speed up computations, as well as to
compress and to minimize memory requirement for a neural
network. This general idea produces a spectrum of approaches,
which starts from using slightly lower precision and ends with
the complete switch to binary weights and activation. While the
binarization offers a compelling perspective of extremely low
time and memory cost, it is not possible yet to fully transition
to binary CNNs without substantial accuracy drops.

The problems faced by quantization and binarization are
apparent. First, in the case of quantized weights, it is hard to
implement gradient descent, since the idea of quantization con-
tradicts the process of accumulating small changes. Second (and
related), if the activations are quantized, the backpropagation
process becomes complicated. This section surveys some of the
ways to deal with these problems.

The list of approaches for improving the speed of neural
networks on CPUs [49] includes 8-bit quantization. Several
facts which facilitate quantization are listed. Firstly, because
of the sigmoid activation function, activations stay in the [0, 1]
interval, so no scaling is needed. Secondly, because of the
linear nature of the operation together with range compression
by sigmoid, quantization errors tend to propagate sublinearly.
That said, modern CNNs rarely use sigmoid activations, so
this argument may no longer be valid, although sublinearity
of error propagation still holds with ReLU activation. More-
over, [50] notes that neural networks are not only robust to-
wards noise, but the training performance can be enhanced
by noise injection. Thus, noise-like distortions injected by
the quantization process may not be detrimental if this pro-
cess is properly tuned. Therefore, if the hardware allows it,
low precision arithmetic is a viable technique for speeding up
neural networks.

The problem of the compression of fully-connected weights
matrix W was addressed in [51]. The compression often goes
hand-in-hand with the improvement of the speed, and some tech-
niques are applicable both to convolutional and fully connected
layers, so this work turns out to be very influential for speeding
up CNNs. The following approaches are compared in [51]:
●	SVD-decomposition that approximates weights matrix

W 2 Rn×c as a product smaller matrices with truncated SVD:

	 W ̂  = USVT = U 0VT� (2)

804

V. Lebedev and V. Lempitsky

Bull. Pol. Ac.: Tech. 66(6) 2018

where U, U 0 2 Rn×k and V 2 Rc×k. The input multiplication
by W is then replaced by two multiplications with U 0 and
VT. The compression and speed-up rate are controlled by the
number of components in the decomposition k.

●	Binarization, which is the simplest and the most radical way
to compress parameters by applying thresholding:

	
	 1� Wij > 0

	–1� Wij < 0
� (3)

Binarization compresses data from full 32 bit precision to 1
bit, with the fixed compression rate of 32£.

●	Scalar quantization: here all entries of matrix W are clus-
tered by the k-means algorithm, and the centroid values ct
are used for the approximation

	 W ̂ ij = ct   where   t = argmin
z

jWij ¡ czj� (4)

●	Product quantization [52] divides matrix W into several sub-
matrices [W1, W2 … Ws], then each submatrix is clustered
by kmeans and compressed independently.
As opposed to the previous results for the convolutional

layers, matrix decomposition performed poorly. Simple scalar
quantization and product quantization achieved much better
results, and, surprisingly, the simplest binarization techinque
also worked reasonably well. Simplicity and high compression
rate make binarization a very promising approach, but its ca-
pabilities are limited unless one can properly train binarized
networks and recoup the accuracy drop incurred by binarization.
A multitude of attempts at reconciling binarization with back-
propagation and gradient descent were done in the recent years.

The initial development of algorithms for neural network
quantization was mostly done in the area of speech recognition,
which is outside of the scope of this work. For images, [53]
presents an algorithm for training quantized CNNs. The basic
idea is to keep two versions of the weights: quantized W ̂ and
full precision W. The algorithms repeats the following steps:
1.	Obtain quantized weights with some sort of quantization

procedure q applied to high-precision weights:

	 W ̂  = q(W)� (5)

2.	Perform a feed-forward pass with quantized weights and
compute the loss function. The activations are kept in full
precision.

3.	Backpropagate the error gradients with quantized weights
and full precision activations. The gradients are then used
to update the full-precision weights.
This sequence allows to circumvent the problems with

backpropagation and gradient descent for quantized weights.
Different quantization levels are used for different layers and
the main benefit here is the model compression.

The presented results on MNIST and CIFAR10 datasets
exceed uncompressed CNNs in some cases. This effect is at-
tributed to the regularizing effect of quantization which reduces
the CNN capacity (similar effect was reported in [50]). At the
same time, there are other well-studied ways to reduce capacity,

such as regularization, dropout, and simply reducing the number
of filters inside CNN. The latter method also leads to speed-up
and compression. Overall, the main disadvantage of [53], shared
with many others in the field, is that the experiments are lim-
ited to small networks with 32£32 inputs. Such CNNs have
relatively low capacity and are quick to experiment with. And
yet, the main challenge of speeding up CNNs lies in the area
of big CNNs (such as those trained for ImageNet classification
and other similar tasks), to which good results on small images
do not always transfer.

The BinaryConnect [54] approach pushes the principle of
splitting high-precision and quantized weights further to achieve
full binarization, i.e. training networks with binary weights in
the convolutionals tensors. The binarization procedure (3) is
modified in a probabilistic fashion:

	
	 1	 with probability	 p = σ (w)

	–1	 with probability	 1 ¡ p
� (6)

where σ is the hard version of sigmoid function

	 σ (x) = clip
³

x + 1
2

, 0, 1
´

� (7)

which is chosen because it is much less computationally expen-
sive compared to the regular sigmoid function. The high-preci-
sion weight are clipped into [–1; +1] interval during training.
A probabilistic approach is in general desirable from theoretical
point of view. On the other hand, the cost of random number
generation accumulates if used on every step.

