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Abstract. A fractional-order control strategy for a pneumatic position servo-system is presented in this paper. The idea of the fractional calculus 
application to control theory was introduced in many works, and its advantages were proved. This paper deals with the design of fractional 
order PIλDµ controllers, in which the orders of the integral and derivative parts, λ and µ, respectively, are fractional. Experiments with frac-
tional-order controller are performed under various conditions, which include position signal with different frequencies and amplitudes or a step 
position signal. The results show the effectiveness of the proposed schemes and verify their fine control performance for a pneumatic position 
servo-system.

Key words: pneumatic servo-drive, fractional-order, identification and control.

Fractional-order feedback control of a pneumatic servo-drive

P.A. LASKI*
Kielce University of Technology, Department of Automation and Robotics, Faculty of Mechatronics and Machine Design,  

Aleja Tysiaclecia Panstwa Polskiego 7, 25-314 Kielce, Poland

control system. For that reason, attempts have been made to use 
fractional order controllers to improve the quality of positional 
and follow-up control of the pneumatic drive. This subject is 
presented in this article.

2.	 Dynamic model of a pneumatic servo-drive

2.1. Test stand for pneumatic drive. To evaluate dynamic 
properties of a pneumatic drive, the test stand shown in Fig. 1 
was made. The stand consists of a single rodless cylinder by 
Norgren with a piston 32 mm in diameter and a nominal length 
of 0.6 m. The actuator has side-sliding guides. To determine the 
position of the piston, the actuator is equipped with a non-con-
tact magnetic position external sensor.

1.	 Introduction

Pneumatic drives are still used frequently in automation and 
constitute a base for performing simple movements used for 
changing plants’ orientation and for translation on automated 
production lines. They have many positive features, including 
high durability, simple construction, operation reliability, ability 
to work in a highly polluted and dusty environment (also in 
explosion risk areas) and high overload capacity. Additionally, 
the operating medium used in the drive is widely available. 
However, precise control of a pneumatic drive proves very dif-
ficult, because of high compressibility of air. In practice, it only 
allows the pneumatic drive to be put in extreme positions, which 
are set mechanically. Furthermore, nowadays pneumatic drives 
and their control systems are expected to meet increasingly 
strict requirements. Meanwhile, controlling and positioning of 
pneumatic drives, due to their widespread use, are still tangible 
subjects for researchers at many research centers around the 
world.

Although pneumatic drives have been known for many 
decades, new papers are still being reported. They present 
solutions for theoretical models that focus on drives dynamics 
[1, 2] tracking positioning [3], friction in insulating nodes 
[4, 5], innovative control valves [6, 7], flexible muscle [8‒10] 
drives or heat transfer of the operating medium [11] as well as 
modeling of the medium flow [12]. Positional and follow-up 
control of pneumatic drives are complicated issues and require 
use of modern valves with high dynamics and taking innovative 
approaches to applying algorithms and controllers. Both exper-
imental and simulated results of research work on positioning 
of pneumatic drives highlight the need for using a new type of 

Fig. 1. Test stand for pneumatic drive: 1 – rodless cylinder, 2 – di-
rectional control valve, 3 – displacement transducer, 4 – pressure 
transducers, 5 – pneumatic power supply, 6 – measurement data 
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plant equivalent transfer function is presented by the following 
equation:

	 G(s)ob = 
Kp1

(1 + 2ζTw s + (Tw s)2)(1 + Tp s)
� (1)

where:
Tw  = 0.045,
Kp1 = 1.0034,
ζ  = 0.6082,
Tp = 0.0542,

which, after inserting, gave:

	 G(s)ob =  1

(1 + 0.0542s)
 ¢  1.0034

(1 + 0.0548s + (0.045s)2)
.� (2)

A frequency identification process using Fourier transform from 
the Wolfram Mathematica program was also performed.

Therefore, when identifying parameters of the pneumatic ser-
vo-model, the whole process was based on the fact that the actual 
signal is given by a periodic signal and the response is recorded 
in steady-state conditions for a closed system (Fig. 3, Fig. 4).

