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Abstract. Matrix factorization is at the heart of many machine learning algorithms, for example, dimensionality reduction (e.g. kernel PCA) or 
recommender systems relying on collaborative filtering. Understanding a singular value decomposition (SVD) of a matrix as a neural network 
optimization problem enables us to decompose large matrices efficiently while dealing naturally with missing values in the given matrix. But most 
importantly, it allows us to learn the connection between data points’ feature vectors and the matrix containing information about their pairwise 
relations. In this paper we introduce a novel neural network architecture termed similarity encoder (SimEc), which is designed to simultaneously 
factorize a given target matrix while also learning the mapping to project the data points’ feature vectors into a similarity preserving embedding 
space. This makes it possible to, for example, easily compute out-of-sample solutions for new data points. Additionally, we demonstrate that 
SimEc can preserve non-metric similarities and even predict multiple pairwise relations between data points at once.
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with the analysis of graphs, such as social networks, where the 
pairwise relations between nodes are of key importance [25, 26].

Such pairwise relations between data points can be rep-
resented as a rectangular matrix R 2 Rm×n, which could, for 
example, contain the ratings of m items by n users. In the fol-
lowing, we will primarily focus on pairwise similarities between 
m data points, stored in a square symmetric matrix S 2 Rm×m, 
but also discuss how our results generalize to arbitrary pairwise 
relations R.

In this paper, we introduce our novel neural network archi-
tecture called similarity encoder (SimEc), which learns (low 
dimensional) similarity preserving embeddings for data points. 
To be more precise, SimEc represent the data in such a way that 
the scalar product between the embedding vectors yi, yj 2 Rd of 
two data points approximates their similarity, i.e., yi yj

> ¼ Sij. 
Furthermore, given some original (high dimensional) feature 
vectors xi 2 RD8i 2 {1, …, m}, a SimEc additionally provides 
a linear or non-linear mapping function f 0 : xi ! yi, which can 
be used to project new data points into the similarity preserving 
embedding space, i.e., to compute out-of-sample (OOS) solu-
tions. Here it is important to note that these feature vectors 
do not have to be directly related to the given target similar-
ities stored in S, in fact, we do not need to know how S was 
computed at all, e.g., it could also contain human similarity 
ratings. Furthermore, SimEc can deal with missing values in 
the similarity matrix S, can embed data points based on metric 
or non-metric similarities, and can be used to predict multiple 
pairwise similarities or other relations between data points at 
once. We provide a keras [27] based Python implementation of 
the model, which can be trained efficiently on GPUs1.

1 https://github.com/cod3licious/simec

1.	 Introduction

Pairwise relations, such as similarities, between data points 
play an important role in many areas of machine learning (ML) 
[1‒4]. Dimensionality reduction methods such as t-SNE [5], 
kernel PCA (kPCA) [6], isomap [7], and locally linear embed-
ding (LLE) [8] create low dimensional representations of data 
points by preserving their pairwise similarities, distances, or 
local neighborhoods in the embedding space, e.g., to create in-
formative visualizations of a dataset [9]. Similarity preserving 
embeddings of data points can also serve as useful feature rep-
resentations for other (supervised) ML tasks. For example, by 
computing the eigendecomposition of a kernel (i.e. similarity) 
matrix, kPCA projects the data into a feature space where data 
points can become linearly separable and noise in the data can be 
reduced [10‒12]. In natural language processing (NLP) settings, 
the popular word2vec model [13, 14] learns an embedding for 
each word in the vocabulary by relying on the principle that 
similar words appear in similar contexts [15‒17]. Using word 
embeddings as features can improve the performance in many 
NLP tasks such as named entity recognition or text classification 
[18‒20]. The prediction of pairwise relations themselves is at 
the heart of important real world ML applications such as the 
prediction of whether or not a drug could interact with a certain 
protein [21] or for recommender systems, where the task is to 
predict the rating a user would give to a certain item [22, 23] or 
to identify similar items that could be promoted alongside an 
item of interest [24]. Another active research area is concerned 
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After relating our model to previous work, we detail its 
architecture in Section 2 and then demonstrate its effectiveness 
in multiple experiments (Section 3) before concluding the paper 
with a discussion.