At train time, BinaryConnect repeats the following steps:
1.	For every high-precision weight w, pick +1 or –1 accord-

ing to (6).
2.	Do feed-forward pass with binarized weights w ̂ .
3.	Do backpropagation with binarized weights w ̂ and update

high-precision weights w.
At test time, naturally, only the binarized weight are used

since only the forward propagation is needed. The paper [54]
proposes generating binarized weights multiple times as test
time to obtain the ensemble of models, but ensembling con-
tradicts with the speed-up task and preserving full-precision
weights contradicts compression. Forward propagation with bi-
nary weights can be much faster since it replaces floating-point
multiplications by multiplications with ±1, which is just a sign
change. Competitive results are presented for CIFAR10, SVHN
and permutation-invariant MNIST. Again, as in the case with
[53], classification accuracy sometimes exceeds the full-preci-
sion baseline for small datasets.

Two extensions of this approach are presented in the fol-
low-up paper [55]. First of all, ternary weight are introduced.
Ternary weights are obtained by a stochastic procedure similar
to (6). Every weight w is assumed to lie in the interval [–1; 1].
This interval is divided into two sub-intervals [–1; 0] and [0; 1]
and the probability of picking 1, 0 or –1 is determined by the
procedure (6) applied to the respective interval. The second
important innovation is the elimination of multiplications in

805

Speeding-up convolutional neural networks: A survey

Bull. Pol. Ac.: Tech. 66(6) 2018

backward pass. The layer activations are quantized into 3 or 4
bits and multiplication is replaced by bit-shifts.

The comparison of learning curves shows that binary and
ternary networks behave similarly both with and without back-
ward pass quantization: initially, convergence is slower, but
the final result can be better. Again, this is attributed to the
regularizing effect of quantization.

Subsequent paper on binarized neural networks [56] pro-
vides the details on the practical implementation and timings.
Shift-based versions for batch normalization [57] and ADAM
optimization [58] algorithm are presented. A custom CUDA
kernel is written for binary matrix multiplication, and its speed
is compared to cuBlas on 8192£8192 matrix multiplication.
The binary kernel is reported to be 3.4£ faster. The preliminary
results on the ILSVRC challenge with AlexNet architecture is
36.1% top-1 accuracy, which corresponds to » 20% accuracy
drop compared to the full-precision architecture.

Another interesting and more successful attempt at bina-
rizing large CNNs is the XNOR-Net [59]. Here, the weight
binarization setting is considered as an approximation problem
of the following kind:

	 I ¤W  ' α(I ¤B),� (8)

where ¤ denotes convolution, I is the input tensor, α is a scaling
factor, W is high-precision weights tensor and B is its binary
version. It can be shown that the optimal values of elements
of W are indeed obtained by the simple binarization procedure
(3), and the optimal value for the scaling factor is an average
of the absolute values of W. Training the binary weights net-
work is done by repeating the same tree steps from [53, 54],
i.e. obtaining binarized weights from high precision weights,
doing forward and backward passes with binarized weights, and
applying updates to the full precision weights.

The next step is to binarize both weights and activation,
resulting in the so-called XNOR-networks. The approximation
problem of the following form is considered:

	 I ¤W  ' (sign(I)¤ sign(W)) ¯ Kα ,� (9)

where ¯ is an element-wise multiplication and K is a tensor
with scaling factors for every patch in I. This approximation
leads to £58 speed-up in terms of the number of the floating
point operations, while the actual timings will depend on the
cost of binary operations, which depends on the hardware and
implementation details.

XNOR-Nets training also requires the following rearrange-
ment of the traditional CNN block sequence, in order to mini-
mize the information loss in binarization:
1.	Batch normalizations are put in the beginning of the block.
2.	Following batch normaliztion, the binary activation layer

computes K and sign(I).
3.	Binary convolution is applied to the result of the binary

activation layer.
4.	Optionally, pooling is applied.

The blocks of layers composed in the same way are then applied
several times.

Overall, the accuracy of binarized XNOR-networks is
shown in the Table 2. Interestingly, the accuracy for full-preci-
sion AlexNet and its version with binarized weights is the same,
although this effect does not hold for larger architectures. Thus
for ResNet-18, XNOR-Net loses more then 10% of accuracy
compared to the full-precision network.

Table 2
ImageNet (ILSVRC) classification accuracy of binarized CNNs

from [59]. The accuracy drop is large compared to tensor
decomposition methods, but the speed-up and compression rates

assosiated with binarization are much higher

full precision binary weights XNOR-Nets

AlexNet 56.6 56.8 44.2

ResNet-18 69.3 60.8 51.2

Generally speaking, binarization is an approach with low
flexibility: it promises extremely large speedups, but often
incurs substantial accuracy drop which may be unacceptable
in practical applications. One way to cover this gap is to dial
compression rate back and return from binarization to low-bit
quantization. Towards this end, quantization with different
compression rates is considered in [60]. Quantized version of
AlexNet with 1-bit weights and 2-bit activations achieves 51%
accuracy. Varying quantization levels for weights, activations
and gradients are tried in [61]. Another way to boost accuracy
of binarized CNN is by increasing number of channels. This
approach was found beneficial in [62].

