
ZAGADNIENIA

NAUKOZNAWSTWA

1–4 (215–218), 2018

PL ISSN 0044 – 1619

Jakub Mielczarek
Institute of Physics, Jagiellonian University
Marek Szydłowski
Astronomical Observatory, Jagiellonian University
Adam Krawiec
Institute of Economic, Finance and Management, Jagiellonian University
Paweł Tambor*

Faculty of Philosophy, The John Paul II Catholic University of Lublin

Bayesian reasoning in cosmology

Abstract. We discuss epistemological and methodological aspects of the Bayesian approach in astrophysics and 
cosmology. The introduction to the Bayesian framework is given for a further discussion concerning the Bayesian 
inference in physics. The interplay between the modern cosmology, Bayesian statistics, and philosophy of science 
is presented. We consider paradoxes of confi rmation, like Goodman’s paradox, appearing in the Bayesian theory 
of confi rmation. As in Goodman’s paradox the Bayesian inference is susceptible to some epistemic limitations in 
the logic of induction. However, Goodman’s paradox applied to cosmological hypotheses seems to be resolved 
due to the evolutionary character of cosmology and the accumulation of new empirical evidence. We argue that 
the Bayesian framework is useful in the context of falsifi ability of quantum cosmological models, as well as 
contemporary dark energy and dark matter problem.
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Bay esowskie wnioskowanie w kosmologii

Abstrakt. W artykule poddano dyskusji epistemologiczne i metodologiczne aspekty bayesowskiego podej-
ścia w praktyce badawczej astrofi zyki i kosmologii. Dokonano najpierw ogólnego wprowadzenia do metodolo-
gii bayesowskiej, by następnie odnieść przedstawione narzędzia pojęciowe do fi zyki. Przedstawiono wzajemne 
oddziaływanie między współczesną kosmologią, stystystyką bayesowską i fi lozofi ą nauki. W szczególności roz-
ważono paradoksy konfi rmacji, jak paradoks Goodmana, mające swoje odzwierciedlenie w bayesowskiej teorii 
konfi rmacji. Podano kosmologiczną wersję paradoksu Goodmana i propozycję jego rozwiązania, biorąc pod 
uwagę specyfi kę kosmologii (jej ewolucyjny charakter i jednostkowość przedmiotową – Wszechświat, który jest 
obiektem badania). Zaprezentowano argumenty za tym, że metodologia bayesowska jest użyteczna w kontekście 
problemu falsyfi kowalności kwantowych modeli kosmologicznych oraz współczesnej dyskusji nad problemem 
ciemnej energii i ciemnej materii.

Słowa kluczowe: kosmologia współczesna, logika indukcji, statystyka bayesowska

1. Introduction

In everyday experience, even when we do not realize it, we use our intuition 
to draw inferences. For example, when we hear doorbell, we immediately ask 
ourselves “Who has come?”. On the way to the door we consider many different 
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possibilities. Maybe it is our friend, who said some days before that he visits 
us. Maybe it is our neighbor, who came to say that we should lower the music 
or maybe somebody came to inform us that we have won 1,000,000 EURO in 
the lottery and so on and so on. All of these possibilities are more or less prob-
able, with some outcomes which we cannot fi gure out ex ante. But every bit of 
information infl uences our expectations and we stick on outcome which seems 
to be most probable (subjectively) to us. So, we look through the window and 
see a car on the street, that looks like our friend’s, we are almost sure that it is 
he in fact. Or if we really play music very loudly, we can expect that sooner or 
later somebody will be angry. When we do not expect somebody we know, we 
assume that it may be the postman or someone who got the wrong address. In 
fact, we always choose the simplest case. It means that we never assume that 
Superman is standing behind the door, even when there is a reason why he should 
visit us. This intuitive feeling to choose the simplest solution is called Occam’s 
razor (Rodriguez-Fernández 1999) and it states formally: “Accept the simplest 
explanation that fi ts the data”.

In our example the data means in fact what we already know. This example 
is very easy, and our faculties manage very well to solve problems of this kind. 
However, there is a vast variety of problems for which there are uncountable pos-
sibilities and such problems can be treated only in an approximated manner. On 
the other hand, there are problems, which are too tedious to be solved by humans 
in reasonable time and we should employ to do job. So, can we enclose this intui-
tive knowledge in the form of mathematically defi ned theory and use it instead of 
mind? The answer is “Yes”, this exciting idea is embodied in the form of Bayesian 
inference (MacKay 2003).