Fig. 3. Plant’s response to periodic signal
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consisting of the pneumatic actuator, which is controlled by 
a proportional directional control valves, method with 
negative feedback loop and proportional gain was used. 
The pneumatic drive is characterized by high variability of 
friction forces, especially in first operation cycles after 
longer no using. Therefore, a research experiment was 
planned and consisted of dozens of adjustable actuator 
movements with randomly generated positions, after that 
proper tests were conducted. During those tests, the 
response to step function was obtained corresponding to 
move work from point to point of the actuator. In 
identification process, excitation signal was the valve 
controlling signal and response was the actuator position. 
 

 
Fig. 2 The schematic diagram of pneumatic servo drive 
 
2.3. Identification of the pneumatic servo drive using 
classic transfer function 
 

Based on conducted research and after identification 
process, two mathematical models for described pneumatic 
servo drive were proposed. The first model was described 
using classic equivalent transfer function, while the second 
model was obtained by using fractional order model.  
In the identification model process of the pneumatic servo 
drive plant, Matlab identification toolbox was used. In this 
paper there was proposed a plant described by transfer 
function of 3 order. In identification process the plant fit 
estimation data at the level of 93.05 % was found. Thus, 
form of the plant equivalent transfer function has equation: 
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from Wolfram Mathematica program was also performed. 
Therefore, when identifying parameters of the pneumatic 
servo model, there was used fact that signal is given by a 
periodic signal and response was recorded in steady state 
conditions for closed system (Fig. 3, Fig. 4). 
This allowed for model identification based on the input 
and output spectrum signals. 
The identification process relied on determining of rising 
edges location of set signal and determining beginning and 
ending samples indexes of the course test, the number of 
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Fig. 3 The plant's response to a periodic signal. 

 
Fig. 4 Valve control signal. 
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of M  function periods, only every M  component is non-
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Fig. 4. Valve control signal

2 

and value of 5V corresponds to the central position of the 
valve, where constant and equal value of pressure is set on 
2 and 5 working paths.  
 

2.2 Identification of the pneumatic servo drive 
 

Due to the fact, that the plant is identified by a system 
consisting of the pneumatic actuator, which is controlled by 
a proportional directional control valves, method with 
negative feedback loop and proportional gain was used. 
The pneumatic drive is characterized by high variability of 
friction forces, especially in first operation cycles after 
longer no using. Therefore, a research experiment was 
planned and consisted of dozens of adjustable actuator 
movements with randomly generated positions, after that 
proper tests were conducted. During those tests, the 
response to step function was obtained corresponding to 
move work from point to point of the actuator. In 
identification process, excitation signal was the valve 
controlling signal and response was the actuator position. 
 

 
Fig. 2 The schematic diagram of pneumatic servo drive 
 
2.3. Identification of the pneumatic servo drive using 
classic transfer function 
 

Based on conducted research and after identification 
process, two mathematical models for described pneumatic 
servo drive were proposed. The first model was described 
using classic equivalent transfer function, while the second 
model was obtained by using fractional order model.  
In the identification model process of the pneumatic servo 
drive plant, Matlab identification toolbox was used. In this 
paper there was proposed a plant described by transfer 
function of 3 order. In identification process the plant fit 
estimation data at the level of 93.05 % was found. Thus, 
form of the plant equivalent transfer function has equation: 

 1
2( )

(1 2 ( ) )(1 )
p

w w p
ob

K
G s

T s T s T s


  
 

where: 

 0.045wT  , 

1 1.0034,pK    
0.6082  ,  
0.0542pT   

after inserting obtained: 

 2

1 1.0034( )
(1 0.0542 ) ( 0.0541 (0.045 ) )8obG s

s s s
 

  
 

A frequency identification process using Fourier transform 
from Wolfram Mathematica program was also performed. 
Therefore, when identifying parameters of the pneumatic 
servo model, there was used fact that signal is given by a 
periodic signal and response was recorded in steady state 
conditions for closed system (Fig. 3, Fig. 4). 
This allowed for model identification based on the input 
and output spectrum signals. 
The identification process relied on determining of rising 
edges location of set signal and determining beginning and 
ending samples indexes of the course test, the number of 
samples and the number of waves. Next, the Fourier 
transform (DFT) was determined for the analyzed course. 
 

 
Fig. 3 The plant's response to a periodic signal. 

 
Fig. 4 Valve control signal. 
 