1.1. Related work. The optimal (in a least squares sense) low 
dimensional embeddings to factorize a matrix R or S can be 
found by computing a singular value decomposition (SVD) or 
eigendecompositon of the matrix and using the d largest eigen-
values and corresponding eigenvectors to compute a low rank 
approximation of the matrix. However, performing an SVD is 
computationally very expensive for large matrices, and in these 
cases requires the use of approximate iterative methods [22]. 
Furthermore, an exact decomposition can not be computed for 
matrices that contain missing values, in which case weighted 
error functions need to be employed [28]. Back in 1982, a simple 
neural network (NN) was conceived to compute a PCA [29] and 
in 1992, NNs were proposed as a method to efficiently compute 
the SVD [30] or eigendecomposition [31] of a matrix while 
naturally dealing with missing values in the target matrix, which 
we will discuss in more detail in Section 2.1.

If a similarity matrix was computed with a known support 
vector kernel function [4, 11, 32], a manually devised, ker-
nel-specific random mapping from the original input to the 
kernel feature space could be used to create similarity pre-
serving embeddings for large datasets very efficiently [33]. By 
interpreting this mapping as a neural network, it can be fur-
ther fine-tuned to the dataset at hand [34]. But while spectral 
methods such as kPCA provide optimal similarity preserving 
embeddings based on the pairwise similarities for a given set 
of data points, a critical issue remains, namely that they can 
only compute OOS solutions, i.e., embeddings for new tests 
points, if their similarity to the original training examples can 
be computed with a known kernel function [35]. SimEc on 
the other hand learn a direct mapping from the original fea-
ture space to the similarity preserving embedding space and 
therefore do not require knowledge of how the pairwise sim-
ilarities were computed (Fig. 1). It would be possible to train 
an additional regression model to learn the mapping from the 
original input feature space to the embeddings computed by 
the spectral method [36, 37]. However, the best similarity pre-
serving embeddings that can be realized as a transformation of 

the original feature vectors might not necessarily correspond to 
the embeddings found by the spectral method, thereby losing 
some information by the mapping, resulting in unnecessarily 
poor similarity approximations [38]2.

Previous work concerned with simultaneously factorizing a 
matrix with pairwise relations while learning a mapping from 
the original input space to the low dimensional embedding space 
can be categorized into the two approaches outlined below. In 
both cases, the mapping from the input to the embedding space 
is usually realized by neural networks, as they provide the flex-
ibility to learn arbitrary functions.

1.1.1. Embedding with a single NN. In the first approach, 
a single neural network is trained to map the points into a sim-
ilarity preserving embedding space by computing the embed-
dings for a batch of training samples and then comparing the 
pairwise similarities (or distances) of these embedded points 
against the target similarities to compute the error used in the 
backpropagation procedure to tune the network’s parameters. 
With this approach, extensions for t-SNE [39] and other classic 
manifold learning methods [40, 41] were developed, which 
enable the computation of OOS solutions. A particularly in-
teresting realization of this approach are deep kernelized au-
toencoders [42], which train an autoencoder network with an 
additional objective to not only minimize the reconstruction 
error of the data points themselves but also the mismatch be-
tween the dot product of a batch of embedding vectors and the 
corresponding block from a kernel matrix. The decoder part 
of the autoencoder network thereby also provides a mapping 
from the embedding space back to the original feature space, 
which can be used to compute the pre-image of an embedding 
vector [10]. By directly minimizing kS ¡ YY>k, these methods 
successfully learn similarity preserving embeddings, however, 
because they always operate on batches of points, these methods 
scale quadratically and efficient training is highly dependent 
on the choice of the batch size, requiring either lots of memory 
or many combinations of randomly chosen samples to cover 
all pairwise similarities. In an effort to improve on this, the 
method of auxiliary coordinates can be used to train a NN in 
an alternating fashion, in one step optimizing the mapping from 
the input to the embedding space, in the other step improving 
the similarity approximation of the embedding itself [38]. As 
we will see in Section 2.2, while the weight matrix of the last 
layer of the SimEc architecture could be interpreted as a set of 
auxiliary coordinates as well, training a SimEc network does 
not require alternating steps in the optimization procedure.

The above mentioned methods all learn embeddings based 
on pairwise similarities, but can not generalize to other types 

2 �For example, eigenvalue d might only be slightly larger than eigenvalue 
d + 1, however, the dth eigenvector might contain information that is not 
present in the original feature vectors, while the information encoded in ei-
genvector d + 1 can be preserved by a transformation of the feature vectors. 
By learning the mapping and factorization together, it is possible to create 
a d-dimensional embedding that instead retains the information from the 
d + 1 eigenvalue and vector, thereby resulting in an only slightly worse ap-
proximation of S compared to the spectral method, while not losing any accu-
racy in the mapping step.