Below we introduce Bayesian inference and show how it works in practice. 
We start from general considerations which lead us to the connection with ther-
modynamics. Subsequently we show how to write down problems on computer 
with use of the Monte-Carlo approach (the Metropolis algorithm). We describe 
possible applications in the modern cosmology. There is a huge number of places 
in cosmology where Bayesian inference can often be applied. We have residual 
observations and a lot of theories. Some of them are easy, some are pure mod-
els, some are brilliant new ideas. This is as with our example with the doorbell. 
We hear the bell and we must predict who is at the door. Without any informa-
tion we cannot predict who is ringing, because the sound of the bell is always 
the same. However, some people ring only once and some of them more times. 
Therefore, we must listen very carefully when something is ringing in cosmol-
ogy. In the last section we try to put Bayesian inference into a larger perspec-
tive: containing epistemological aspects of the method as well as suggested 
limitations.
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2. Bayesian inference and thermodynamics

Our goal is to present a way to choose among alternative theories taking into 
account their conformity with data. Of course, these theories can have different 
basis. They can be connected with everyday experience, data analysis, biology, 
physics etc. Because we want to apply fi nally Bayesian inference in physics, we 
can restrict ourselves now, without loss of generality, to physical theories. So, let 
us consider some unknown physical phenomenon and let us say we possess K 
theories {H1, …, HK} that can potentially describe it. All these theories differ 
from one another. Information about phenomenon investigated is contained in the 
collection of experimental data D. Both theories and experimental data we may 
consider as elements of the same set space Ω so {H1, …, HK, D} Î Ω. The set Ω 
together with measure P and σ-algebra F build probability space Ω, F, P. In such 
a well-defi ned theory of probability, a natural concept of conditional probability 
occurs. So, the probability of a given theory Hi, when we have data D is defi ned as

  (1)

This probability tells us which theory describes experimental data D better and is 
called posterior probability. On the other hand, we can ask about probability of 
outcomes D when theory Hi is the true one

 . (2)

This probability tells us about different predictions D from the theory Hi and is 
a marginal likelihood, commonly called evidence. Because P(Hi Ç D) = P(D Ç Hi) 
we can combine equations (1) and (2) what give us:

  (3)

This equation is the famous Bayes theorem. The probability P(Hi) in this equa-
tion is called prior probability and it is in fact hard to describe this number. It 
describes our initial beliefs about a given theory. It is a human factor to choose 
this number and can be non-objective. Sometimes one theory is chosen because 
of its mathematical beauty although a more probable alternative exists. The other 
factor is that some theory can well describe variety of others similar phenomena. 
However, if we do not have strong motivation to introduce some initial selection of 
the theories, then the most natural choice is to assume a homogeneous distribution 
of the prior probability

 . (4)
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Then none of theories is favored. The probability P(D) is a simple normalization 
constant, what we can calculate thanks to the normalization condition:

  (5)

which together with the Bayes theorem (3) give us (Trotta 2008):

 . (6)

Each of the theories {H1, …, HK} contains a number of parameters described by 
the vector θi for a particular theory. The simple theories (simple mathematically) 
contain in general a small number of parameters. The main increase of number of 
parameters enlarges the complexity of theories. This complexity can be in some 
cases accepted due to intrinsic beauty of a mathematical structure of theory. Nev-
ertheless, the theory which has one factor to explain a phenomenon is preferable 
over the theory which employ many factors for description of it. Effective theories 
belong to the type of simple theories.

Figure 1. Evidence for simple and complex theories

  (7)

Parameters θi of the model Hi are elements of the set space Ω. The values of 
these parameters may be fi xed or signifi cantly bounded by a theory. But when 
no limits are put on these parameters (there is no prior knowledge) the evidence 
is calculated as the marginal probability integrated over all the allowed range of 
values of the parameters of the model.

Now we can go back to the Bayes theorem and explain the idea of Bayesian 
inference. Considering the Bayes theorems for two models i and j and dividing the 
respective equations (3) by sides we obtain:
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  (8)

which is called the Bayes factor. If the priors P(Hi) for all i are equal, then the 
Bayes factor reduces to the ratio of evidences Bij = P(Hi|D)/P(Hj|D). The values of 
Bij can be interpreted as follows: if 0 < ln Bij < 1 then inference is inconclusive, if 
1 < ln Bij < 2,5 we have weak, if 2,5 < ln Bij < 5 we have moderate and if 5 < ln Bij 
we have strong evidence in favor of a model indexed by i over the model indexed 
by j (Jeffreys 1961). So, the main problem is now to calculate the evidence. The 
direct calculation is generally impossible. That is the reason is to use the Monte 
Carlo methods to do it. First, we introduce the parameter λ and redefi ne evidence 
to the form:

  (9)

where

  (10)

The P(D|θi, Hi) is in fact likelihood and we denote it by L. So

  (11)

and

  (12)

Now we can show a connection between our approach and thermodynamics. 
Introducing:

  (13)

  (14)

  (15)

we obtain

  (16)

and equation (11) takes a known form:
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 . (17)

This is the energy of the system in the temperature T. When we calculate it for 
different temperatures we can directly evaluate the integral in the expression (12) 
and hence the evidence. As we see, to perform the Bayesian inference we have to 
calculate the thermodynamical integral (17). This kind of integrals can be solved 
analytically only in case of very simple systems. Numerical methods to solve this 
kind of problems are known as the Monte Carlo. It is not the subject of this paper 
to describe how they work in detail. However, to make this paper self-contained we 
add a short Appendix A introducing basics of the Monte Carlo methods. We also 
present experimental demonstration of property of ergodicity which is important 
in the context of Monte Carlo simulation (see Appendix B). An interested reader 
can fi nd more on Monte Carlo simulations e.g. in (MacKay 2003).