Yet another quantization based approach with more flexi-
bility is Lookup-based CNN (LCNN) introduced in [63]. Inter-
estingly, LCNN utilizes ideas of decomposition, quantization
and sparsity at the same time. First of all, the convolutional
kernel W is decomposed into the sum of vectors of the dictio-
nary matrix D, with coefficients C and indices I:

	 W(i, j, :, t) = 
ξ=1

s

∑C(ξ, i,  j)D(I (ξ, i,  j), :)� (10)

The two spatial dimensions and the last dimension corre-
sponding to the output channel index are not affected by the
decomposition. Following this insight, one may take advantage
of the fact that the general convolution can be expressed trough
1£1 convolutions and shift operations:

	 V(x, y, t) = 
i =0

d

∑
j =0

d

∑
s=1

S

∑W(i, j, s, t)
h
shift

ij
U
i
(x, y, s),� (11)

where shift i, j indicates the spatial shift operation. Combining
(10) and (11) yields the following way to perform generalized
convolutions:

	 V(x, y, t) = 
i =0, j=0

d, d

∑ shift i, j
ξ=1

s

∑C(ξ, i,  j)S� (12)

806

V. Lebedev and V. Lempitsky

Bull. Pol. Ac.: Tech. 66(6) 2018

where the tensor S contains the result of 1£1 convolutions of
the input U with the filters from D. Shifts, scaling and 1£1
convolution, which is implemented through matrix multiplica-
tion, are all relatively inexpensive multiplication. The cost of
this pipeline can be regulated by changing the dictionary size.

Direct training of the proposed lookup based convolution
is a combinatorial optimization problem. To get around this,
the lookup and scale stage are reformulated using a standard
convolution with sparsity constraints. Reported speedups of
LCNN reach 37.6£, as shown in the Table 3. However, this
value refers to the number of floating point operations, which
may not translate well to actual timings, especially for the ar-
chitecture that heavily relies on the lookups (which are known
to be relatively slow on most architectures).

Table 3
LCNN accuracy on ImageNet (ILSVRC) classification task.

The performance of LCNN can be tuned by changing dictionary
size and the number of components in the decomposition.

Two variants of the algorithm are shown in this table. The speed-ups
are measured in terms of FLOPs, and the actual “wall-clock’’
speed-ups are likely to be much lower on most architectures

AlexNet ResNet-18

accuracy speedup accuracy speedup

CNN 56.6 1£ 69.3 1£

LCNN-accurate 55.4 3.2£ 62.2 5£

LCNN-fast 44.3 37.6£ 51.8 29.2£

To summarize, weight quantization or binarization is an ef-
fective technique for CNN compression. As for the speed-up,
the published works paint a mixed picture. It is clear that
quantization of CNN weights or activations allows for faster
computations, but the actual speed up depends on a particular
low-level implementation. Most of the time researchers do not
publish such implementations, and when they do, it appears that
existing implementations of floating point operations are very
well optimized and the actual speed ups brought by quantization
methods are not nearly as high as the operation-count based
prediction suggests.

6.	 Pruning

Pruning away parts of the convolutional tensor is a natural way
to reduce the complexity of the convolutional operation. This
approach, applied for speeding up convolutions in neural net-
works, is a popular research topic with a very large number
of publications. Starting from the optimal brain damage [64],
this is perhaps the oldest approach among listed in this review.

Most of the pruning approaches follow the same pipeline.
Starting from the pretrained baseline, the following two steps
are applied, possibly iteratively. First, the importance of neurons
is calculated according to some criterion. The least important
neurons are pruned. Then, the network is fine-tuned leading to
partial recovery of the accuracy drop. In the case of the iterative

process, sparsity inducing regularizer may be applied during
the fine-tuning stage.

Three basic choices have to be made to implement this
pipeline. First, the desired sparsity structure must be chosen.
Second, the importance (pruning) criterion should be selected.
Finally, a sparsity-inducing regularizer should be chosen (if the
approach uses one). Below, we review different design choices
along these three axes.

6.1. Sparsity structure. We first note that pruning individual
weights does not necessarily results in a speed-up. Assume the
convolution is implemented through im2col and matrix mul-
tiplication, as described by [65]. In this implementation, most
of computation time is spent inside the matrix multiplication

	 V ̂  = W ̂ U ̂ � (13)

where V ̂ is the output in the matrix-reshaped form, W ̂ is the
convolutional weights tensor also reshaped as a matrix and
U ̂  = im2col(U) is the patch matrix obtaining by copying and
rearranging of input tensor U by the im2col operation. The col-
umns of the patch matrix correspond to input tensor patches of
size dx£dy£S.

As some elements of W will be replaced by zeros by the
pruning algorithm, one can switch to some sparse representa-
tion for W. However, in the lack of the structure of the sparsity,
sparse matrix multiplication carries significant overhead com-
pared to dense matrix multiplication. Usually, sparse version
becomes faster only if the density of W is below 0.1, which is
unreachable in practical setting without a significant drop in
accuracy. The only way to overcome this problem is to arrange
elements of W into groups and to use structured sparsity.

