
821Bull. Pol. Ac.: Tech. 66(6) 2018

Abstract. Matrix factorization is at the heart of many machine learning algorithms, for example, dimensionality reduction (e.g. kernel PCA) or
recommender systems relying on collaborative filtering. Understanding a singular value decomposition (SVD) of a matrix as a neural network
optimization problem enables us to decompose large matrices efficiently while dealing naturally with missing values in the given matrix. But most
importantly, it allows us to learn the connection between data points’ feature vectors and the matrix containing information about their pairwise
relations. In this paper we introduce a novel neural network architecture termed similarity encoder (SimEc), which is designed to simultaneously
factorize a given target matrix while also learning the mapping to project the data points’ feature vectors into a similarity preserving embedding
space. This makes it possible to, for example, easily compute out-of-sample solutions for new data points. Additionally, we demonstrate that
SimEc can preserve non-metric similarities and even predict multiple pairwise relations between data points at once.

Key words: neural networks, kernel PCA, dimensionality reduction, matrix factorization, SVD, similarity preserving embeddings.

Predicting pairwise relations with neural similarity encoders

F. HORN1 and K.-R. MÜLLER1, 2, 3*
1Machine Learning Group, Technische Universität Berlin, Berlin, Germany

2Department of Brain and Cognitive Engineering, Korea University, Seoul, Republic of Korea
3Max-Planck-Institut für Informatik, Saarbrücken, Germany

with the analysis of graphs, such as social networks, where the
pairwise relations between nodes are of key importance [25, 26].

Such pairwise relations between data points can be rep-
resented as a rectangular matrix R 2 Rm×n, which could, for
example, contain the ratings of m items by n users. In the fol-
lowing, we will primarily focus on pairwise similarities between
m data points, stored in a square symmetric matrix S 2 Rm×m,
but also discuss how our results generalize to arbitrary pairwise
relations R.

In this paper, we introduce our novel neural network archi-
tecture called similarity encoder (SimEc), which learns (low
dimensional) similarity preserving embeddings for data points.
To be more precise, SimEc represent the data in such a way that
the scalar product between the embedding vectors yi, yj 2 Rd of
two data points approximates their similarity, i.e., yi yj

> ¼ Sij.
Furthermore, given some original (high dimensional) feature
vectors xi 2 RD8i 2 {1, …, m}, a SimEc additionally provides
a linear or non-linear mapping function f 0 : xi ! yi, which can
be used to project new data points into the similarity preserving
embedding space, i.e., to compute out-of-sample (OOS) solu-
tions. Here it is important to note that these feature vectors
do not have to be directly related to the given target similar-
ities stored in S, in fact, we do not need to know how S was
computed at all, e.g., it could also contain human similarity
ratings. Furthermore, SimEc can deal with missing values in
the similarity matrix S, can embed data points based on metric
or non-metric similarities, and can be used to predict multiple
pairwise similarities or other relations between data points at
once. We provide a keras [27] based Python implementation of
the model, which can be trained efficiently on GPUs1.

1 https://github.com/cod3licious/simec

1.	 Introduction

Pairwise relations, such as similarities, between data points
play an important role in many areas of machine learning (ML)
[1‒4]. Dimensionality reduction methods such as t-SNE [5],
kernel PCA (kPCA) [6], isomap [7], and locally linear embed-
ding (LLE) [8] create low dimensional representations of data
points by preserving their pairwise similarities, distances, or
local neighborhoods in the embedding space, e.g., to create in-
formative visualizations of a dataset [9]. Similarity preserving
embeddings of data points can also serve as useful feature rep-
resentations for other (supervised) ML tasks. For example, by
computing the eigendecomposition of a kernel (i.e. similarity)
matrix, kPCA projects the data into a feature space where data
points can become linearly separable and noise in the data can be
reduced [10‒12]. In natural language processing (NLP) settings,
the popular word2vec model [13, 14] learns an embedding for
each word in the vocabulary by relying on the principle that
similar words appear in similar contexts [15‒17]. Using word
embeddings as features can improve the performance in many
NLP tasks such as named entity recognition or text classification
[18‒20]. The prediction of pairwise relations themselves is at
the heart of important real world ML applications such as the
prediction of whether or not a drug could interact with a certain
protein [21] or for recommender systems, where the task is to
predict the rating a user would give to a certain item [22, 23] or
to identify similar items that could be promoted alongside an
item of interest [24]. Another active research area is concerned

*e-mail: klaus-robert.mueller@tu-berlin.de

Manuscript submitted 2018-04-18, initially accepted for publication 2018-05-16,
published in December 2018.

BULLETIN OF THE POLISH ACADEMY OF SCIENCES
TECHNICAL SCIENCES, Vol. 66, No. 6, 2018
DOI: 10.24425/bpas.2018.125929

DEEP LEARNING: THEORY AND PRACTICE

822

F. Horn and K.-R. Müller

Bull. Pol. Ac.: Tech. 66(6) 2018

After relating our model to previous work, we detail its
architecture in Section 2 and then demonstrate its effectiveness
in multiple experiments (Section 3) before concluding the paper
with a discussion.

1.1. Related work. The optimal (in a least squares sense) low
dimensional embeddings to factorize a matrix R or S can be
found by computing a singular value decomposition (SVD) or
eigendecompositon of the matrix and using the d largest eigen-
values and corresponding eigenvectors to compute a low rank
approximation of the matrix. However, performing an SVD is
computationally very expensive for large matrices, and in these
cases requires the use of approximate iterative methods [22].
Furthermore, an exact decomposition can not be computed for
matrices that contain missing values, in which case weighted
error functions need to be employed [28]. Back in 1982, a simple
neural network (NN) was conceived to compute a PCA [29] and
in 1992, NNs were proposed as a method to efficiently compute
the SVD [30] or eigendecomposition [31] of a matrix while
naturally dealing with missing values in the target matrix, which
we will discuss in more detail in Section 2.1.