3. A simple example

Now we have all theoretical equipment to show this approach in action. In this 
example we show how to perform the Bayesian inference in a very simple case. We 
consider a very simple kind of theories and a small sample of data-points to make 
computer computation short. We also design it for clarity and better understanding. 
However, generalizations to more advanced problems are straightforward. In the 
next section we will mention how to apply Bayesian methods to more complicated 
problems. Let us consider some experiment in which we perform measurements of 
some physical variable y for six different values of parameter x. In the experiment 
we also measure standard error of the outcomes y. In fact, we one can repeat many 
times measurements of y for a given x value. Then one can obtain the mean values 
of parameter y together with its dispersion. These data points we present in Table 1.

Table 1. In the table we collect the exemplary pairs (x, y) together with the uncertainty of y. The 
uncertainty Δy can be the result of the instrumental resolution.

x y Δy

1  1 7

2  3 3

3  5 4

4  7 6

5 10 3

6 15 1
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The phenomenon which we instigate is still not undetermined, but we possess 
three polynomial models to describe them. We list these models below:

Model 1: y1(x) = α0 + α1x (18)

Model 2: y2(x) = α0 + α1x + α2x
2 (19)

Model 3: y3(x) = α0 + α2x
2 (20)

Models 1 and 3 look simpler because each is described by two parameters when 
model 2 contains three unknown parameters.

The fi rst step of Bayesian inference is to fi t these models to experimental data. 
We can use for example method of least squares. We obtain:

Model 1:  (21)

Model 2:  (22)

Model 3:  (23)

  

where  are estimated values of parameters α with their errors; the sum of squared 
errors (SSE) and the adjusted coeffi cient of determination  are given for each 
model.

The important ingredient in the Bayesian inference is a choice of priors. It is the 
choice of the intervals and probability distribution for parameters. The parameter 
intervals should be specifi ed, because we must perform the integration (look for 
the solution) in a fi nite parameter space. Standard errors of the parameters give us 
intervals necessary for Bayesian inference. Of course, the different choices of the 
parameter intervals can lead to the different values of the posterior probabilities. 
In our case, we choose the intervals as the 1 – σ confi dence interval for the param-
eters. Namely, [α – σ, α + σ], where α is the best fi t value and σ is the standard 
error. Next, we assume that outcomes are from the Gaussian distribution and the 
likelihood function has then a form:

 . (24)
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Now we apply theory described in the previous section. With use of the Metrop-
olis algorithm we calculate energies áEñλ for models considered. We perform cal-
culations for the values of α from the range (0,1) as it is necessary to calculate the 
integral in (12). We show these results in Fig. 2, 3, 4.

Now with use of this data we can perform integrals in the form

  (25)

From equation (12) we see that:

  (26)

Obtained values for three models considered are:

  (27)

Now we can directly calculate Bayes factors:

  (28)

  (29)

  (30)

Based on the obtained values of ln Bij one can conclude:
• Because 1 < ln B12 < 2,5, we have weak evidence that the linear model is 

favored over the three-parametric quadratic model.
• Because 2,5 < ln B32 < 5, the two parametric quadratic model is moderately 

preferred over the the three-parametric quadratic model.
• Because ln B31 ≈ 1 there is no preferences between the two-parametric mod-

els, linear and quadratic.

We can also directly calculate posterior probabilities:

  (31)

  (32)

  (33)



45BAYESIAN REASONING IN COSMOLOGY

Figure 2. áEñλ dependence for the fi rst model
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Figure 3. áEñλ dependence for the second model
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Figure 4. áEñλ dependence for the third model
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What we see is that the posterior probability suggest that the last model explains 
the experimental data in the best way. Even that it may look more complicated 
than linear model number one. The second model can be discarded. This model 
contains remaining models inside and naturally fi ts better to the experimental data 
because has more degrees of freedom. But comparing to the other models he is 
too complicated and not necessarily properly explains experimental data. We see 
that however fi rst and last model possess the same number of degrees of freedom 
the last function seems to explain in the better way the nature of the investigated 
physical process. On the other hand, from the Bayes factor criterion, one cannot 
see such a preference. It is because the borders in the Bayes factor criterion were 
established empirically in the very careful manner.

The example presented here illustrates that the different criteria give us stronger 
or weaker conclusions. In particular, note that posterior probability criterion favors 
the model H3 over the model H1. On the other hand, the Bayes factor criterion 
indicates that there is no preference between the models H3 and H1. Therefore, 
this simple example gives us here the fi rst lesson to be very careful interpreting 
statistical inference results.