The consideration discussed above calls for the use of
structured sparsity during pruning. The finest possible division
into groups is considered in [66] and [67]. Their algorithms
remove columns from weight matrix W ̂ and corresponding rows
from patch matrix U ̂ . The removal is facilitated by the custom
version of the im2col function which omits elements corre-
sponding to deleted parts of W ̂ while constructing the patch
matrix. With this kind of structured sparsity, the original ma-
trix multiplication is replaced with multiplication of smaller
matrices, which are still dense. This leads to the speed ups that
are almost directly proportional to density.

A related but orthogonal approach to structured sparsity
called perforation was proposed in [68]. The main idea is to
remove columns from the patch matrix U ̂ . Since columns corre-
spond to image patches, this means the convolution will not be
computed for some subsets of points in the image. The output
value in these points can be interpolated or effectively omitted
if the next layer performs the pooling operation.

Several additional ways to organize sparsity are proposed
in [69] and [70]. Each of them is defined by the specific way
of slicing the four dimensional weight tensor W:
●	Slicing in the form of W(i, j, s, :) is the same as in the group-

wise sparsity approach and produces non-square filters. It is
the finest division that can be implemented efficiently, but
it requires specialized implementation.

807

Speeding-up convolutional neural networks: A survey

Bull. Pol. Ac.: Tech. 66(6) 2018

●	Removing W(i, j, : , :) cuts all filters in the layer simulta-
neously. This slicing can be used to trim the filter size, for
example from 5£5 to 3£3.

●	A whole filter corresponds to slice W(: , : , s, :). With such
slice set to zero, the s-th channel in the output tensor will be
filled with zeros. The complexity of the network then can
be decreased by removing slices from weight tensors of the
current and the next convolutional layers.

●	Removing W(:, :, :, t) cuts all the connection with t-th input
channel, which means this channel can be removed.

●	Removing W(:, :, s, t) cuts all the ties between the s-th input
and the t-th output channels. This slicing can be used to turn
full convolution into group convolution [7].

●	Finally, in case of residual architecture, the convolutional
tensor W can be set to zeros completely. This operation re-
moves the whole residual block of the network.

5.2. Pruning criteria. Here, we follow [71], which contains
a similar review of criteria, and denote the pruning criterion by
Θ. The simplest criterion is the absolute value of the weight:

	 Θ(w) = jw j.� (14)

It was succesfully used in [72] for pruning individual weights,
and then in [18] for groups. This criterion is consistent in the
sense that if the weight already equals zero it can be safely
pruned, but small nonezero weight can be disproportionally
important if it acts on a large activation or pushes some points
across the decision surface.

Another choice is to focus not on the weights, but on the
activations a:

	 Θ(a) = 
i
∑ai

2.� (15)

Since ReLU non-linearity naturally produces sparse activations,
there is a realistic chance to find groups of neurons which can
be safely pruned. Average percentage of zeros is a different
metric proposed in [73] for this situation.

Mutual information measures the dependence of two
random variables. In theory, mutual information between acti-
vation group and targets I(a, y) would be an excellent pruning
criterion, but the direct computation is too complex, and avail-
able approximations are not performing well according to [71].

Taylor expansion of the objective function can be used to
estimate its change after the perturbation caused by the pruning
process. For example, the original Optimal Brain Damage paper
[64] used the criterion based on the second-order Taylor de-
composition. Assuming that C is the learning objective, the
approach makes an assumption that ∂C

∂wi
 = 0 (“extremal approx-

imation’’), which holds when the learning has fully converged.
Assuming that the mixed derivatives could be neglected, the
approach then uses the non-mixed second-order derivatives as
the pruning criterion:

	 Θ(wi) = 
1
2
∂2C
∂wi

2 wi .� (16)

The necessity to compute second derivatives makes this method
inconvenient in practice. The works [68, 71] avoid the extremal
approximation and use the following criterion:

	 Θ(ai) = 
∂C
∂ai

ai .� (17)

This criterion is expressed through the values which can be
computed by the standard back-propagation process. In gen-
eral, a comparison of pruning criteria listed above performed by
[71] demonstrated a superiority of the Taylor-expansion based
criteria.

The ThiNet approach [74] focuses on pruning filters and
proposes a special criterion for this case. The key observation is
that if the filter is pruned from the i-th layer, the corresponding
output channel will be empty, and the same channel should be
pruned in the kernel of the (i + 1)-th layer. The next, (i + 2)-th
layer will then be the first subsequent layer, whose input tensor
size is not affected by the change. Thus, a natural pruning cri-
terion relies on the reconstruction error of the input tensor to
the (i + 2)-th layer. After the pruning, the channel scaling com-
puted via least squares can be used to reduce the error, although
this step cannot replace the fine-tuning.

6.1. Regularizer. The pruning process can work without spar-
sity-inducing regularization, but the sparsity-inducing regular-
ization can help the pruning process while incurring a minimal
computational overhead. The L1 reguarizer Ω1(w) = λjwj in-
duces unstructured sparsity, but for structured sparsity, L2, 1
regularization can be used:

	 Ω2, 1(w) = λ
i
∑

j 2 gi
∑wi .� (18)

Here, gi are the weight groups, defined by one of the ways de-
scribed above. A smart approach for achieving filter-level spar-
sity was proposed in [75]. They notice that in modern CNNs,
convolutions are almost always followed by batch normaliza-
tion. The filter level sparsity can then be achieved simply by the
L1 regularization imposed on the scaling factors within batch
normalization.