If a similarity matrix was computed with a known support
vector kernel function [4, 11, 32], a manually devised, ker-
nel-specific random mapping from the original input to the
kernel feature space could be used to create similarity pre-
serving embeddings for large datasets very efficiently [33]. By
interpreting this mapping as a neural network, it can be fur-
ther fine-tuned to the dataset at hand [34]. But while spectral
methods such as kPCA provide optimal similarity preserving
embeddings based on the pairwise similarities for a given set
of data points, a critical issue remains, namely that they can
only compute OOS solutions, i.e., embeddings for new tests
points, if their similarity to the original training examples can
be computed with a known kernel function [35]. SimEc on
the other hand learn a direct mapping from the original fea-
ture space to the similarity preserving embedding space and
therefore do not require knowledge of how the pairwise sim-
ilarities were computed (Fig. 1). It would be possible to train
an additional regression model to learn the mapping from the
original input feature space to the embeddings computed by
the spectral method [36, 37]. However, the best similarity pre-
serving embeddings that can be realized as a transformation of

the original feature vectors might not necessarily correspond to
the embeddings found by the spectral method, thereby losing
some information by the mapping, resulting in unnecessarily
poor similarity approximations [38]2.

Previous work concerned with simultaneously factorizing a
matrix with pairwise relations while learning a mapping from
the original input space to the low dimensional embedding space
can be categorized into the two approaches outlined below. In
both cases, the mapping from the input to the embedding space
is usually realized by neural networks, as they provide the flex-
ibility to learn arbitrary functions.

1.1.1. Embedding with a single NN. In the first approach,
a single neural network is trained to map the points into a sim-
ilarity preserving embedding space by computing the embed-
dings for a batch of training samples and then comparing the
pairwise similarities (or distances) of these embedded points
against the target similarities to compute the error used in the
backpropagation procedure to tune the network’s parameters.
With this approach, extensions for t-SNE [39] and other classic
manifold learning methods [40, 41] were developed, which
enable the computation of OOS solutions. A particularly in-
teresting realization of this approach are deep kernelized au-
toencoders [42], which train an autoencoder network with an
additional objective to not only minimize the reconstruction
error of the data points themselves but also the mismatch be-
tween the dot product of a batch of embedding vectors and the
corresponding block from a kernel matrix. The decoder part
of the autoencoder network thereby also provides a mapping
from the embedding space back to the original feature space,
which can be used to compute the pre-image of an embedding
vector [10]. By directly minimizing kS ¡ YY>k, these methods
successfully learn similarity preserving embeddings, however,
because they always operate on batches of points, these methods
scale quadratically and efficient training is highly dependent
on the choice of the batch size, requiring either lots of memory
or many combinations of randomly chosen samples to cover
all pairwise similarities. In an effort to improve on this, the
method of auxiliary coordinates can be used to train a NN in
an alternating fashion, in one step optimizing the mapping from
the input to the embedding space, in the other step improving
the similarity approximation of the embedding itself [38]. As
we will see in Section 2.2, while the weight matrix of the last
layer of the SimEc architecture could be interpreted as a set of
auxiliary coordinates as well, training a SimEc network does
not require alternating steps in the optimization procedure.

The above mentioned methods all learn embeddings based
on pairwise similarities, but can not generalize to other types

2 �For example, eigenvalue d might only be slightly larger than eigenvalue
d + 1, however, the dth eigenvector might contain information that is not
present in the original feature vectors, while the information encoded in ei-
genvector d + 1 can be preserved by a transformation of the feature vectors.
By learning the mapping and factorization together, it is possible to create
a d-dimensional embedding that instead retains the information from the
d + 1 eigenvalue and vector, thereby resulting in an only slightly worse ap-
proximation of S compared to the spectral method, while not losing any accu-
racy in the mapping step.

Fig. 1. Kernel PCA and SimEc both aim to project the data points into
an embedding space where the target similarities can be approximated
by the scalar product of the embedding vectors, but kernel PCA also
needs to compute a kernel map, i.e., the similarities to the training data

points, to be able to embed new test samples

kPCAX

k(xi,xj) S

Y

train & test

SimEcX

S

Y

?
train

test

Objective: Y Y > ⇡ S

Kernel PCA Similarity Encoder

823

Predicting pairwise relations with neural similarity encoders

Bull. Pol. Ac.: Tech. 66(6) 2018

of pairwise relations, specifically those involving two different
kinds of data, e.g., ratings of items by users.

1.1.2. Learning two mappings into the same embedding
space. This brings us to the second approach, where two net-
works are trained to simultaneously map two (different kinds
of) input feature vectors into the same embedding space. Again,
the objective is for the similarity between the two embedding
vectors to approximate the respective pairwise relation stored in
the target matrix R. For pairwise similarities, the mapping into
the embedding space can also be realized by a siamese network,
i.e., two networks with shared parameters operating on the same
kinds of input data [43]. As these networks operate on pairs of
samples, training again scales quadratically, but here at least
the batch sizes for both networks can be chosen independently.
Furthermore, this approach is often employed for recommender
systems [44], where the target matrix R is typically very very
sparse, which means by training only on pairs of samples with
known targets, the training time can be greatly reduced. In these
cases, often some form of negative sampling is employed during
training to consider for every positive sample pair (e.g. a song
a user has listened to) some negative pairs (songs a user has not
listened to) as well, as these can provide additional information
[45]. With a fast training procedure for target matrices where
the number of non-zero elements is much smaller than m ¢ n
and the benefit of learning multiple mapping functions simul-
taneously for projecting different kinds of feature vectors into
the same embedding space, this second approach is very useful
for many applications scenarios. SimEc, on the other hand, are
designed to efficiently factorize dense matrices (while being
able to handle missing values in the target matrix) and, while
they rely on only a single neural network to map input features
into a similarity preserving embedding space, we discuss in the
next section how they can be trained to predict multiple pair-
wise relations at once based on the same embedding.

2.	 The SimEc model

In the following, we will first describe how neural networks
can realize the computation of an SVD of a rectangular ma-
trix R 2 Rm×n [30] and the eigendecomposition of a square
symmetric matrix S 2 Rm×m [31]. Then we detail how these
models can be extended to arrive at the SimEc neural network
architecture.