Fig. 1. Kernel PCA and SimEc both aim to project the data points into 
an embedding space where the target similarities can be approximated 
by the scalar product of the embedding vectors, but kernel PCA also 
needs to compute a kernel map, i.e., the similarities to the training data 

points, to be able to embed new test samples

kPCAX

k(xi,xj) S

Y

train & test

SimEcX

S

Y

?
train

test

Objective: Y Y > ⇡ S

Kernel PCA Similarity Encoder



823

Predicting pairwise relations with neural similarity encoders

Bull.  Pol.  Ac.:  Tech.  66(6)  2018

of pairwise relations, specifically those involving two different 
kinds of data, e.g., ratings of items by users.

1.1.2. Learning two mappings into the same embedding 
space. This brings us to the second approach, where two net-
works are trained to simultaneously map two (different kinds 
of) input feature vectors into the same embedding space. Again, 
the objective is for the similarity between the two embedding 
vectors to approximate the respective pairwise relation stored in 
the target matrix R. For pairwise similarities, the mapping into 
the embedding space can also be realized by a siamese network, 
i.e., two networks with shared parameters operating on the same 
kinds of input data [43]. As these networks operate on pairs of 
samples, training again scales quadratically, but here at least 
the batch sizes for both networks can be chosen independently. 
Furthermore, this approach is often employed for recommender 
systems [44], where the target matrix R is typically very very 
sparse, which means by training only on pairs of samples with 
known targets, the training time can be greatly reduced. In these 
cases, often some form of negative sampling is employed during 
training to consider for every positive sample pair (e.g. a song 
a user has listened to) some negative pairs (songs a user has not 
listened to) as well, as these can provide additional information 
[45]. With a fast training procedure for target matrices where 
the number of non-zero elements is much smaller than m ¢ n 
and the benefit of learning multiple mapping functions simul-
taneously for projecting different kinds of feature vectors into 
the same embedding space, this second approach is very useful 
for many applications scenarios. SimEc, on the other hand, are 
designed to efficiently factorize dense matrices (while being 
able to handle missing values in the target matrix) and, while 
they rely on only a single neural network to map input features 
into a similarity preserving embedding space, we discuss in the 
next section how they can be trained to predict multiple pair-
wise relations at once based on the same embedding.

2.	 The SimEc model

In the following, we will first describe how neural networks 
can realize the computation of an SVD of a rectangular ma-
trix R 2 Rm×n [30] and the eigendecomposition of a square 
symmetric matrix S 2 Rm×m [31]. Then we detail how these 
models can be extended to arrive at the SimEc neural network 
architecture.

2.1. Matrix factorization with neural networks. With sin-
gular value decomposition (SVD), a matrix R 2 Rm×n can be 
decomposed as

R = UΣV>,

where U 2 Rm×m and V 2 Rn×n contain the eigenvectors of RR> 
and R>R respectively while the corresponding eigenvalues are 
stored inΣ 2 Rm×n. By using only the d largest eigenvalues and 
corresponding eigenvectors, a low rank approximation of R can 
be obtained, i.e., R ¼ U[:, :d ]Σ[:d, :d ]V

>
[:d, :].

By setting W1 = U[:, :d ] Σ[:d, :d ] and W2 =  Σ[:d, :d ]V
>
[:d, :], the 

low rank approximation of R can be rewritten as

R ¼ W1W2 = ImW1W2,

where Im 2 Rm×m is the identity matrix.
A simple feed forward neural network f (xi) can now be 

constructed with two layers defined by the weight matrices 
W1 2 Rm×d and W2 2 Rd×n and without any non-linear activa-
tion functions. Given some input vector xi 2 Rm, the first layer 
computes

f 0(xi) = xiW1 = yi,

where we call yi 2 Rd the embedding of the ith data point xi, 
with i 2 {1, …, m}. With both layers, the network computes

	 f (xi) =  f 0(xi)W2 = (xiW1)W2 = yiW2 = r ̂ i,� (1)

the n-dimensional vector r ̂ i. Expressed in matrix notation, given 
an input matrix X 2 Rm×m the network first computes an embed-
ding matrix Y 2 Rm×d and from it the output R ̂  2 Rm×n:

f (X ) = f 0(X )W2 = (XW1)W2 = YW2 = R ̂ .