7.	 Teacher-student approaches

Teacher-student approaches follow the idea that a CNN model
can be trained on the outputs of another model (a teacher), as
opposed to regular training on labeled data. This approach al-
lows to transfer knowledge from one model to another and to
incorporate unlabelled or synthetic data into the training process
(as an unlabeled example can still be passed through the pre-
trained teacher model). Originally, such transfer was performed
from a non-interpreTable model such as a neural network, to
more interpreTable ones, such as decision trees [76], or a set
of rules [77]. Another natural purpose for the teacher-student
approach would be to transfer knowledge from large, slow and
accurate models to small and fast ones.

808

V. Lebedev and V. Lempitsky

Bull. Pol. Ac.: Tech. 66(6) 2018

Towards this end, [78] proposes to compress an ensemble of
models into a single neural network. First, an ensemble of clas-
sification models is trained on a certain annotated dataset. An
ensemble is expected to be more resistant to overfitting com-
pared to a single model. This ensemble is used to label a large
amount of synthetic data, generated by several simple random
sampling procedures, and finally a single model is learned on
the resulting synthetic dataset. Authors of [78] state that this
approach can alleviate overfitting problem for neural networks
without time and memory costs of building an ensemble. It
should be noted, though, that this work was done on small data-
sets with fully-connected neural nets, and utilized data gener-
ation methods that are not directly applicable to images. With
modern CNNs, the viability of this approach is limited by the
following facts: datasets are already very large and the models
are too large to build large ensembles.

A specific way of representing labels for synthetic data is
a key detail of knowledge transfer algorithm. The description
of same ensemble compression idea in [79] elaborates on the
importance of preserving not just the labels, but whole vectors
of posterior probability distribution over the output classes.
Such vectors capture richer information about the actual con-
tent of data samples, making knowledge transfer process more
efficient.

This idea of utilizing full probability distribution is further
expanded in [80]. The proposed distillation procedure requires
training a student model on the soft version of the outputs of
the original (teacher) model. Let zi be the raw outputs of neural
network, and pi be the output probabilities. These probabilities
are then calculated according to the softmax formula:

	 pi = 
expzi/τ

∑ j expzj/τ
z ,� (19)

where τ is the temperature parameter. Let pS be the probabilities
for the student model, and pT be the probabilities of original
teacher model. The student model is trained to approximate both
the correct labels y and the outputs of teacher model using the
following loss function:

	 L = H(pS, p y) + λH(pS, qT) ,� (20)

where H is the the cross-entropy and p y is the one-hot distri-
bution corresponding to the ground truth. A high temperature τ
effectively regularizes the student model, while the lower tem-
perature allows to transfer knowledge in finer detail. In practice,
the temperature parameter τ has to be tuned manually. It can
be shown that in the limit of high temperature this procedure is
equivalent to training on raw outputs zi (the regime which was
utilized in [81] for acoustic model compression). Results on
MNIST, an automatic speech recognition task and large scale
image classification task are presented, and significant rate
of model compression is achieved for all tasks. Most impres-
sively, it is shown that knowledge transfer can be successful
even if one of the classes is missing from the dataset used for
the transfer, since the information about this class is still carried
through soft labels of other classes.

The idea of distillation was extended to multiple layers of
deep networks in the Fitnets approach [82], which introduces
the notion of a hint, defined as the output uT of the teacher’s
hidden layer, and used to guide the training of a hidden layer of
the student CNN, called the guided layer. The guidance process
is implemented via addition of the euclidean distance between
the hint and the guided layer output uS to the loss function (20).
When the layer sizes of the hint and the guided layer differ,
the linear regressor r that maps the hints to the guided layer
activations is added into the training leading to the following
term (the guidance loss):

	 Lh = 
1
2
kuT ¡ r(uS)k

2
.� (21)

The fact that the student now not only has access to the outputs
of the teacher, but also receives insights from the internal data
representation, leads to faster convergence and better perfor-
mance of the method.

Teacher-student approach is a powerful tool which can be
used to help training of quantized networks. It has been suc-
cessfully applied to training of quantized networks [83] and
ternary networks [84]. Moreover, while most papers focus on
the situation where both the teacher and the student are neural
networks, the need for the faster student may lead to different
kinds of models. Thus, [85] proposes to use soft decision tree
as a student model. Decision tree in theory can provide very
high speed-ups, but in this paper only results on MNIST and
Connect4 datasets are presented, and the achieved MNIST ac-
curacy of 96.76% is below modern standards.

8.	 Discussion

As can be seen from this non-exhaustive survey, a wide variety
of approaches has been tried to speed up CNNs. The modern
CNN architectures are more efficient than ones available a few
years ago, but still a lot of improvement is required to use them
fully on low-end hardware and/or real-time constraints.

Some approaches, such as tensor decomposition based
methods, seem to reach saturation, as virtually all decomposi-
tions have been tried. With other approaches, e.g. those based
on binarization, there is a lot of work on algorithms and imple-
mentation that can be done in future. Here, transferring impres-
sive speed-ups in terms of number of operations into actual wall
clock speed-ups remains a challenge.

Designing efficient architectures is probably the most
practical approach, as it does not require complex multi-stage
processes that interleave modifications and finetuning stages.
While it seems that in the future these architectures will be con-
structed automatically, some basic modules or design ideas are
likely to come from humans rather than from automated search.
Still, while automatic architecture search is a young area of
research, it has already made an impact and it is safe to assume
that it will continue to grow in importance in the nearest future.