2.1. Matrix factorization with neural networks. With sin-
gular value decomposition (SVD), a matrix R 2 Rm×n can be
decomposed as

R = UΣV>,

where U 2 Rm×m and V 2 Rn×n contain the eigenvectors of RR>
and R>R respectively while the corresponding eigenvalues are
stored inΣ 2 Rm×n. By using only the d largest eigenvalues and
corresponding eigenvectors, a low rank approximation of R can
be obtained, i.e., R ¼ U[:, :d]Σ[:d, :d]V

>
[:d, :].

By setting W1 = U[:, :d] Σ[:d, :d] and W2 =  Σ[:d, :d]V
>
[:d, :], the

low rank approximation of R can be rewritten as

R ¼ W1W2 = ImW1W2,

where Im 2 Rm×m is the identity matrix.
A simple feed forward neural network f (xi) can now be

constructed with two layers defined by the weight matrices
W1 2 Rm×d and W2 2 Rd×n and without any non-linear activa-
tion functions. Given some input vector xi 2 Rm, the first layer
computes

f 0(xi) = xiW1 = yi,

where we call yi 2 Rd the embedding of the ith data point xi,
with i 2 {1, …, m}. With both layers, the network computes

	 f (xi) =  f 0(xi)W2 = (xiW1)W2 = yiW2 = r ̂ i,� (1)

the n-dimensional vector r ̂ i. Expressed in matrix notation, given
an input matrix X 2 Rm×m the network first computes an embed-
ding matrix Y 2 Rm×d and from it the output R ̂  2 Rm×n:

f (X) = f 0(X)W2 = (XW1)W2 = YW2 = R ̂ .

If the network is now trained (with backpropagation) to mini-
mize the mean squared error of its output to a target matrix R, i.e.

minkR ¡ f (X)kF
2 ,

while we use as input to the network the identity matrix, i.e.,
X = Im, then, once the weights of the network have converged
to a local optimum, W1W2 is a low rank approximation of the
matrix R 2 Rm×n [30].

When computing an SVD of a matrix, the eigenvectors
stored in the matrices U and V are orthogonal (i.e. V>V = In),
which can be added as a further constraint to the cost function:

minkR ¡ ImW1W2kF
2 + λkIdW2W2

> ¡ W2W2
>kF

2 ,

where λ is a hyperparameter to control the strength of this reg-
ularization3.

Should R contain missing values, then the error used in the
backpropagation procedure to tune the network’s parameters is
only computed considering the available entries of the matrix.
In this case especially it is advisable to additionally use other
regularization techniques such as adding `2 regularization terms
to the cost function.

As the decomposition of a square symmetric matrix S 2 Rm×m
into its eigenvalues and vectors is a special case of an SVD

3 �While this will encourage orthogonal rows in W2, since the rows do not
need to have unit length, the values on the diagonal of W2W2

> should not be
penalized. This kind of regularization is usually only necessary if d is chosen
to be greater than the number of significant eigenvalues. Please note that the
rows of W2 are not necessarily ordered by the magnitude of the corresponding
eigenvalues.

824

F. Horn and K.-R. Müller

Bull. Pol. Ac.: Tech. 66(6) 2018

(where V = U), the same NN can be used, only with an ad-
ditional constraint to learn a symmetric factorization, i.e., to
encourage ImW1 = Y = W2

>. This can be achieved with the cost
function

minkS ¡ ImW1W2kF
2 + λkS ¡ W2

>W2kF
2 ,

where, after convergence, YW2 ¼ W2
>W2 ¼ YY> ¼ S. This also

results in the same eigenvector based embedding Y 2 Rm×d as
found by kernel PCA.

2.2. Similarity encoders. Now that the factorization of a matrix
R or S is expressed in terms of optimizing a neural network,
this setup can be further extended to yield our SimEc architec-
ture. In particular, the first linear layer of the neural network,
f 0(xi) = xiW1 = yi, can be replaced by any kind of (deep) neural
network to map arbitrary feature vectors xi 2 RD8i 2 {1, …, m}
into the low dimensional embedding space (Fig. 2). Equation 1
then becomes

f (xi) = f 0(xi)Wl = yiWl = r ̂ i ,

where again yi 2 Rd is the embedding of the ith data point xi
and Wl 2 Rd×n is the weight matrix of the last (linear) layer
of the full network f (xi), while f 0(xi) could, for example, be
a convolutional neural network (CNN) mapping images into
the embedding space. This similarity encoder network is again

trained to minimize kR ¡ f (X)kF
2 , thereby learning the factor-

ization R ¼ f 0(X)Wl = YWl.
If the output of the SimEc should always be in a specific

range, e.g., if the target matrix R contains star ratings from 1 to
5, it may be beneficial to add an additional non-linearity after
computing f 0(xi)Wl to ensure the predicted values are within
this range. However, there should not be any non-linearity at
the last layer of f 0(xi) as the embedding values yi should be able
to assume unconstrained values.

Regularization terms can again be added to the cost func-
tion as discussed before. However, it should be noted that the
constraint to encourage a symmetric factorization of a similarity
matrix S, i.e., the regularization term kS ¡ Wl

>WlkF
2 , can sig-

nificantly increase the computational complexity of the optimi-
zation procedure, as computing Wl

>Wl scales with m2. However,
in practice it is often enough to only train with a subsample of
S using n ¿ m targets, i.e., optimizing

minkS[:, :n] ¡ f 0(X)WlkF
2 + λkS[:n, :n] ¡ Wl

>WlkF
2 ,

with Wl 2 Rd×n and f (X) = S ̂  2 Rm×n, which greatly reduces the
overall complexity and memory requirements of the training
procedure. Even though the number of targets in the output
is reduced, all m training examples can still be used as input
during training.