The second lesson is to be careful about results of estimations. The results 
presented above, based on the 1 – σ interval choice of the parameters intervals. In 
case of the 3 – σ intervals the resulting Bayes factors are the following

 ln B12 = 0,4 (34)

 ln B23 = 1,5 (35)

 ln B13 = 1,9 (36)

Therefore, there the fi rst model is weakly favored with respect to the third one. 
Also, the second model is weakly favored with respect to the third one. The fi rst 
and the second models are indistinguishable. The 3 – σ results differ from these 
performed previously.

The comparison between the 1 – σ and 3 – σ examples was performed to show 
explicitly the sensitivity of the Bayesian inference on the parameter intervals. This 
dependence on the priors becomes signifi cant in case of the weak data, e.g. for 
the small sample size or signifi cant error. For the strong data the impact from the 
priors becomes irrelevant. In the case considered here, the data sample is small, 
and the signifi cant errors are present. Because of this, the inference is sensitive on 
the choice of the priors as observed.
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4. Applications in cosmology

In this section we present some applications of Bayesian inference in modern 
cosmology. The Bayesian methods have been introduced to cosmology relatively 
late. The proliferation of dark energy models forced using the formal methods of 
model selection. Starting from the pioneering work of (John and Narlikar 2002) the 
Bayesian methods have become popular (Trotta 2008). The reason is that cosmo-
logy really needs these methods because our knowledge about the Universe is still 
very limited. We have a lot of theories about different stages of the Universe but 
only a modest number of observations to verify them. So, it is the right place for 
the Bayesian methods.

4.1. Dark energy and dark matter

The fi rst case that we would like to talk about is connected with very mysterious 
behavior of the Universe, discovered in the end of the last decade. Namely, obser-
vations of the distant type Ia supernovae (SNIa) indicated that the Universe expan-
sion accelerates (Riess et al. 1998). This discovery was apparently in the confl ict 
with other observations and beliefs that Universe in fi lled with normal matter like 
dust, stars, planets etc. Given this assumption the Universe always decelerates. So, 
what is happening in the Universe? Why did it start to accelerate after a previous 
phase of deceleration? What is the mysterious component of the Universe that we 
call dark energy? There is presently an enormous number of possible answers for 
this question. The presence of the cosmological constant Lambda, phantom fl uid, 
modifi ed gravity, fi eld of quintessence, quantum gravitational effects, brane world 
models, vacuum energy and so on and so on. The number of possible solutions is 
really impressive. So, which one of them is the real solution? Which one describes 
Nature in the right way? Or maybe none of them, maybe we still must be looking 
for new models. Let us neglect the possibility of building new models to explain 
acceleration of the Universe and limit ourselves only to some already proposed 
solutions. This is precisely what we can do thanks to Bayesian inference. Due to 
Bayesian methods one can obtain a ranking of accelerating models (Szydłowski, 
Kurek, and Krawiec 2006; Kurek and Szydłowski 2008). The analysis shows that 
standard cosmological model, the so-called LCDM model, is on the top off all 
theoretical propositions (Kurek and Szydłowski 2008).

The assumed model of the Universe is the Friedmann-Robertson-Walker model 
fi lled with dust matter, dark and baryonic, and dark energy. In Bayesian estima-
tion of cosmological model parameters for these components we start from the 
cosmography which determines the luminosity function as the function of density 
parameters. The density parameters defi ne the fraction of energy in the total energy 
budget of the universe. They are dimensionless, and their sum is equal one. The 
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additional parameter is the Hubble constant which describes the rate of expansion 
of the current Universe. While the kinematic part of the cosmology is controlled 
by cosmography basing on analysis of trajectories of photons, the observations of 
CMB control the dependence of perturbation on time.

Among many theoretical propositions the simplest candidate for dark energy is 
the time-independent cosmological constant. The other propositions: the Chaplygin 
gas, models with varying coeffi cient of the equation of state, quintessence, phan-
toms, etc. These models are fi tted using the astronomical data: the measurement 
of absolute magnitudes of high redshift type Ia supernovae, cosmic microwave 
background (CMB) radiation, the measurement of baryon acoustic peak (BAO) in 
galaxies correlation function, gas mass fraction value in galaxy clusters, gamma-ray 
bursts (GRB) which are at higher redshift than SNIa. In selection of cosmological 
models with different forms of dark energy different criteria are used. The simplest 
criteria are the information criteria AIC, BIC and Bayes factor, posterior probability. 
These methods allow us pick out the best model in the light of data at our disposal.