There is probably a reasonable space for the search of op-
timal combination of approaches from several groups, notably

809

Speeding-up convolutional neural networks: A survey

Bull. Pol. Ac.: Tech. 66(6) 2018

from those that speed-up existing architectures (tensor decom-
position, quantization, pruning, teacher-student approaches).
While these groups are not “orthogonal’’ as they exploit similar
kind of redundancy in the original architecture, there may still
be considerable benefits in combining approaches from dif-
ferent groups. Automated discovery of optimal mix-and-match
combinations may be promising.

Overall, we believe that in general the area of research
concerned with speeding up CNNs (as well as designing ef-
ficient architectures “from scratch’’) is far from saturation,
and significant improvements can and will be made in the
nearest future.

Acknowledgements. This work is supported by the Ministry
of Education and Science of the Russian Federation (grant
14.756.31.0001)

References
	 [1]	 T. Young, D. Hazarika, S. Poria, and E. Cambria, Recent trends in

deep learning based natural language processing, arXiv preprint
arXiv:1708.02709, 2017.

	 [2]	 S. Min, B. Lee, and S. Yoon, Deep learning in bioinformatics.
Briefings in bioinformatics, 2017.

	 [3]	 Y. Duan, X. Chen, R. Houthooft, J. Schulman, and P. Abbeel,
Benchmarking deep reinforcement learning for continuous con-
trol, In ICML, 2016.

	 [4]	 K. Fukushima and S. Miyake, Neocognitron: A selforganizing
neural network model for a mechanism of visual pattern recog-
nition, Competition and cooperation in neural nets, 1982.

	 [5]	 Y. LeCun, B. Boser, J.S. Denker, D. Henderson, R.E. Howard,
W. Hubbard, and L.D. Jackel, Backpropagation applied to hand-
written zip code recognition, Neural computation, 1989.

	 [6]	 R. Raina, A. Madhavan, and A.Y. Ng, Largescale deep unsuper-
vised learning using graphics processors, In ICML, 2009.

	 [7]	 A. Krizhevsky, I. Sutskever, and G.E. Hinton, Imagenet classifi-
cation with deep convolutional neural networks. In NIPS, 2012.

	 [8]	 J. Cheng, P. Wang, G. Li, Q. Hu, and H. Lu, Recent advances
in efficient computation of deep convolutional neural networks.
arXiv preprint arXiv:1802.00939, 2018.

	 [9]	 V. Sze, Y.-H. Chen, T.-J. Yang, and J.S. Emer, Efficient pro-
cessing of deep neural networks: A tutorial and survey. Proceed-
ings of the IEEE, 2017.

	[10]	 R.K. Srivastava, K. Greff, and J. Schmidhuber, Highway net-
works. arXiv preprint arXiv:1505.00387, 2015.

	[11]	 G. Huang, Y. Sun, Z. Liu, D. Sedra, and K.Q. Weinberger, Deep
networks with stochastic depth. In ECCV, 2016.

	[12]	 M. Figurnov, M.D. Collins, Y. Zhu, L. Zhang, J. Huang, D. Ve-
trov, and R. Salakhutdinov, Spatially adaptive computation time
for residual networks. arXiv preprint, 2017.

	[13]	 T. Bolukbasi, J. Wang, O. Dekel, and V. Saligrama, Adaptive
neural networks for efficient inference. In ICML, 2017.

	[14]	 R. Rigamonti, A. Sironi, V. Lepetit, and P. Fua, Learning sepa-
rable filters. In CVPR, 2013.

	[15]	 M. Jaderberg, A. Vedaldi, and A. Zisserman, Speeding up con-
volutional neural networks with low rank expansions. In BMVC,
2014.

	[16]	 C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna,
Rethinking the inception architecture for computer vision. In
CVPR, 2016.

	[17]	 E. Denton, W. Zaremba, J. Bruna, Y. Le-Cun, and R. Fergus,
Exploiting linear structure within convolutional networks for
efficient evaluation. arXiv preprint arXiv:1404.0736, 2014.

	[18]	 V. Lebedev, Y. Ganin, M. Rakhuba, I.V. Oseledets, and V.S. Lem-
pitsky. Speeding-up convolutional neural networks using fine-
tuned cp-decomposition. ICLR, 2015.

	[19]	 M. Astrid and S.-I. Lee, Cp-decomposition with tensor power
method for convolutional neural networks compression. In Big
Data and Smart Computing, 2017.

	[20]	 T.G. Kolda and B.W. Bader. Tensor decompositions and appli-
cations. SIAM Rev., 2009.

	[21]	 G. Allen, Sparse higher-order principal components analysis. In
AISTATS, 2012.

	[22]	 J. Jin, A. Dundar, and E. Culurciello, Flattened convolutional
neural networks for feedforward acceleration. arXiv preprint
arXiv:1412.5474, 2014.

	[23]	 X. Zhang, J. Zou, K. He, and J. Sun. Accelerating very deep
convolutional networks for classification and detection. TPAMI,
2016.

	[24]	 Y.-D. Kim, E. Park, S. Yoo, T. Choi, L. Yang, and D. Shin, Com-
pression of deep convolutional neural networks for fast and low
power mobile applications. arXiv preprint arXiv:1511.06530,
2015.

	[25]	 P. Wang and J. Cheng, Accelerating convolutional neural net-
works for mobile applications. In ACM Multimedia, 2016.