Instead of limiting the number of targets, it might also be
worth considering whether it is necessary to enforce a sym-

Fig. 2. Similarity encoder (SimEc) architecture. A (deep) neural network, f 0(xi), is used to map the original feature vector xi 2 RD to an
embedding yi 2 Rd. This embedding is then multiplied by another weight matrix Wl 2 Rd×n, which corresponds to the last layer of the full SimEc
network f (xi), to compute r ̂ i 2 Rn, i.e., the approximation of one row of the target matrix R 2 Rm×n. After the SimEc is trained to minimize

kR ¡ f (X)kF
2 given the full feature matrix X 2 Rm×D, it then computes a rank d approximation of R as f (X) = f 0(X)Wl = YWl

Input

Embedding

Output Target

(Deep)
Neural

Network

xi 2 RD, i : {1, ...,m}

yi 2 Rd

ri 2 Rnr̂i 2 Rn

Wl 2 Rd⇥n

f 0(xi) = yi

f(xi) = r̂i

825

Predicting pairwise relations with neural similarity encoders

Bull. Pol. Ac.: Tech. 66(6) 2018

metric factorization of S (as YWl ¼ Wl
>Wl ¼ YY>) at all. If

the SimEc only needs to predict the similarities between a new
sample and the existing samples or even just between the ex-
isting samples themselves, e.g., to fill missing values in S, then
the regularization term can in practice be ignored. The simi-
larities between a new sample x j and the training samples can
then be computed as

f (x j) = f 0(x j)Wl = yjWl = s ̂ j 2 Rm,

instead of f 0(x j) f 0(X)> = yjY>.
A similar choice should be made when factorizing a rect-

angular matrix R. By default a SimEc only learns the map-
ping from one input feature space to the embedding space and
then predicts the values of R by multiplying this embedding
with Wl. This is sufficient in many cases. For example, for an
established social network site, thousands of pieces of new
content are uploaded every second and at the same time older
content becomes irrelevant, while the user base remains fairly
constant. In such a scenario it might be sufficient to simply
predict which users might be interested in a new piece of con-
tent, which can be done by using the full SimEc network to
predict f (xi) = r ̂ i for some content feature vector x i 2 RD . Nev-
ertheless, it is also possible to train a second SimEc network to
additionally project the set of n users into the same embedding
space as some m items, thereby making it possible to predict
ratings for both new items and new users as the scalar product
of their embedding vectors. For this, a SimEc network f1 is
first trained on one set of feature vectors X1 2 Rm×D to ap-
proximate R (or a subset of it). After the training is complete,
these feature vectors are projected into the embedding space
to yield f 1

0(X1) = Y1 2 Rm×d. Then, a second SimEc f2 can be
trained using the second set of feature vectors X2 2 Rn×P to
approximate R> (or again a subset of it), only that in this case
the weights of the last layer are kept fixed as Wl = Y1

>. Both
SimEcs together then provide mapping functions for two dif-
ferent kinds of input feature vectors into the same embedding
space such that f 1

0(X1) f 2
0(X2)

> = Y1Y2
> ¼ R.

2.2.1. Preserving non-metric similarities and predicting
multiple pairwise relations at once. Non-metric similarities
are characterized by an eigenvalue spectrum with significant
negative eigenvalues. Spectral embedding methods such as
kPCA require positive semi-definite similarity matrices to com-
pute the low dimensional embedding of the data and would in
this case discard the information associated with the negative
eigenvalues. However, Laub et al. [46] have shown that this
negative part of the eigenvalue spectrum can reveal interesting
features in the data and therefore should not be ignored.

A non-metric similarity matrix S is equal to the difference
between two similarity matrices S1 and S2, where S1 has the
same p positive eigenvalues as S, while the non-zero eigen-
values of S2 correspond to the q negative eigenvalues of S.
Correspondingly, a factorization of S into YY> would need to
capture the relation between S1 and S2, i.e.,

S = S1 ¡ S2 ¼ YY> = YpYp
> ¡ YqYq

>.

However, the only way to get this negative part of the product
YY> would be for the values of Yq to be imaginary, which is
generally not desirable for such embeddings.

With SimEcs it is nevertheless possible to approximate
a non-metric similarity matrix S. Since during training S is ap-
proximated as f 0(X)Wl = YWl and not YY>, some parts of Y and
Wl can have opposite signs, which makes it possible to not only
approximate S1 but also (–S2). In this case the regularization
term kS ¡ W2

>W2kF
2 would be counterproductive4.

SimEc can also be trained explicitly to preserve the infor-
mation provided by multiple similarity matrices S1, …, Sk. The
easiest way to do this is to simply compute the average of these
similarity matrices and then train a SimEc as before on this
averaged S. However, because SimEcs preserve the informa-
tion associated with the d largest eigenvalues, the embedding
only captures all k similarities if the largest eigenvalues of the
k similarity matrices are equal. Therefore, before computing
their average, the similarity matrices should first be normalized
by dividing them each by their respective largest eigenvalue.

If the focus is not on the similarity preserving embedding
itself, but rather it is important to accurately predict multiple
similarities or other pairwise relations at the same time, then
the SimEc network can be extended to have multiple last layers,
i.e., by choosing Wl 2 Rd×n×k a SimEc can compute

f (X) =  f 0(X)Wl = YWl = R ̂  2 Rm×n×k.

Similarly, in addition to a last layer Wl, the SimEc network can
also be extended by a mirrored version of f 0(xi), thereby adding
a decoder part to the network, which can be used to compute
the pre-image of an embedding like in the deep kernelized au-
toencoder networks [42].

3.	 Experiments and results

In the following, we demonstrate that SimEc can learn a map-
ping from an original input feature space into a similarity pre-
serving embedding space, even if the target similarities were
not computed from the original feature vectors. Furthermore,
we discuss the influence of regularization and the number of
targets on the embedding quality, as well as show that SimEc
can create a faithful embedding even if the target similarity
matrix contains over 90% missing values. Finally, we demon-
strate that SimEc can predict non-metric similarities and mul-
tiple similarities at once.