4.2. Can we distinguish quantum gravitational effects from observations?

This intriguing question corresponds to the presence of possible observational 
phenomena of quantum gravity. The quantum gravitational effects are predicted 
to be very small and unreachable by the present and any future generations of 
accelerators. However, the quantum gravitational effect can survive as the relict 
from the very early Universe in which quantum gravitational effects have been 
dominant. These effects can infl uence the spectrum of infl ationary perturbations 
(Danielsson 2002; Mielczarek 2008). These primordial fl uctuations then lead to 
the fl uctuations of matter and fi nally to the structures formation in the Universe. 
So, can we deduce some information about quantum gravity from observations of 
microwave background radiation and large-scale structures? At fi rst glance it can 
sound strange because quantum gravity describes microscopic property of gravi-
tational fi eld at a very deep level. However, the same effects were very important 
in the early universe and could infl uence its global properties. Is here a place for 
Bayesian inference? The answer is Yes. We have now a lot of predictions from 
quantum theories of gravity like Loop Quantum Gravity (Ashtekar and Lewand-
owski 2004) and still a very limited number of observations in the region where 
they can be important, e.g. non-gaussianity in primordial fl uctuation in CMB or the 
primordial gravitational waves spectrum. The two examples presented in this sec-
tion are very important, but they are not the only ones. There is a lot of other places 
in cosmology where Bayesian inference is and should be applied. For example, 
we still do not know what the dark matter (the second dominant component of the 
Universe) is. It may be an axion, higisno, gluino other super particles (Jungman, 
Kamionkowski, and Griest 1996) or just neutrinos etc. It is an ideal place for the 
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Bayesian inference to point out the best candidate. Unfortunately, still too little is 
known from observations.

5. Some general epistemic remarks on Bayesian inference

It is an obvious fact that Bayes’ theorem is a theorem. Nevertheless, it should be 
explicitly explained, that to be a Bayesian is more than to know and use the theo-
rem. The Bayesian theory of confi rmation achieves a great success in such areas of 
human activity as physics, biology, medicine, cognitive science (decision theory) 
on the one hand and encounters serious limitations of the analyzed method on the 
other hand. A radical Bayesian would probably say that it can always be applied: 
we always have to do with a joint distribution and a numerical representation of 
belief is always possible. However, a Bayesian epistemology could be treated not 
only as competing with other methods of confi rmation, but as a way of making 
a specifi c (not exclusive) model of beliefs and related evidences, which can be 
easily elaborated and understood (Talbott 2008).

In the Bayesian approach probability is attributed to hypotheses that are being 
confi rmed. This confi rmation can be interpreted both qualitatively and quantita-
tively, since inference is based on empirical data and there are relations between 
hypotheses, theories and observations to be explicated. It is indeed a crucial point in 
understanding Bayesian inference – the meaning which is ascribed to probability. 
Using probabilistic methods, one can measure two things: how often a specifi c 
event occurs and how strong evidence (confi rming our beliefs) is. Let us generally 
state that Bayesianism can be treated as an epistemic theory which examines the 
relation between beliefs and empirical evidence as to measure the strength of the 
beliefs. As it has been shown the most important concept used to gain that goal is 
the notion of conditional probability (Strevens 2006). Using the Bayesian infer-
ence, we not only measure the strength of beliefs but also propose the method for 
rational estimating a change of the beliefs under the infl uence of a new evidence.

Sometimes, among scientists and philosophers of science, there is a bit of 
hesitation about exclusiveness of such an approach. S. Okasha in his study on 
van Frassen’s conception of induction wrote (Okasha 2000, 693): “He accepts the 
Bayesian representation of opinion in terms of degrees-of-belief, and he agrees that 
synchronic probabilistic coherence is a necessary condition of rationality. How-
ever, he does not accept the Bayesian thesis that conditionalization is the only 
rational way to respond to new evidence; though he allows that it is a rational 
way.” It can be said in that sense that Bayesianism offers a solution to old problems 
of induction. We have got an approximately coherent and reasonable model for 
probability corrections. Of course, it is possible if having initial probability and 
evidence (priors). The proposed solution has its weakness: its method often tells 
nothing how to estimate these probabilities.
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The crucial point in Bayesian inference lies in the fact that it is able to deal 
with the problem, only if we manage the input of some probabilities. It makes 
sense since we never start reasoning with absolutely no knowledge. The result we 
achieve – P(H|E) – are always “conditional”: it reveals a property of H which is 
not objective, but related to E and certain knowledge, called background know-
ledge. A subtler epistemic analysis can be carried out with reference to the types 
of background knowledge. P. Wang studied the problem of underlying knowledge 
and discerned two types of conditions which infl uence the evaluation of probability 
distribution function (Wang 2004, 98–99), in the formulas, as follows:

• Explicit conditions:

where E is a binary proposition, belongs to proposition space (then we can defi ne 
P0(E)), P0(E) > 0;

• Implicit conditions

– non-binary propositions allowed,
– there may be statements outside the proposition space,
– “Even if a proposition is assigned to a prior probability of zero according 

to one knowledge source, it is possible for the proposition to be assigned 
a non-zero probability according to another knowledge source”.

All these discernments are not trivial since we have to answer the question: 
whether all the background knowledge can be probabilistic-valued? This is one 
of the most important epistemic questions of Bayesian Theory of Confi rmation, 
beside the others:

• Are there degrees of belief? The answer, maybe, lies in an attempt to dis-
tinguish “rational” degrees of belief from belief in general. Are the correc-
tions in probability, gained in the Bayesian procedure, just new probabilistic 
information or do they deliver new reason to believe that the proposition 
considered is true?