	[26]	 A. Novikov, D. Podoprikhin, A. Osokin, and D. Vetrov, Ten-
sorizing neural networks. In NIPS, 2015.

	[27]	 O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma,
Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, A.C. Berg, and
L. Fei-Fei. Imagenet large scale visual recognition challenge.
IJCV, 2015.

	[28]	 A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. De-
Vito, Z. Lin, A. Desmaison, L. Antiga, and A. Lerer, Automatic
differentiation in pytorch. ICLR, 2017.

	[29]	 M. Lin, Q. Chen, and S. Yan, Network in network. ICLR,
2014.

	[30]	 F.N. Iandola, S. Han, M.W. Moskewicz, K. Ashraf, W.J. Dally,
and K. Keutzer, Squeezenet: Alexnet-level accuracy with 50x
fewer parameters and < 0.5mb model size. arXiv preprint
arXiv:1602.07360, 2016.

	[31]	 A.G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang,
T. Weyand, M. Andreetto, and H. Adam, Mobilenets: Efficient
convolutional neural networks for mobile vision applications.
arXiv preprint arXiv:1704.04861, 2017.

	[32]	 S. Xie, R. Girshick, P. Dollár, Z. Tu, and K. He, Aggregated
residual transformations for deep neural networks. In CVPR,
2017.

	[33]	 X. Zhang, X. Zhou, M. Lin, and J. Sun, Shufflenet: An extremely
efficient convolutional neural network for mobile devices. arXiv
preprint arXiv:1707.01083, 2017.

	[34]	 I. Freeman, L. Roese-Koerner, and A. Kummert, EffNet: An
Efficient Structure for Convolutional Neural Networks. arXiv
preprint arXiv:1801.06434, 2018.

	[35]	 B. Wu, A. Wan, X. Yue, P. Jin, S. Zhao, N. Golmant, A. Ghol-
aminejad, J. Gonzalez, and K. Keutzer, Shift: A zero flop, zero
parameter alternative to spatial convolutions. arXiv preprint
arXiv:1711.08141, 2017.

	[36]	 C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov,
D. Erhan, V. Vanhoucke, A. Rabinovich, et al., Going deeper
with convolutions. In CVPR, 2015.

	[37]	 C. Szegedy, S. Ioffe, and V. Vanhoucke, Inception-v4, incep-
tion-resnet and the impact of residual connections. AAAI, 2017.

810

V. Lebedev and V. Lempitsky

Bull. Pol. Ac.: Tech. 66(6) 2018

	[38]	 F. Chollet, Xception: Deep learning with depthwise separable
convolutions. CVPR, 2017.

	[39]	 K. He, X. Zhang, S. Ren, and J. Sun, Deep residual learning for
image recognition. CVPR, 2016.

	[40]	 M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler,
R. Benenson, U. Franke, S. Roth, and B. Schiele, The cityscapes
dataset for semantic urban scene understanding. In CVPR, 2016.

	[41]	 A. Geiger, P. Lenz, and R. Urtasun, Are we ready for autonomous
driving? the kitti vision benchmark suite. In CVPR, 2012.

	[42]	 B. Shahriari, K. Swersky, Z. Wang, R.P. Adams, and N. De Fre-
itas, Taking the human out of the loop: A review of bayesian
optimization. Proceedings of the IEEE, 2016.

	[43]	 B. Zoph and Q.V. Le, Neural architecture search with reinforce-
ment learning. ICLR, 2017.

	[44]	 B. Zoph, V. Vasudevan, J. Shlens, and Q.V. Le, Learning transfer-
able architectures for scalable image recognition. arXiv preprint
arXiv:1707.07012, 2017.

	[45]	 H. Pham, M.Y. Guan, B. Zoph, Q.V. Le, and J. Dean, Efficient
neural architecture search via parameter sharing. ArXiv, 2018.

	[46]	 H. Cai, T. Chen, W. Zhang, Y. Yu, and J. Wang, Reinforcement
learning for architecture search by network transformation. ArXiv
preprint ArXiv:1707.04873, 2017.

	[47]	 B. Baker, O. Gupta, R. Raskar, and N. Naik, Practical neural net-
work performance prediction for early stopping. ArXiv preprint
ArXiv:1705.10823, 2017.

	[48]	 A. Gordon, E. Eban, O. Nachum, B. Chen, T.-J. Yang, and E. Choi,
Morphnet: Fast & simple resourceconstrained structure learning
of deep networks. ArXiv preprint ArXiv:1711.06798, 2017.

	[49]	 V. Vanhoucke, A. Senior, and M.Z. Mao, Improving the speed of
neural networks on cpus. In Deep Learning and Unsupervised
Feature Learning Workshop, NIPS 2011, 2011.

	[50]	 G.E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and
R.R. Salakhutdinov, Improving neural networks by preventing
co-adaptation of feature detectors. ArXiv preprint ArXiv:1207.0580,
2012.

	[51]	 Y. Gong, L. Liu, M. Yang, and L. Bourdev, Compressing deep
convolutional networks using vector quantization. ArXiv preprint
ArXiv:1412.6115, 2014.

	[52]	 H. Jegou, M. Douze, and C. Schmid, Product quantization for
nearest neighbor search. TPAMI, 2011.

	[53]	 S. Anwar, K. Hwang, and W. Sung, Fixed point optimization of
deep convolutional neural networks for object recognition. In
ICASSP, 2015.