As SimEcs simultaneously factorize a similarity matrix and
learn a mapping into the similarity preserving embedding space,
the most appropriate method to compare a SimEc’s performance
with is the combination of the eigendecomposition of S, to get
optimal similarity preserving embeddings, and an additional
regression model, trained to learn the mapping from the orig-

4 �It should be noted that a d-dimensional SimEc embedding generally captures
the information associated with the d eigenvalues with the largest absolute
values; should the magnitude of the largest negative eigenvalue be smaller
than the first d positive values, then this information will still be ignored.

826

F. Horn and K.-R. Müller

Bull. Pol. Ac.: Tech. 66(6) 2018

inal feature space to the embedding space. As the embeddings
produced by the regression model will at most be as good as the
original embeddings created by decomposing S [38], in most
experiments we only report the optimal performance achieved
by the eigendecomposition as a reference.

Further details as well as the code to replicate these exper-
iments and more is available online [47].

3.1. Dataset. All experiments are performed on subsets of the
MNIST dataset, which contains 28£28 pixel images depicting
handwritten digits. For the first set of experiments, we randomly
subsampled 10 k images from all classes, of which 80% are
assigned to the training set and the remaining 20% to the test
set. For the second set of experiments, we randomly subsampled
5 k images depicting zeros and sevens and we refer to this as
the “MNIST 0/7’’ dataset.

As input feature vectors we use the 784 pixel values of each
image, which we normalize by their maximum value and center
to have zero mean. The respective target similarity matrices
were also centered (as it is being done for kPCA as well [11])
and, if necessary, normalized to be in the range [–1, 1].

3.2. Mapping into a similarity preserving embedding space.
To demonstrate that SimEc can learn the connection between
data points’ feature vectors and an unrelated target similarity
matrix S, we compute pairwise similarities between the MNIST
images based on their class labels. This similarity matrix is 1 for
a pair of images depicting the same digit and 0 elsewhere. With
increasing embedding dimensionality d, the mean squared error
between the target similarity matrix S and its approximation S ̂ ,
computed as the dot product of the embedding vectors, YY>,
should decrease. The eigendecomposition of S provides the op-
timal similarity preserving embeddings. However, this does not
provide a mapping from the original input feature space to the
embedding space to compute OOS solutions, as for new test
samples the class based similarities are not available. As shown
in Fig. 3, the embeddings produced by a linear SimEc, where
f 0(xi) consists of only a single linear layer mapping the input

vectors into the embedding space, are comparable to those of
a linear ridge regression model that learned the connection be-
tween the feature vectors and the embeddings produced by the
eigendecomposition of S. By using a SimEc with a deeper NN
f 0(xi) with several non-linear hidden layers to map the feature
vectors into the embedding space, the error of the approxima-
tion gets very close to that of the eigendecomposition.

3.3. Of hyperparameters and missing values. Next, we in-
vestigate the influence of hyperparameter choices and missing
values in the target similarity matrix. For this, a SimEc with one
additional hidden layer is trained to create ten dimensional em-
beddings to approximate an RBF kernel matrix. Corresponding
embeddings created with kernel PCA serve as a reference.

First, we analyze the influence of the regularization term
λkS ¡ Wl

>WlkF
2 (Fig. 4 left panel). While the output of the

SimEc network, YWl, always faithfully approximates the target
similarities, the dot product of the embedding vectors, YY>,
only achieves similar accuracies when a symmetric factoriza-
tion of S is enforced.

Fig. 3. Mean squared errors between the target similarity matrix S and
its approximation S

 ̂
, computed as the dot product of the embedding

vectors, YY>, with increasing embedding dimensionality d

Fig. 4. Left: Importance of the regularization term λkS ¡ Wl
>WlkF

2 to ensure not only the output of the SimEc network, YWl, approximates the
target similarity matrix, but also the dot product of the embedding vectors, YY>. With YWl it is only possible to predict the similarities between
new samples and those used for training the network, while with YY> the similarities between new test samples can be computed as well.
Middle: Even if only a fraction of targets is used for training, the mean squared error between YY>. and S is close to the optimal error achieved
by kernel PCA. Right: Influence of missing values in the target similarity matrix. Kernel PCA computed on the full matrix again serves as the
optimal reference error, while the green curve depicts the error achieved by computing the eigendecomposition of the matrix where the missing

values were filled with the mean of the matrix

827

Predicting pairwise relations with neural similarity encoders

Bull. Pol. Ac.: Tech. 66(6) 2018

As we discussed before, this regularization dramatically
increases the computational complexity and memory require-
ments of the training procedure, as it scales quadratically with
the output dimensionality. However, often only a fraction of the
targets is required for YY> to approximate S reasonably well
(Fig. 4 middle).

As pairwise data can be expensive to collect or be system-
atically unavailable (e.g. in movie ratings), target matrices will

often contain many missing values. An exact eigendecomposi-
tion of a matrix with missing values can not be computed, and
instead these entries in the matrix need to be filled, e.g., by the
mean of the given targets. However, this results in an almost
linear increase in the mean squared error between the full target
matrix and the approximation computed as YY> (Fig. 4 right
panel). With the embeddings created with SimEc, on the other
hand, the target similarities can be faithfully approximated even
if the target matrix contains over 90% missing values.

3.4. Predicting non-metric similarities and more. In the fol-
lowing experiments we demonstrate that SimEc can predict
non-metric similarities and multiple similarities at once. For
this we use the MNIST 0/7 dataset and compute the target sim-
ilarity matrix S using the Simpson similarity score on binarized
feature vectors:

Sij =  #{pixels that are black in both i and j}
min{#{black pixels in i}, #{black pixels in j}}

.