• When are we actually updating our belief and when there is just a revision 
of probability (known problem of old evidence)?

While elaborating empirical data in cosmology, one can use classical or Bayesian 
statistics. In a classical approach we rely on the classical defi nition of likelihood 
but doing the same Bayesian way we are dealing with a priori and a posteriori 
probability, respectively. There is an opinion among some cosmologists that the 
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standard approach (the standard maximum-likelihood technique) is satisfactory 
indeed, which is reasonable if there is a single model under consideration. When we 
have several competitive hypotheses, Bayesian statistics would be a better choice. 
It must be said also, that degree of belief cannot offer us the true model of the uni-
verse with dark energy (Kurek et al. 2009). There are two groups among Bayesians 
who differ from each other with respect to criteria used in choosing of priors: objec-
tive Bayesians: (Jaynes and Bretthorst 2003; Jeffreys 1961; Rosenkrantz 2012) and 
subjective Bayesians: (De Finetti 1975; Howson and Urbach 1989).

It is not only the problem (or problems) of induction, that Bayesian inference 
tries to deal with, but also the problem of fi nding a justifi cation of induction infer-
ence itself, which can be explicated in several schemas:

• Inductive Generalization

Nobody denies that a fi nite number of experimental data cannot deliver an 
exhaustive proof to a universal statement but, according to induction, empirical 
evidence confi rms generalization (Carnap 1962; Reichenbach 1971). An example 
of that is enumerative induction which principle explicates, as follow:

Several crows are black.
Therefore, all crows are black.

Every load added so far has not damaged this truck.
Therefore, the next piece of load will not damage this truck.

• Hypothetical Induction

It occurs when some hypothesis deductively entails the evidence.

An evidence confi rms hypothesis, if the evidence is a logical consequence of 
the hypothesis.

In the case of existing multiple competing hypotheses, one can try to show that 
the falsity of the hypothesis entails the falsity of the evidence or use additional 
criteria of hypotheses’ selection, like simplicity or inference to the best explanation. 
However, these proposals create market of hypotheses (for example cosmological 
models) with rules for successful selection but in fact they cannot give any rational 
explanation to the evidence. It may be a truism, but the difference between expla-
nation and confi rmation should be treated with special care. The more so because 
there is not a unity among Bayesians concerning representation of the degree to 
which evidence supports a hypothesis. The most popular are three options:
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1) a difference measure: ;

2) a normalized difference measure: ;

3) a likelihood measure: .

The inductive generalization, which has the simple pattern: extrapolation from 
particular data do general conclusions, suffers several problems called paradoxes of 
confi rmation. Goodman’s paradox, know in the literature as problem of “grue”, is 
particularly interesting (Goodman 1983). Especially the question of its counterpart 
in the fi eld of cosmology. In a traditional version:

• We have two hypotheses: (1) all emeralds are green and (2) all emeralds are 
grue (green if examined until some time t and blue otherwise).

• Evidence: found emerald is green confi rms both: (1) and (2).
Any satisfying resolutions to the paradox propose additional assumptions; for 

example, pointing out on “green” as a natural kind term instead of “grue”.
In a search for possible cosmological version of the paradox we can compare 

for example two related models the cold dark matter cosmological model (CDM 
model) and the Lambda cold dark matter cosmological model with the positive 
cosmological constant term (LCDM model). The latter seems to be the simplest 
candidate for the dark energy description. The Bayesian method of confi rmation 
dedicated to select between these two models reveals a quite opposite verdict 
while used in the 90s and currently. Using the sample of (Perlmutter et al. 1998) 
there is not enough information to distinguish these models. The extended sample 
with additional 42 high z SNIa (Perlmutter et al. 1999) gives a weak evidence 
to favor the LCDM model over the CDM one. However, in our opinion it is 
a misunderstanding to treat this study case as a paradox in Goodman’s sense. It 
becomes obvious, because when new observational data confi rm better the LCDM 
model in comparison with the CDM model, the latter simply disappears out the 
stage. The paradox of confi rmation would occur when related to a certain family 
of models there will be the same degree of confi rmation (the same time and evi-
dence) assigned to hypotheses differing from each other for example with regard 
to foreseeable future scenarios of Universe evolution1.

To illustrate this situation let us consider two hypotheses: 1) The Universe 
decelerates; 2) The Universe decelerates until some time t and accelerates after-
ward. The CDM model is valid with the fi rst hypothesis and the LCDM model is 
in agreement with the second one. From the 60’s it was known that the Universe 
is expanding with the decelerating rate. So, we have a paradox here. However, 
the evidences of accelerating Universe due to SNIa data falsifi ed the fi rst model. 

1 Historically these two hypotheses have never coexisted in the same time. Until the late 90s the hypothesis 
of the CDM model was accepted by cosmologists, but SNIa observations made that the new hypothesis of the 
LCDM model was necessary to be formulated.
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And the paradox is naturally solved. This example teaches us that paradoxes of 
Goodman’s type (in the logic of induction) are common in evolutionary sciences 
but they are not dangers because we hope that new evidences (which appear due 
to science development) we discriminate between two hypotheses.