If the network is now trained (with backpropagation) to mini-
mize the mean squared error of its output to a target matrix R, i.e.

minkR ¡ f (X )kF
2 ,

while we use as input to the network the identity matrix, i.e., 
X = Im, then, once the weights of the network have converged 
to a local optimum, W1W2 is a low rank approximation of the 
matrix R 2 Rm×n [30].

When computing an SVD of a matrix, the eigenvectors 
stored in the matrices U and V are orthogonal (i.e. V>V = In), 
which can be added as a further constraint to the cost function:

minkR ¡ ImW1W2kF
2 + λkIdW2W2

> ¡ W2W2
>kF

2 ,

where λ is a hyperparameter to control the strength of this reg-
ularization3.

Should R contain missing values, then the error used in the 
backpropagation procedure to tune the network’s parameters is 
only computed considering the available entries of the matrix. 
In this case especially it is advisable to additionally use other 
regularization techniques such as adding `2 regularization terms 
to the cost function.

As the decomposition of a square symmetric matrix S 2 Rm×m  
into its eigenvalues and vectors is a special case of an SVD 

3 �While this will encourage orthogonal rows in W2, since the rows do not 
need to have unit length, the values on the diagonal of W2W2

> should not be 
penalized. This kind of regularization is usually only necessary if d is chosen 
to be greater than the number of significant eigenvalues. Please note that the 
rows of W2 are not necessarily ordered by the magnitude of the corresponding 
eigenvalues.
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(where V = U ), the same NN can be used, only with an ad-
ditional constraint to learn a symmetric factorization, i.e., to 
encourage ImW1 = Y = W2

>. This can be achieved with the cost 
function

minkS ¡ ImW1W2kF
2 + λkS ¡ W2

>W2kF
2 ,

where, after convergence, YW2 ¼ W2
>W2 ¼ YY> ¼ S. This also 

results in the same eigenvector based embedding Y 2 Rm×d as 
found by kernel PCA.

2.2. Similarity encoders. Now that the factorization of a matrix 
R or S is expressed in terms of optimizing a neural network, 
this setup can be further extended to yield our SimEc architec-
ture. In particular, the first linear layer of the neural network, 
f 0(xi) = xiW1 = yi, can be replaced by any kind of (deep) neural 
network to map arbitrary feature vectors xi 2 RD8i 2 {1, …, m} 
into the low dimensional embedding space (Fig. 2). Equation 1 
then becomes

f (xi) = f 0(xi)Wl = yiWl = r ̂ i ,

where again yi 2 Rd is the embedding of the ith data point xi 
and Wl 2 Rd×n is the weight matrix of the last (linear) layer 
of the full network f (xi), while f 0(xi) could, for example, be 
a convolutional neural network (CNN) mapping images into 
the embedding space. This similarity encoder network is again 

trained to minimize kR ¡ f (X )kF
2 , thereby learning the factor-

ization R ¼ f 0(X )Wl = YWl.
If the output of the SimEc should always be in a specific 

range, e.g., if the target matrix R contains star ratings from 1 to 
5, it may be beneficial to add an additional non-linearity after 
computing f 0(xi)Wl to ensure the predicted values are within 
this range. However, there should not be any non-linearity at 
the last layer of f 0(xi) as the embedding values yi should be able 
to assume unconstrained values.

Regularization terms can again be added to the cost func-
tion as discussed before. However, it should be noted that the 
constraint to encourage a symmetric factorization of a similarity 
matrix S, i.e., the regularization term kS ¡ Wl

>WlkF
2 , can sig-

nificantly increase the computational complexity of the optimi-
zation procedure, as computing Wl

>Wl scales with m2. However, 
in practice it is often enough to only train with a subsample of 
S using n ¿ m targets, i.e., optimizing

minkS[:, :n ] ¡ f 0(X )WlkF
2 + λkS[:n, :n ] ¡ Wl

>WlkF
2 ,

with Wl 2 Rd×n and f (X ) = S ̂  2 Rm×n, which greatly reduces the 
overall complexity and memory requirements of the training 
procedure. Even though the number of targets in the output 
is reduced, all m training examples can still be used as input 
during training.