As previously shown by Laub et al. [46], the eigenvalue spec-
trum of this matrix contains significant negative eigenvalues
and embeddings based on the corresponding eigenvectors reveal
interesting features. While the embedding based on the largest
eigenvalues separates the data points by class (Fig. 5 top), an
embedding based on the most negative eigenvalues sorts the
images by stroke weight (Fig. 5 middle). SimEc are able to
create embeddings based on non-metric similarities as well.
While the embedding learned by a SimEc (with one hidden
layer) captures the features associated with the negative eigen-
values, their dot product would not optimally approximate S,
as for this the dimensions associated with the negative eigen-
values would have to be imaginary. However, by computing
S ̂  = YWl the non-metric similarities can be predicted quite well
(Fig. 6), with errors closer to those of the embeddings based

Fig. 5. Embedding of the MNIST 0/7 dataset based on the largest
(top) and most negative (middle) eigenvalues of the Simpson similarity
matrix, as well as a SimEc embedding of dimensionality d = 2 based
on the sum of the similarity matrices associated with the largest and

most negative eigenvalues (bottom)

Fig. 6. Mean squared errors of the non-metric similarity matrix S
and the dot product of the embeddings based on the largest positive
eigenvalues, the embeddings based on the largest absolute eigenvalues
(where dimensions associated with negative eigenvalues were cast as

imaginary numbers), and the prediction of S with a SimEc as YWl

Embedding with largest components

2n
d

co
m

po
ne

nt

1st component (class)

Embedding with SimEc

2n
d

co
m

po
ne

nt

1st component

Embedding with most negative components

la
st

 c
om

po
ne

nt
 (s

tr
ok

e
w

ei
gh

t)

2nd last component

828

F. Horn and K.-R. Müller

Bull. Pol. Ac.: Tech. 66(6) 2018

on both positive and negative eigenvalues instead of those of
the embeddings based only on the largest positive eigenvalues
(i.e. a regular kPCA embedding).

As discussed in the previous section, the non-metric simi-
larity matrix can be decomposed as S = S1 ¡ S2, where S1 and
S2 can be computed as the dot product of the embeddings based
on positive and negative eigenvalues respectively. Besides pre-
serving features corresponding to both parts of the eigenvalue
spectrum, SimEc can also be used to directly predict these two
similarity matrices simultaneously. This can either be done by
computing a new similarity matrix as S1 + S2 (Fig. 5 bottom),
or by stacking the two matrices, thereby creating a tensor
2 Rm×m×2. To preserve the information present in both simi-
larity matrices to an equal extent, S1 and S2 first have to be
normalized by their respective largest eigenvalue, as SimEc
generally learn embeddings based on the overall largest eigen-
values. Unsurprisingly, the mean squared error between either
S1 or S2 and S ̂ computed with a SimEc trained to approximate
S1 + S2 is worse than that of a SimEc trained specifically to
approximate either S1 or S2 alone (Fig. 7). The dot product of
the embedding vectors YY> of a SimEc trained to approximate
the tensor containing the stacked matrices S1 and S2 also results
in an error comparable to that of the S1 + S2 SimEc, because
a single embedding contains the information about both simi-
larity matrices here as well. However, the prediction of the in-
dividual similarity matrices in the tensor as YWl yields errors as
low as the prediction of the SimEc trained to approximate only

one of the matrices, because the last dimension of the tensor
Wl contains information specific to either one of the similarity
matrices.

4.	 Discussion

Representing intrinsically complex structured data is an ubiq-
uitous challenge in machine learning. While spectral methods
such as kernel PCA provide optimal similarity preserving em-
beddings by computing the eigendecomposition of a similarity
matrix, they are unable to produce OOS solutions for new test
samples if their similarity to the original training examples
can not be computed. Neural network based methods provide
a mapping function from an original input feature space to
the embedding space and can therefore also approximate the
pairwise relations between new data points. However, existing
methods were not designed to predict non-metric similarities
or multiple pairwise relations simultaneously.

SimEc are a novel neural network architecture constructed
for simultaneously learning a mapping from an original input
feature space into a similarity preserving embedding space
while factorizing a target matrix with pairwise relations. As we
have demonstrated in multiple experiments, SimEc can provide
OOS solutions even if the target similarities were obtained by
an unknown process such as human ratings, they can efficiently
handle missing values in the target matrix, and in addition they

Fig. 7. Mean squared errors when approximating either S1 (left) or S2 (right). The eigendecomposition of the respective matrix yields the optimal
similarity preserving embedding. Depicted in green are the errors achieved with a SimEc trained to approximate either S1 or S2 alone; shown in
cyan are the errors achieved with a SimEc trained to approximate the tensor containing the stacked matrices S1 and S2; while the purple curves
show the errors achieved with a SimEc trained to approximate the matrix S1 + S2. Continuous lines depict the prediction of S as YWl, while

dashed lines correspond to the approximation as YY>

829

Predicting pairwise relations with neural similarity encoders

Bull. Pol. Ac.: Tech. 66(6) 2018

are able to predict non-metric similarities as well as multiple
similarities at once.

While so far we mainly studied SimEcs based on fairly
simple feed-forward neural networks, it appears promising to
consider also deeper NN and more elaborate architectures, such
as CNNs, for the initial mapping step to the embedding space.
In this manner, hierarchical structures in complex data could be
better reflected. Note furthermore that prior knowledge as well
as more general error functions could be employed to tailor the
embedding to the given targets.

In this paper we focused on using SimEc to predict pairwise
similarities, but further application scenarios involving other
pairwise relations between data points should be explored. For
example, it has already been shown that a variant of SimEcs,
called context encoders (ConEc) [16] learn meaningful word
embeddings by extending the word2vec model [13, 14] for
words with multiple meanings as well as to create out-of-vocab-
ulary embeddings. The SimEc framework could also improve
recommender systems or drug-protein interaction predictions
and be interesting for usage in the sciences e.g., psychophysics
[48], human quality judgment experiments [49], or materials
discovery [50, 51].

Furthermore, future work will aim to interpret the predic-
tions made by SimEc using layer-wise relevance propagation
[52‒55].