In the periodic function, for which recorded exactly course 
of M  function periods, only every M  component is non-
zero. In the analyzed case it will be 2M  signal course 
periods, because the wave is odd and has the character of a 

0 2 4 6 8 10 12 14 16 18 20 22
0,05

0,1

0,15

0,2

0,25

0,3

0,35

0,4

0,45

0,5

0,55

Time (s)

Po
sit

io
n 

(m
)

 

 

0 2 4 6 8 10 12 14 16 18 20 22

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

Time (s)

V
al

ve
 c

on
tro

l s
ig

na
l (

V
)

 

Fig. 2. Schematic diagram of pneumatic servo-drive
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The sensor has 0.01 mm measuring accuracy within the whole 
length range. The weight of the cylinder piston with load equals 
0.8 kg. To eliminate the influence of “sticking friction” of the 
test actuator, the test was done within the nominal length range 
between 0.1 m and 0.5 m. The control actuator is equipped with 
a proportional flow MPYE-5‒1/8-HF-010 valve, type 5/3, by 
Festo. Minimum response time of the valve is 14 ms while 
supply pressure equals 0.63 MPa. The valve is controlled by 
voltage in the range of 0‒10 V, and the value of 5 V corresponds 
to the central position of the valve, where constant and equal 
value of pressure is set on 2 and 5 working paths.

2.2. Pneumatic servo-drive identification. Due to the fact that 
the plant is identified by a system consisting of the pneumatic 
actuator, which is controlled by proportional directional con-
trol valves, the negative feedback loop and proportional gain 
method was used. The pneumatic drive is characterized by high 
variability of friction forces, especially in first operation cycles 
after longer periods of non-usage. A research experiment was 
therefore planned and consisted of dozens of adjustable actuator 
movements with randomly generated positions. Only after that 
were proper tests conducted. During those tests, the response to 
step function was obtained corresponding to move work from 
point to point of the actuator. In the identification process, the 
excitation signal was the valve controlling signal and response 
was measured by the actuator position.

2.3. Pneumatic servo-drive identification using classic trans-
fer function. Based on the research conducted and following 
an identification process, two mathematical models for describ-
ing the pneumatic servo-drive were proposed. The first model 
would use the classic equivalent transfer function, while the 
second one was obtained by using the fractional order model.

In the identification model process of the pneumatic ser-
vo-drive plant, the Matlab identification toolbox was used. This 
paper proposed a plant described by transfer function of third 
order. Within the identification process, the plant fit estimation 
data at the level of 93.05% were found. Thus, the form of the 
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This allowed for model identification based on the input and 
output spectrum signals.

The identification process relied on determining the rising 
edges’ location of a set signal and determining the beginning 
and ending samples’ indices of the course test, the number of 
samples and the number of waves. Next, the Fourier transform 
(DFT) was determined for the analyzed course.

In the periodic function, for which the exact course of M 
function periods is recorded, only every M component is non-
zero. In the analyzed case, those will be 2M signal course pe-
riods, because the wave is odd and has the character of a rect-
angular waveform. The indices of non-zero value of harmonic 
components are calculated next. Parameters of the servo-drive 
plant model were determined by means of the optimization 
method. Because the plant’s response to an input signal with 
a harmonic component Uk is equal to:

	 Yk = H( jωk)Uk � (3)

it was assumed that the minimized quality index will have the 
following form:

	 J = 
k =1

m

∑ jYMk ¡ H( jωMk)UMk j2 .� (4)

And so, in equation (4), the sum for the appropriate value m 
considers only the non-zero harmonics of the signals. Because 
the pneumatic cylinder is an integral-type plant, the transfer 
function model was assumed in the form of:

	 H( jω)ob = 
Kp2

s(T1s2 + T2s + 1)
.� (5)

Coefficients of the transfer function model were obtained based 
on an objective function, for which value J takes the smallest 
value, thus:

	 H( jω)ob =  2.325
s(0.000725s2 + 0.02704s + 1)

.� (6)

2.3. Pneumatic servo-drive identification as transfer func-
tion of fractional order. Fractional calculus is a generalization 
of integration and differentiation to a non-integer order opera-
tor, aDt