Instead of limiting the number of targets, it might also be 
worth considering whether it is necessary to enforce a sym-

Fig. 2. Similarity encoder (SimEc) architecture. A (deep) neural network, f 0(xi), is used to map the original feature vector xi 2 RD to an 
embedding yi 2 Rd. This embedding is then multiplied by another weight matrix Wl 2 Rd×n, which corresponds to the last layer of the full SimEc 
network f (xi), to compute r ̂ i 2 Rn, i.e., the approximation of one row of the target matrix R 2 Rm×n. After the SimEc is trained to minimize 

kR ¡ f (X )kF
2  given the full feature matrix X 2 Rm×D, it then computes a rank d approximation of R as f (X ) = f 0(X )Wl = YWl
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metric factorization of S (as YWl ¼ Wl
>Wl ¼ YY>) at all. If 

the SimEc only needs to predict the similarities between a new 
sample and the existing samples or even just between the ex-
isting samples themselves, e.g., to fill missing values in S, then 
the regularization term can in practice be ignored. The simi-
larities between a new sample x j and the training samples can 
then be computed as

f (x j) = f 0(x j)Wl = yjWl = s ̂ j 2 Rm,

instead of f 0(x j) f 0(X)> = yjY>.
A similar choice should be made when factorizing a rect-

angular matrix R. By default a SimEc only learns the map-
ping from one input feature space to the embedding space and 
then predicts the values of R by multiplying this embedding 
with Wl. This is sufficient in many cases. For example, for an 
established social network site, thousands of pieces of new 
content are uploaded every second and at the same time older 
content becomes irrelevant, while the user base remains fairly 
constant. In such a scenario it might be sufficient to simply 
predict which users might be interested in a new piece of con-
tent, which can be done by using the full SimEc network to 
predict f (xi) = r ̂ i  for some content feature vector x i 2 RD . Nev-
ertheless, it is also possible to train a second SimEc network to 
additionally project the set of n users into the same embedding 
space as some m items, thereby making it possible to predict 
ratings for both new items and new users as the scalar product 
of their embedding vectors. For this, a SimEc network f1 is 
first trained on one set of feature vectors X1 2 Rm×D to ap-
proximate R (or a subset of it). After the training is complete, 
these feature vectors are projected into the embedding space 
to yield f 1

0(X1) = Y1 2 Rm×d. Then, a second SimEc f2 can be 
trained using the second set of feature vectors X2 2 Rn×P to 
approximate R> (or again a subset of it), only that in this case 
the weights of the last layer are kept fixed as Wl = Y1

>. Both 
SimEcs together then provide mapping functions for two dif-
ferent kinds of input feature vectors into the same embedding 
space such that f 1

0(X1) f 2
0(X2)

> = Y1Y2
> ¼ R.

2.2.1. Preserving non-metric similarities and predicting 
multiple pairwise relations at once. Non-metric similarities 
are characterized by an eigenvalue spectrum with significant 
negative eigenvalues. Spectral embedding methods such as 
kPCA require positive semi-definite similarity matrices to com-
pute the low dimensional embedding of the data and would in 
this case discard the information associated with the negative 
eigenvalues. However, Laub et al. [46] have shown that this 
negative part of the eigenvalue spectrum can reveal interesting 
features in the data and therefore should not be ignored.

A non-metric similarity matrix S is equal to the difference 
between two similarity matrices S1 and S2, where S1 has the 
same p positive eigenvalues as S, while the non-zero eigen-
values of S2 correspond to the q negative eigenvalues of S. 
Correspondingly, a factorization of S into YY> would need to 
capture the relation between S1 and S2, i.e.,

S = S1 ¡ S2 ¼ YY> = YpYp
> ¡ YqYq

>.

However, the only way to get this negative part of the product 
YY> would be for the values of Yq to be imaginary, which is 
generally not desirable for such embeddings.

With SimEcs it is nevertheless possible to approximate 
a non-metric similarity matrix S. Since during training S is ap-
proximated as f 0(X )Wl = YWl and not YY>, some parts of Y and 
Wl can have opposite signs, which makes it possible to not only 
approximate S1 but also (–S2). In this case the regularization 
term kS ¡ W2

>W2kF
2 would be counterproductive4.