Acknowledgements. We would like to thank Antje Relitz, Max-
imilian Alber, and Christoph Hartmann for their helpful com-
ments on earlier versions of this manuscript. Franziska Horn
acknowledges funding from the Elsa-Neumann scholarship
from the universities of Berlin. This work was supported by
the Federal Ministry of Education and Research (BMBF) for the
Berlin Big Data Center BBDC (No. 01IS14013A). Additional
support was provided by the BK21 program funded by the Ko-
rean National Research Foundation Grant (No. 2012‒005741)
and the Institute for Information and Communications Tech-
nology Promotion (IITP) grant funded by the Korea government
(No. 2017‒0‒00451).

References
	 [1]	 C.M. Bishop, Pattern Recognition and Machine Learning (In-

formation Science and Statistics). Secaucus, NJ, USA: Springer-
Verlag New York, Inc., 2006.

	 [2]	 T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Sta-
tistical Learning. Springer Series in Statistics, New York, NY,
USA: Springer New York Inc., 2001.

	 [3]	 T. Hofmann and J. M. Buhmann, “Pairwise data clustering by
deterministic annealing,” IEEE Transactions on Pattern Analysis
and Machine Intelligence 19 (1), 1–14, 1997.

	 [4]	 B. Schölkopf and A. J. Smola, Learning with Kernels: Support
Vector Machines, Regularization, Optimization, and Beyond.
MIT Press, 2002.

	 [5]	 L.v.d. Maaten and G. Hinton, “Visualizing data using t-SNE,”
Journal of Machine Learning Research 9, 2579– 2605, 2008.

	 [6]	 B. Schölkopf, A. Smola, and K.-R. Müller, “Nonlinear compo-
nent analysis as a kernel eigenvalue problem,” Neural Compu-
tation, 10 (5), 1299–1319, 1998.

	 [7]	 J. B. Tenenbaum, V. De Silva, and J. C. Langford, “A global
geometric framework for nonlinear dimensionality reduction,”
Science 290 (5500), 2319–2323, 2000.

	 [8]	 S. T. Roweis and L. K. Saul, “Nonlinear dimensionality reduction
by locally linear embedding,” Science 290 (5500), 2323–2326,
2000.

	 [9]	 F. Horn, “Interactive exploration and discovery of scientific pub-
lications with pubvis,” arXiv preprint arXiv:1706.08094, 2017.

	[10]	 S. Mika, B. Schölkopf, A. J. Smola, K.-R. Müller, M. Scholz,
and G. Rätsch, “Kernel pca and de-noising in feature spaces,” in
Advances in Neural Information Processing Systems, 536– 542,
1999.

	[11]	 K.-R. Müller, S. Mika, G. Rätsch, K. Tsuda, and B. Schölkopf,
“An introduction to kernel-based learning algorithms,” IEEE
Transactions on Neural Networks 12 (2), 181–201, 2001.

	[12]	 B. Schölkopf, S. Mika, C. J. Burges, Knirsch, K.-R. Müller, G.
Rätsch, and A. J. Smola, “Input space versus feature space in
kernel-based methods,” IEEE Transactions on Neural Networks,
10 (5), 1000–1017, 1999.

	[13]	 T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient esti-
mation of word representations in vector space,” arXiv preprint
arXiv:1301.3781, 2013.

	[14]	 T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean,
“Distributed representations of words and phrases and their com-
positionality,” in Advances in Neural Information Processing
Systems, 3111–3119, 2013.

	[15]	 Z. S. Harris, “Distributional structure,” Word 10 (2‒3), pp. 146–
162, 1954.

	[16]	 F. Horn, “Context encoders as a simple but powerful extension
of word2vec,” in Proceedings of the 2nd Workshop on Represen-
tation Learning for NLP, 10–14, Association for Computational
Linguistics, 2017.

	[17]	 O. Levy and Y. Goldberg, “Neural word embedding as implicit
matrix factorization,” in Advances in Neural Information Pro-
cessing Systems, 2177–2185, 2014.

	[18]	 R. Collobert, J. Weston, L. Bottou, M. Karlen, K. Kavukcuoglu,
and Kuksa, “Natural language processing (almost) from scratch,”
Journal of Machine Learning Research 12, pp. 2493–2537, 2011.

	[19]	 Q.V. Le and T. Mikolov, “Distributed representations of sen-
tences and documents,” arXiv preprint arXiv:1405.4053, 2014.

	[20]	 J. Turian, L. Ratinov, and Y. Bengio, “Word representations:
a simple and general method for semi-supervised learning,” in
Proceedings of the 48th annual meeting of the Association for
Computational Linguistics, 384–394, Association for Computa-
tional Linguistics, 2010.

	[21]	 M. Gönen, “Predicting drug–target interactions from chemical
and genomic kernels using bayesian matrix factorization,” Bio-
informatics, 28 (18), 2304–2310, 2012.

	[22]	 Y. Koren, R. Bell, and C. Volinsky, “Matrix factorization tech-
niques for recommender systems,” Computer 42 (8), 2009.

	[23]	 B. Sarwar, G. Karypis, J. Konstan, and J. Riedl, “Application of
dimensionality reduction in recommender system-a case study,”
tech. rep., Minnesota Univ Minneapolis Dept of Computer Sci-
ence, 2000.

	[24]	 O. Barkan and N. Koenigstein, “Item2vec: neural item embed-
ding for collaborative filtering,” in 26th International Workshop
on Machine Learning for Signal Processing (MLSP), 1–6, IEEE,
2016.

	[25]	 A. Ahmed, N. Shervashidze, S. Narayanamurthy, V. Josifovski,
and A. J. Smola, “Distributed large-scale natural graph factor-
ization,” in Proceedings of the 22nd International Conference
on World Wide Web, 37–48, ACM, 2013.

830

F. Horn and K.-R. Müller

Bull. Pol. Ac.: Tech. 66(6) 2018

	[26]	 W. L. Hamilton, R. Ying, and J. Leskovec, “Representation
learning on graphs: Methods and applications,” arXiv preprint
arXiv:1709.05584, 2017.

	[27]	 F. Chollet et al., “Keras.” https://keras.io, 2015.
	[28]	 Y. Hu, Y. Koren, and C. Volinsky, “Collaborative filtering for

implicit feedback datasets,” in Data Mining, 2008. ICDM’08.
Eighth IEEE International Conference on, 263–272, IEEE,
2008.