α, where a and t denote the limits of the operation and 
α denotes the fractional order so that:

aDt
α = 

3 
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where: generally it is assumed that   , but it may also 
be a complex number. 
There exist multiple definitions of the fractional 
differintegral. The Riemann-Liouville differintegral is a 
commonly used definition 
Definition 1. (R–L definition) 
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The next definition relates to fractional derivative in the 
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where:  .  means the integer part.  
The Laplace transform is an essential tool in linear dynamic 
system modeling and control system engineering. A 
function  H s  of the complex variable s j    is 
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It should be noted, that if initial conditions are not zero, 
different definitions apply for the Riemann-Liouville and 
Grünwald-Letnikov fractional-order operators. 
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where:  .  means the integer part.  
The Laplace transform is an essential tool in linear dynamic 
system modeling and control system engineering. A 
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where c  is greater than the real part of all the poles of 
function  H s  [13][14]. 
Assuming zero initial conditions, the Laplace transform of 
a generalized fractional-order operator is given by 
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It should be noted, that if initial conditions are not zero, 
different definitions apply for the Riemann-Liouville and 
Grünwald-Letnikov fractional-order operators. 
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where: generally, it is assumed that α = R, but it may also be 
a complex number.

There exist multiple definitions of the fractional differinte-
gral. The Riemann-Liouville differintegral is a commonly used 
definition.

Definition 1. (R–L definition)

	 aDt
α f (t) = 

1
Γ(m ¡ α)

d
dt

m

a

t

∫
f (m)(τ)

(t ¡ τ)α ¡ m + 1 dτ � (8)

where: m ¡ 1 < α < m, m 2 N, α 2 N+ and Γ (¢) is Euler’s 
gamma function.

The next definition relates to the fractional derivative as 
defined by Caputo [14].

Definition 2. (Caputo definition)
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1
Γ(m ¡ α) 0
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∫
f (τ)
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where m ¡ 1 < α < m, m 2 N.
Consider also the Grünwald-Letnikov definition.

Definition 3. (G–L definition)
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where: [.] means the integer part.
The Laplace transform is an essential tool in linear dynamic 

system modeling and control system engineering. Function 
H(s) of the complex variable s = σ  + jω is called the Laplace 
transform of the original function h (t), and is defined in the 
following manner:

	 H(s) = L
£
h(t)
¤
 = 

0

1

∫e–sth(t)dt .� (11)

The original function h(t) can be recovered from the La-
place transform by applying the reverse Laplace transform 
defined as:
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∫ estH(s)ds � (12)

where c is greater than the real part of all the poles of function 
H(s) [13, 14].

Assuming zero initial conditions, the Laplace transform of 
a generalized fractional-order operator is given by:

	 L–1
£
Dαh(t)

¤
 = sαH(s) .� (13)

It should be noted that if the initial conditions are not zero, 
different definitions apply for the Riemann-Liouville and Grün-
wald-Letnikov fractional-order operators.
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2.3.1. Fractional-order models. A fractional-order continu-
ous-time dynamic system can be expressed by a fractional dif-
ferential equation of the following form:

	
anD

αn y(t) + an ¡ 1D
αn ¡ 1 y(t) + ¢¢¢ + a0D

α0 y(t) = 

= bmD βm u(t) + bm ¡ 1D
βm ¡ 1u(t) + ¢¢¢ + b0D

β0 u(t).
� (14)

The system is said to be of commensurate order if in (14) 
all the orders of derivation are integer multiples of a base order 
γ  such that αk, βk = kγ , γ 2 R+ [15]. The system can then be 
expressed as:

	
k=0

n

∑ akD
kγ y(t) = 

k=0

m

∑ bkD
kγu(t) .� (15)

Applying the Laplace transform to (14) with zero initial con-
ditions the input-output representation of the fractional-order 
system can be obtained in the form of a transfer function:

	 G(s) = 
Y(s)
U(s)

 = 
bmsβm + bm ¡ 1sβm ¡ 1 + ¢¢¢ + b0sβ0

ansαn + an ¡ 1sαn ¡ 1 + ¢¢¢ + a0sα0
.� (16)

In the pneumatic servo-drive plant identification process, 
the fractional-order Modelling and Control library was used. 
This toolbox is integrated with the Matlab program. Further-
more another, FOMCOM-based library provides time-domain 
and frequency-domain fractional-order system analysis along 
with verifying system stability [16, 17]. In the toolbox, fraction-
al-order systems are given by fractional-order transfer function 
plants in the form of (14). These plants are generalizations of 
the rational transfer functions to the fractional order.