In Goodman’s paradox there is only one kind of evidence; we need to draw an 
emerald and check its color. In the case of cosmological hypotheses, we are not 
left with only one evidence. A new evidence appears and resolves the paradox in 
favor of one of the hypothesis. It comes from new observations. We know that 
this evidence will appear eventually because we, scientists look for it. The reason 
that there is no paradox after a new evidence appears, is that one hypotheses is 
falsifi ed (the CDM model) and only one hypothesis (the LCDM model) becomes 
in agreement with this new evidence.

It is often said that a scientifi c theoretical research means achieving two specifi c 
goals: (1) fi nding a model which approximates a phenomenon best and (2) con-
structing a hypothesis that offers best prediction. It is a good example to show 
how in this context two criteria of model selection are being compared: the Akaike 
information criterion (AIC) and Bayesian information criterion (BIC) (Liddle et 
al. 2007). Although these model comparison methods are put together as competi-
tors, they in fact try to ask different questions (Szydłowski et al. 2015). The AIC 
estimates predictive power of an elaborated hypothesis, while the BIC – goodness-
of-fi tting (Sober 2002). M. Forster and E. Sober have explained this nuance with 
respect to the fi tting problem (Malcolm Forster 1994, 5–9): “Even though a hypoth-
esis with more adjustable parameters would fi t the data better, scientists seem to 
be willing to sacrifi ce goodness-of-fi t if there is a compensating gain in simplicity. 
(…) Since we assume that observation is subject to error, it is overwhelmingly 
probable that the data we obtain will not fall exactly on that true curve. (…) Since 
the data points do not fall exactly on the true curve, such a best-fi tting curve will 
be false. If we think of the true curve as the ʻsignal’ and the deviation from the true 
curve generated by errors of observation as ʻnoise’, then fi tting the data perfectly 
involves confusing the noise with the signal. It is overwhelmingly probable that 
any curve that fi ts the data perfectly is false.”

The general comments of this section can be summed up by a statement that 
Bayesian inference is a method dedicated to specifi c goals in scientifi c practice 
(Linder and Miquel 2008). With respect to cosmology, the mentioned LCDM 
– CDM models comparison reveals in Bayesian inference context another problem. 
It strictly concerns currently changing concept of the model in physics (Morrison 
2005). At present there is a special emphasis placed on effectiveness and mediat-
ing function of models in physics. This status of scientifi c models is determined 
by the way they are designed: they are not simply derived from the underlying 
theory, nor fi xed by the evidence only. Their “nature” is determined by a mediat-
ing role (between a theory and phenomena). Morrison states, as follows (Morrison 
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1998, 67): “Although they are designed for a specifi c purpose these models have 
an autonomous role to play in supplying information, information that goes beyond 
what we are able to derive from the data/theory combination alone.”

In cosmology built on general relativity, the solutions of Einstein equations can 
be treated as the geometrical models of the Universe. A construction of a model 
starts from assuming specifi c idealizations (symmetries, etc). It means in a practice 
that we reduce degrees of freedom (all apart gravitational ones are neglected). 
For example, assumption of spacial homogeneity means that the Einstein equa-
tions which constitute the system of non-linear partial differential equation system 
reduce to the ordinary differential equation system in the cosmological time. It is 
said that those formulations of scientifi c laws are certain approximations of the 
investigated phenomena. There has been recently quite an important and interest-
ing discussion about validity of application the Bayesian inference to idealization 
itself (Shaffer 2001; Jones 2006). The problem concerns idealized hypotheses and 
a question of assignment probability to them since they can be treated as counter-
factuals. What is a posterior probability of the ideal gas law or the law of motion 
for simple pendulum? Jones showed that solution lies exactly in the understanding 
of the procedure of elaborating a model. If we treat the model idealizations not as 
a result of abstraction but as a distortion, the methodological consequences may 
exclude for Bayesian inference (Jones 2006, 3): “Given that most scientifi c hypoth-
eses are idealized in some way, Bayesianism seems to entail that most scientifi c 
hypotheses cannot be confi rmed. Bayesians thus confront an apparent trilemma: 
either develop a coherent proposal for to assign prior probabilities to counterfac-
tuals; or embrace the counterintuitive result that idealized hypotheses cannot be 
confi rmed; or reject Bayesianism.”

The general Bayesian conception of empirical evidence can be put into three 
main statements/consequences:

• Less probable evidence delivers best confi rmation to hypothesis;
• Evidence confi rms better those hypotheses in context of which it is more 

probable.
• If the hypothesis’ probability is very little, it can be confi rmed only by very 

strong evidence.
After the last two decades cosmology come down on the side of the LCDM 

model where dark energy is accepted as the force behind the Universe acceleration 
without true understanding what dark energy is. The disappointing consequence 
of this state of affairs is that cosmological research has proliferated with various 
theoretical models of dark energy. The Bayesian approach turned out to be effec-
tive method to distinguish the most favored model from a set of theoretical models 
(hypotheses of dark energy). However, the true hypothesis can be absent among 
the hypotheses considered. The Bayesian methods give only indications related 
to the set of hypotheses. Therefore, cosmology should be open on new theories, 
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models. Such an attitude is so-called the open-minded Bayesianism (Wenmackers 
and Romeijn 2015).