	[29]	 E. Oja, “Simplified neuron model as a principal component ana-
lyzer,” Journal of Mathematical Biology 15 (3), 267–273, 1982.

	[30]	 A. Cichocki, “Neural network for singular value decomposition,”
Electronics Letters 28 (8), 784–786, 1992.

	[31]	 A. Cichocki and R. Unbehauen, “Neural networks for computing
eigenvalues and eigenvectors,” Biological Cybernetics 68 (2),
155–164, 1992.

	[32]	 V. N. Vapnik, The Nature of Statistical Learning Theory.
Springer- Verlag New York, Inc., 1995.

	[33]	 A. Rahimi and B. Recht, “Random features for large-scale kernel
machines,” in Advances in Neural Information Processing Sys-
tems, pp. 1177–1184, 2007.

	[34]	 M. Alber, P.-J. Kindermans, K. Schütt, K.-R. Müller, and F. Sha,
“An empirical study on the properties of random bases for kernel
methods,” in Advances in Neural Information Processing Sys-
tems, pp. 2760–2771, 2017.

	[35]	 Y. Bengio, J.-f. Paiement, Vincent, O. Delalleau, N. L. Roux,
and M. Ouimet, “Out-of-sample extensions for lle, isomap, mds,
eigenmaps, and spectral clustering,” in Advances in Neural In-
formation Processing Systems, 177–184, 2004.

	[36]	 J. Mao and A. K. Jain, “Artificial neural networks for feature
extraction and multivariate data projection,” IEEE Transactions
on Neural Networks 6 (2), 296–317, 1995.

	[37]	 Y. W. Teh and S. T. Roweis, “Automatic alignment of local rep-
resentations,” in Advances in Neural Information Processing
Systems, 865–872, 2003.

	[38]	 M. A. Carreira-Perpinán and M. Vladymyrov, “A fast, universal
algorithm to learn parametric nonlinear embeddings,” in Ad-
vances in Neural Information Processing Systems, 253–261,
2015.

	[39]	 L. van der Maaten, “Learning a parametric embedding by pre-
serving local structure,” in International Conference on Artificial
Intelligence and Statistics, 384–391, 2009.

	[40]	 K. Bunte, M. Biehl, and B. Hammer, “A general framework for
dimensionality-reducing data visualization mapping,” Neural
Computation 24 (3), 771–804, 2012.

	[41]	 D. Lowe and M. Tipping, “Feed-forward neural networks and
topographic mappings for exploratory data analysis,” Neural
Computing & Applications 4 (2), 83–95, 1996.

	[42]	 M. Kampffmeyer, S. Løkse, F. M. Bianchi, R. Jenssen, and L.
Livi, “Deep kernelized autoencoders,” in Scandinavian Confer-
ence on Image Analysis, 419–430, Springer, 2017.

	[43]	 R. Hadsell, S. Chopra, and Y. LeCun, “Dimensionality reduction
by learning an invariant mapping,” in Computer vision and pat-
tern recognition, 2006 IEEE computer society conference on, 2,
1735–1742, IEEE, 2006.

	[44]	 P.-S. Huang, X. He, J. Gao, L. Deng, A. Acero, and L. Heck,
“Learning deep structured semantic models for web search using
clickthrough data,” in Proceedings of the 22nd ACM interna-
tional conference on information & knowledge management, pp.
2333–2338, ACM, 2013.

	[45]	 L. Wu, A. Fisch, S. Chopra, K. Adams, A. Bordes, and J.
Weston, “Starspace: Embed all the things!,” arXiv preprint
arXiv:1709.03856, 2017.

	[46]	 J. Laub and K.-R. Müller, “Feature discovery in non-metric pair-
wise data,” Journal of Machine Learning Research 5, 801–818,
2004.

	[47]	 F. Horn. https://github.com/cod3licious/simec/blob/ master/ex-
periments_ paper.ipynb.

	[48]	 J. Laub, K.-R. Müller, F.A. Wichmann, and J.H. Macke, “Inducing
metric violations in human similarity judgements,” in Advances
in Neural Information Processing Systems, 777–784, 2007.

	[49]	 S. Bosse, D. Maniry, K.-R. Müller, T. Wiegand, and W. Samek,
“Deep neural networks for no-reference and full-reference image
quality assessment,” IEEE Transactions on Image Processing,
27 (1), 206–219, 2018.

	[50]	 K.T. Schütt, F. Arbabzadah, S. Chmiela, K.-R. Müller, and A.
Tkatchenko, “Quantum-chemical insights from deep tensor
neural networks,” Nature communications 8, 13890, 2017.

	[51]	 K. T. Schütt, H. E. Sauceda, P.-J. Kindermans, A. Tkatchenko,
and K.-R. Müller, “Schnet–a deep learning architecture for mole-
cules and materials,” The Journal of Chemical Physics 148 (24),
241722, 2018.

	[52]	 L. Arras, F. Horn, G. Montavon, K.-R. Müller, and W. Samek,
“what is relevant in a text document?”: An interpretable machine
learning approach,” PLOS ONE 12 (8), e0181142, 2017.

	[53]	 S. Bach, A. Binder, G. Montavon, F. Klauschen, K.-R. Müller,
andW. Samek, “On pixel-wise explanations for non-linear classi-
fier decisions by layer-wise relevance propagation,” PLOS ONE,
10 (7), e0130140, 2015.

	[54]	 P.-J. Kindermans, K.T. Schütt, M. Alber, K.-R. Müller, and
S. Dähne, “Patternnet and patternlrp–improving the interpretability
of neural networks,” arXiv preprint arXiv:1705.05598, 2017.

	[55]	 G. Montavon, S. Lapuschkin, A. Binder, W. Samek, and K.-R.
Müller, “Explaining nonlinear classification decisions with deep
taylor decomposition,” Pattern Recognition 65, 211– 222, 2017.