SimEc can also be trained explicitly to preserve the infor-
mation provided by multiple similarity matrices S1, …, Sk. The 
easiest way to do this is to simply compute the average of these 
similarity matrices and then train a SimEc as before on this 
averaged S. However, because SimEcs preserve the informa-
tion associated with the d largest eigenvalues, the embedding 
only captures all k similarities if the largest eigenvalues of the 
k similarity matrices are equal. Therefore, before computing 
their average, the similarity matrices should first be normalized 
by dividing them each by their respective largest eigenvalue.

If the focus is not on the similarity preserving embedding 
itself, but rather it is important to accurately predict multiple 
similarities or other pairwise relations at the same time, then 
the SimEc network can be extended to have multiple last layers, 
i.e., by choosing Wl 2 Rd×n×k a SimEc can compute

f (X ) =  f 0(X )Wl = YWl = R ̂  2 Rm×n×k.

Similarly, in addition to a last layer Wl, the SimEc network can 
also be extended by a mirrored version of f 0(xi), thereby adding 
a decoder part to the network, which can be used to compute 
the pre-image of an embedding like in the deep kernelized au-
toencoder networks [42].

3.	 Experiments and results

In the following, we demonstrate that SimEc can learn a map-
ping from an original input feature space into a similarity pre-
serving embedding space, even if the target similarities were 
not computed from the original feature vectors. Furthermore, 
we discuss the influence of regularization and the number of 
targets on the embedding quality, as well as show that SimEc 
can create a faithful embedding even if the target similarity 
matrix contains over 90% missing values. Finally, we demon-
strate that SimEc can predict non-metric similarities and mul-
tiple similarities at once.

As SimEcs simultaneously factorize a similarity matrix and 
learn a mapping into the similarity preserving embedding space, 
the most appropriate method to compare a SimEc’s performance 
with is the combination of the eigendecomposition of S, to get 
optimal similarity preserving embeddings, and an additional 
regression model, trained to learn the mapping from the orig-

4 �It should be noted that a d-dimensional SimEc embedding generally captures 
the information associated with the d eigenvalues with the largest absolute 
values; should the magnitude of the largest negative eigenvalue be smaller 
than the first d positive values, then this information will still be ignored.
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inal feature space to the embedding space. As the embeddings 
produced by the regression model will at most be as good as the 
original embeddings created by decomposing S [38], in most 
experiments we only report the optimal performance achieved 
by the eigendecomposition as a reference.

Further details as well as the code to replicate these exper-
iments and more is available online [47].

3.1. Dataset. All experiments are performed on subsets of the 
MNIST dataset, which contains 28£28 pixel images depicting 
handwritten digits. For the first set of experiments, we randomly 
subsampled 10 k images from all classes, of which 80% are 
assigned to the training set and the remaining 20% to the test 
set. For the second set of experiments, we randomly subsampled 
5 k images depicting zeros and sevens and we refer to this as 
the “MNIST 0/7’’ dataset.

As input feature vectors we use the 784 pixel values of each 
image, which we normalize by their maximum value and center 
to have zero mean. The respective target similarity matrices 
were also centered (as it is being done for kPCA as well [11]) 
and, if necessary, normalized to be in the range [–1, 1].

3.2. Mapping into a similarity preserving embedding space. 
To demonstrate that SimEc can learn the connection between 
data points’ feature vectors and an unrelated target similarity 
matrix S, we compute pairwise similarities between the MNIST 
images based on their class labels. This similarity matrix is 1 for 
a pair of images depicting the same digit and 0 elsewhere. With 
increasing embedding dimensionality d, the mean squared error 
between the target similarity matrix S and its approximation S ̂ , 
computed as the dot product of the embedding vectors, YY>, 
should decrease. The eigendecomposition of S provides the op-
timal similarity preserving embeddings. However, this does not 
provide a mapping from the original input feature space to the 
embedding space to compute OOS solutions, as for new test 
samples the class based similarities are not available. As shown 
in Fig. 3, the embeddings produced by a linear SimEc, where 
f 0(xi) consists of only a single linear layer mapping the input 

vectors into the embedding space, are comparable to those of 
a linear ridge regression model that learned the connection be-
tween the feature vectors and the embeddings produced by the 
eigendecomposition of S. By using a SimEc with a deeper NN 
f 0(xi) with several non-linear hidden layers to map the feature 
vectors into the embedding space, the error of the approxima-
tion gets very close to that of the eigendecomposition.