	[54]	 M. Courbariaux, Y. Bengio, and J.-P. David, Binaryconnect:
Training deep neural networks with binary weights during prop-
agations. NIPS, 2015.

	[55]	 Z. Lin, M. Courbariaux, R. Memisevic, and Y.a Bengio, Neural
networks with few multiplications. ICLR, 2016.

	[56]	 I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and Y. Bengio,
Binarized neural networks. NIPS, 2016.

	[57]	 S. Ioffe and C. Szegedy, Batch normalization: Accelerating deep
network training by reducing internal covariate shift. ArXiv pre-
print ArXiv:1502.03167, 2015.

	[58]	 D.P. Kingma and J. Ba, Adam: A method for stochastic optimi-
zation. ICLR, 2014.

	[59]	 M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi, Xnor-net:
Imagenet classification using binary convolutional neural net-
works. In ECCV, 2016.

	[60]	 I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and
Y. Bengio, Quantized neural networks: Training neural net-
works with low precision weights and activations. ArXiv preprint
ArXiv:1609.07061, 2016.

	[61]	 S. Zhou, Y. Wu, Z. Ni, X. Zhou, H. Wen, and Y. Zou, Dorefa-net:
Training low bitwidth convolutional neural networks with low
bitwidth gradients. ArXiv preprint ArXiv:1606.06160, 2016.

	[62]	 A.K. Mishra, E. Nurvitadhi, J.J. Cook, and D. Marr, WRPN: wide
reduced-precision networks. ArXiv preprint ArXiv:1709.01134,
2017.

	[63]	 H. Bagherinezhad, M. Rastegari, and A. Farhadi, Lcnn: Look-
up-based convolutional neural network. CVPR, 2017.

	[64]	 Y. LeCun, J.S. Denker, and S.A. Solla, Optimal brain damage.
In NIPS, 1990.

	[65]	 K. Chellapilla, S. Puri, and P. Simard, High performance con-
volutional neural networks for document processing. In Tenth
International Workshop on Frontiers in Handwriting Recogni-
tion, 2006.

	[66]	 V. Lebedev and V. Lempitsky, Fast convnets using group-wise
brain damage. In CVPR, 2016.

	[67]	 B. Liu, M. Wang, H. Foroosh, M. Tappen, and M. Pensky, Sparse
convolutional neural networks. In CVPR, 2015.

	[68]	 M. Figurnov, A. Ibraimova, D.P Vetrov, and P. Kohli, Perforat-
edcnns: Acceleration through elimination of redundant convo-
lutions. In NIPS, 2016.

	[69]	 W. Wen, C. Wu, Y. Wang, Y. Chen, and H. Li, Learning structured
sparsity in deep neural networks. In NIPS, 2016.

	[70]	 R. Shin, C. Packer, and D. Song, Differentiable neural network
architecture search, 2018.

	[71]	 P. Molchanov, S. Tyree, T. Karras, T. Aila, and J. Kautz, Pruning
convolutional neural networks for resource efficient transfer
learning. ArXiv preprint ArXiv:1611.06440, 2016.

	[72]	 S. Han, J. Pool, J. Tran, and W. Dally, Learning both weights
and connections for efficient neural network. In NIPS, 2015.

	[73]	 H. Hu, R. Peng, Y.-W. Tai, and C.-K. Tang, Network trimming:
A data-driven neuron pruning approach towards efficient deep
architectures. ArXiv preprint ArXiv:1607.03250, 2016.

	[74]	 J.-H. Luo, J. Wu, and W. Lin, Thinet: A filter level pruning
method for deep neural network compression. CVPR, 2017.

	[75]	 H. Liu, K. Simonyan, O. Vinyals, C. Fernando, and K. Kavuk-
cuoglu, Hierarchical representations for efficient architecture
search. ArXiv preprint ArXiv:1711.00436, 2017.

	[76]	 M. Craven and J.W. Shavlik, Extracting tree-structured repre-
sentations of trained networks. In NIPS, 1996.

	[77]	 S. Thrun, Extracting rules from artificial neural networks with
distributed representations. In Advances in neural information
processing systems, 1995.

	[78]	 C. Bucila, R. Caruana, and A. Niculescu-Mizil, Model compres-
sion. In Proceedings of the Twelfth ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, 2006.

	[79]	 X. Zeng and T.R. Martinez, Using a neural network to approx-
imate an ensemble of classifiers. Neural Processing Letters,
2000.

	[80]	 G.E. Hinton, O. Vinyals, and J. Dea, Distilling the knowledge in
a neural network. NIPS 2014 Deep Learning Workshop, 2014.

	[81]	 J. Li, R. Zhao, J.-T. Huang, and Y. Gong, Learning small-size
dnn with output-distribution-based criteria. In Interspeech, 2014.

	[82]	 A. Romero, N. Ballas, S.E. Kahou, A. Chassang, C. Gatta, and
Y. Bengio, Fitnets: Hints for thin deep nets. ICLR, 2015.

	[83]	 A. Polino, R. Pascanu, and D. Alistarh, Model compression via
distillation and quantization. ICLR, 2018.

	[84]	 H. Alemdar, V. Leroy, A. Prost-Boucle, and F. Pétrot, Ternary
neural networks for resource-efficient ai applications. In IJCNN,
2017.

	[85]	 N. Frosst and G. Hinton, Distilling a neural network into a soft
decision tree. ArXiv preprint ArXiv:1711.09784, 2017.