6. Summary

In this paper we have presented basics of Bayesian inference and showed how 
to use it in practice. We have introduced some mathematical background and for-
mulated a problem in the similarity with thermodynamics. As a case study we 
choose three simple models. Then the known Monte Carlo methods and Metropolis 
algorithm were used to select the best model in the light of data. The general remark 
which can be derived from these considerations is to be careful in evaluation of 
the models in the light of the data and in using the complementary indicators. The 
Bayesian methods started to be popular due to new discoveries in cosmology at the 
beginning of XXI century. We presented the areas of cosmology where Bayesian 
inference has been applied, namely problem of dark energy, dark matter, and testing 
quantum effects by astronomical data. Subsequently we have studied epistemo-
logical aspects of the Bayesian confi rmation theory in the context of problems of 
modern cosmology where the Bayesian approach offers not only the estimation of 
model parameters from the observational data but also methods of the comparison 
of models (selection). We have demonstrated that the Bayesian inference is based 
on some assumptions of philosophical character. The philosophical issues of infer-
ence in context of cosmological models on the example of models without and 
with the dark energy component (the cosmological constant) are discussed. We 
pointed out that Goodman’s famous paradox does not appear in the cosmology 
reconstructed using Bayesian methodology. The reason for this we are looking for 
new evidences which falsify one hypothesis such that only one hypothesis becomes 
in agreement with observational data. Note that the Bayesian framework enable us 
to test and select between competing hypotheses so one can construct the ranking 
of cosmological models explaining acceleration of the current Universe. Therefore, 
we obtain the best model favored by data.
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Appendix

A. Monte Carlo method, Markov chain and Metropolis algorithm

In this appendix we show how to compute thermodynamical integral (17) with 
use of the Monte Carlo simulations. Our short introduction to this subject is based 
partially on this made in (Huang 2001). Let us consider state of the system labeled 
by Γ and corresponding energy E(Γ). Our task is to compute integral:

  (37)

where integration is performed over all available states Γ. Since in numerical 
computations we always discretize the system, integration ∫ dπ is replaced by the 
summation. Our task now is to write a program which generates states Γ from the 
canonical ensemble given with the probability . The crucial observation 
is that we do not have to generate all possible states to calculate (37). The main 
contribution to their value comes from the equilibrium states. Therefore, the idea is 
to fi nd these equilibrium states and average over them. Starting from some arbitrary 
initial state we create a sequence of states:

®
Non-equilibrium equilibrium

fi nally fi nding ensemble of equilibrium states. Then one can calculate:

  (39)

In order to fi nd equilibrium states the Markov chain method can be applied. We 
consider sequence of transitions  with probability . Moreover, 
we assume

  (40)

  (41)

  (42)

Practical realization of the above conditions is given by Metropolis algorithm. 
Namely it states:

• Take initial state Γi.
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• Make some move to neighboring state Γi+1.
• If E(Γi+1) < E(Γi), accept the change.
• If E(Γi+1) > E(Γi), accept the change conditionally with the probability

 .
All computations performed in Sec. 3 have been done applying this simple set 

of rules. As an example, we show here the Markov chains in the parameter space 
for the models considered there. In Fig. 5 we show sequence of moves for the 
fi rst model considered in Sec. 3. We assume values of the parameter λ = 0,1; 1; 
10; 100. Since  the higher value of λ corresponds to lower temperatures. We 
investigate here a broad range in λ, however for the calculations of the evidence 
only values of λ Î [0,1] are required.

Figure 5. Top left: λ = 0,1; Top right: λ = 1; Bottom left: λ = 10; Bottom right: λ = 100
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B. Numerical demonstration of property of ergodicity

The very important question related to Monte Carlo simulations is the “ergo-
dicity” of the algorithm. It means that in the fi nite number of steps (fi nite time) 
the system must be freely close to any point in the phase space. This prevents 
the system to being trapped in a subset of states. In the Monte Carlo simulations 
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it causes that we can always fi nd a proper energy minimum, even for very low 
temperatures when fl uctuations are small. To check it we performed Markov chains 
in the low temperature system. In such a system, when algorithm is not ergodic, 
a Markov chain cannot always lead to the proper minimum. In Fig. 6 we show 
Markov chain in the parameters space for the third model considered in Sec. 3. We 
show that starting from the different points in the parameter space system always 
go to the same region where the proper minimum is placed. This is a visual proof 
of ergodicity for a kind of function considered. It is possible that it is not true for 
more complicated kind of functions.

Figure 6. Top left: λ = 100; Top right: λ = 100; Bottom left: λ = 100; Bottom right: λ = 100
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