3.3. Of hyperparameters and missing values. Next, we in-
vestigate the influence of hyperparameter choices and missing 
values in the target similarity matrix. For this, a SimEc with one 
additional hidden layer is trained to create ten dimensional em-
beddings to approximate an RBF kernel matrix. Corresponding 
embeddings created with kernel PCA serve as a reference.

First, we analyze the influence of the regularization term 
λkS ¡ Wl

>WlkF
2  (Fig. 4 left panel). While the output of the 

SimEc network, YWl, always faithfully approximates the target 
similarities, the dot product of the embedding vectors, YY>, 
only achieves similar accuracies when a symmetric factoriza-
tion of S is enforced.

Fig. 3. Mean squared errors between the target similarity matrix S and 
its approximation S

 ̂
, computed as the dot product of the embedding 

vectors, YY>, with increasing embedding dimensionality d

Fig. 4. Left: Importance of the regularization term λkS ¡ Wl
>WlkF

2  to ensure not only the output of the SimEc network, YWl, approximates the 
target similarity matrix, but also the dot product of the embedding vectors, YY>. With YWl it is only possible to predict the similarities between 
new samples and those used for training the network, while with YY> the similarities between new test samples can be computed as well. 
Middle: Even if only a fraction of targets is used for training, the mean squared error between YY>. and S is close to the optimal error achieved 
by kernel PCA. Right: Influence of missing values in the target similarity matrix. Kernel PCA computed on the full matrix again serves as the 
optimal reference error, while the green curve depicts the error achieved by computing the eigendecomposition of the matrix where the missing 

values were filled with the mean of the matrix
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As we discussed before, this regularization dramatically 
increases the computational complexity and memory require-
ments of the training procedure, as it scales quadratically with 
the output dimensionality. However, often only a fraction of the 
targets is required for YY> to approximate S reasonably well 
(Fig. 4 middle).

As pairwise data can be expensive to collect or be system-
atically unavailable (e.g. in movie ratings), target matrices will 

often contain many missing values. An exact eigendecomposi-
tion of a matrix with missing values can not be computed, and 
instead these entries in the matrix need to be filled, e.g., by the 
mean of the given targets. However, this results in an almost 
linear increase in the mean squared error between the full target 
matrix and the approximation computed as YY> (Fig. 4 right 
panel). With the embeddings created with SimEc, on the other 
hand, the target similarities can be faithfully approximated even 
if the target matrix contains over 90% missing values.

3.4. Predicting non-metric similarities and more. In the fol-
lowing experiments we demonstrate that SimEc can predict 
non-metric similarities and multiple similarities at once. For 
this we use the MNIST 0/7 dataset and compute the target sim-
ilarity matrix S using the Simpson similarity score on binarized 
feature vectors:

Sij =  #{pixels that are black in both i and j}
min{#{black pixels in i}, #{black pixels in j}}

.

As previously shown by Laub et al. [46], the eigenvalue spec-
trum of this matrix contains significant negative eigenvalues 
and embeddings based on the corresponding eigenvectors reveal 
interesting features. While the embedding based on the largest 
eigenvalues separates the data points by class (Fig. 5 top), an 
embedding based on the most negative eigenvalues sorts the 
images by stroke weight (Fig. 5 middle). SimEc are able to 
create embeddings based on non-metric similarities as well. 
While the embedding learned by a SimEc (with one hidden 
layer) captures the features associated with the negative eigen-
values, their dot product would not optimally approximate S, 
as for this the dimensions associated with the negative eigen-
values would have to be imaginary. However, by computing 
S ̂  = YWl the non-metric similarities can be predicted quite well 
(Fig. 6), with errors closer to those of the embeddings based 

Fig. 5. Embedding of the MNIST 0/7 dataset based on the largest 
(top) and most negative (middle) eigenvalues of the Simpson similarity 
matrix, as well as a SimEc embedding of dimensionality d = 2 based 
on the sum of the similarity matrices associated with the largest and 

most negative eigenvalues (bottom)

Fig. 6. Mean squared errors of the non-metric similarity matrix S 
and the dot product of the embeddings based on the largest positive 
eigenvalues, the embeddings based on the largest absolute eigenvalues 
(where dimensions associated with negative eigenvalues were cast as 

imaginary numbers), and the prediction of S with a SimEc as YWl
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on both positive and negative eigenvalues instead of those of 
the embeddings based only on the largest positive eigenvalues 
(i.e. a regular kPCA embedding).

As discussed in the previous section, the non-metric simi-
larity matrix can be decomposed as S = S1 ¡ S2, where S1 and 
S2 can be computed as the dot product of the embeddings based 
on positive and negative eigenvalues respectively. Besides pre-
serving features corresponding to both parts of the eigenvalue 
spectrum, SimEc can also be used to directly predict these two 
similarity matrices simultaneously. This can either be done by 
computing a new similarity matrix as S1 + S2 (Fig. 5 bottom), 
or by stacking the two matrices, thereby creating a tensor 
2 Rm×m×2. To preserve the information present in both simi-
larity matrices to an equal extent, S1 and S2 first have to be 
normalized by their respective largest eigenvalue, as SimEc 
generally learn embeddings based on the overall largest eigen-
values. Unsurprisingly, the mean squared error between either 
S1 or S2 and S ̂  computed with a SimEc trained to approximate 
S1 + S2 is worse than that of a SimEc trained specifically to 
approximate either S1 or S2 alone (Fig. 7). The dot product of 
the embedding vectors YY> of a SimEc trained to approximate 
the tensor containing the stacked matrices S1 and S2 also results 
in an error comparable to that of the S1 + S2 SimEc, because 
a single embedding contains the information about both simi-
larity matrices here as well. However, the prediction of the in-
dividual similarity matrices in the tensor as YWl yields errors as 
low as the prediction of the SimEc trained to approximate only 

one of the matrices, because the last dimension of the tensor 
Wl contains information specific to either one of the similarity 
matrices.

4.	 Discussion

Representing intrinsically complex structured data is an ubiq-
uitous challenge in machine learning. While spectral methods 
such as kernel PCA provide optimal similarity preserving em-
beddings by computing the eigendecomposition of a similarity 
matrix, they are unable to produce OOS solutions for new test 
samples if their similarity to the original training examples 
can not be computed. Neural network based methods provide 
a mapping function from an original input feature space to 
the embedding space and can therefore also approximate the 
pairwise relations between new data points. However, existing 
methods were not designed to predict non-metric similarities 
or multiple pairwise relations simultaneously.

SimEc are a novel neural network architecture constructed 
for simultaneously learning a mapping from an original input 
feature space into a similarity preserving embedding space 
while factorizing a target matrix with pairwise relations. As we 
have demonstrated in multiple experiments, SimEc can provide 
OOS solutions even if the target similarities were obtained by 
an unknown process such as human ratings, they can efficiently 
handle missing values in the target matrix, and in addition they 

Fig. 7. Mean squared errors when approximating either S1 (left) or S2 (right). The eigendecomposition of the respective matrix yields the optimal 
similarity preserving embedding. Depicted in green are the errors achieved with a SimEc trained to approximate either S1 or S2 alone; shown in 
cyan are the errors achieved with a SimEc trained to approximate the tensor containing the stacked matrices S1 and S2; while the purple curves 
show the errors achieved with a SimEc trained to approximate the matrix S1 + S2. Continuous lines depict the prediction of S as YWl, while 

dashed lines correspond to the approximation as YY>
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are able to predict non-metric similarities as well as multiple 
similarities at once.

While so far we mainly studied SimEcs based on fairly 
simple feed-forward neural networks, it appears promising to 
consider also deeper NN and more elaborate architectures, such 
as CNNs, for the initial mapping step to the embedding space. 
In this manner, hierarchical structures in complex data could be 
better reflected. Note furthermore that prior knowledge as well 
as more general error functions could be employed to tailor the 
embedding to the given targets.

In this paper we focused on using SimEc to predict pairwise 
similarities, but further application scenarios involving other 
pairwise relations between data points should be explored. For 
example, it has already been shown that a variant of SimEcs, 
called context encoders (ConEc) [16] learn meaningful word 
embeddings by extending the word2vec model [13, 14] for 
words with multiple meanings as well as to create out-of-vocab-
ulary embeddings. The SimEc framework could also improve 
recommender systems or drug-protein interaction predictions 
and be interesting for usage in the sciences e.g., psychophysics 
[48], human quality judgment experiments [49], or materials 
discovery [50, 51].

Furthermore, future work will aim to interpret the predic-
tions made by SimEc using layer-wise relevance propagation 
[52‒55].
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