As previously, the plant was identified in the frequency do-
main by using the Fourier transform, but with the difference that 
the plant was described as a fractional order transfer function 
as follows:

	 H(s)FO = 
Kp_FO

s(T1_FO sq1 + T2_FO sq2 + 1)
.� (17)

After substitution of relation 17 to equation 4, parameters q1 q2 
Kp_FO, T1_FO  and T2_FO  were determined.

The tested pneumatic drive consisting of the actuator to-
gether with the control valve has the character of an integrat-
ing-type object with an oscillating element. To better reflect 
the physical aspect of the model, the description of the ob-
ject was used by means of a non-integer differential calculus. 
Lambda and mi exponents that determine the derivative order 
have values close to integers, and reflect the nature of the tested 
pneumatic drive model being described in an effective manner.

After determining coefficients of the transfer function 
model, it takes the following form:

	 H(s)FO =  2.317
s(0.00208s1.717 + 0.02287s0.978 + 1)

.� (18)

In Fig. 5, three responses of the system are presented in the 
normalized scale: the measured one, simulated integer order, 
and simulated fractional-order, respectively.

Fig. 5. Measured and simulated excitation steps
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Applying the Laplace transform to (14) with zero initial 
conditions the input-output representation of the fractional-
order system can be obtained in the form of a transfer 
function: 
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In the pneumatic servo drive plant identification 
process fractional-order Modelling and Control library was 
used. This toolbox is integrated in Matlab program. 
Furthermore another, FOMCOM library provides time-
domain and frequency-domain fractional-order system 
analysis, as well as verifying system stability [16] [17]. In 
the toolbox fractional-order systems are given by 
fractional-order transfer function plants in the form (14). 
These plants are generalizations of the rational transfer 
functions to the fractional order.  
As previously the plant was identified in the frequency 
domain by using Fourier transform, but with difference that 
the plant was described as fractional order transfer function 
as follows: 
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After substitution of relation 17 to equation 4, parameters 
1 2 _ 1_ 2 _  ,  ,  and p FO FO FOq q K T T  were determined. 

The tested pneumatic drive consisting of the actuator 
together with the control valve has the character of an 
integrating type object with an oscillating element. To 
better reflect the physical aspect of the model, the 
description of the object was used by means of a non-
integer differential calculus. Lambda and mi exponents that 
determine the derivative order have values close to 

integers, well reflect the nature of the described model of 
the tested pneumatic drive. 
After determining coefficients of the transfer function 
model, it takes the form: 
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In Fig. 5 three responses of the system are presented in the 
normalized scale: measured, simulated integer order, and 
simulated fractional-order respectively.  
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Fig. 5 Measured and simulated excitation steps are presented 

3. Controllers 

As mentioned in the introduction, we can also find 
papers using fractional order calculus in control theory, but 
those papers usually have theoretical context. It should be 
noticed, that the number of works in which real applied 
plants and controllers of fractional order are analysed is still 
very small.  

The main reason for this situation is difficulty of 
controller implementation and it is the result of 
mathematical character of fractional operators, which are 
defined by convolution. It should be noticed, that transfer 
from mathematical form of fractional order controller to 
microcontroller system is very difficult. 
 
3.1 Classic controller 
 

In the first stage, classic PID controller was tuned using 
quality integral criteria and parameters pK , iK , dK  ware 
calculated [18] [11] [12]. Coefficients were obtained based 
on integral quality criteria [12] [19][20]: 
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G FO simulated fractional order system
G simulated integer order system
measured signal

3.	 Controllers

As mentioned in the introduction, we can also find papers using 
the fractional order calculus in control theory, but such papers 
usually have a theoretical context. It should be noted that the 
number of works in which real applied plants and controllers 
of fractional order are analyzed remains very small.

The main reason for this situation is the difficulty with con-
troller implementation and it is the result of the mathematical 
character of fractional operators, which are defined by convo-
lution. It should be noted that transfer from mathematical form 
of the fractional order controller to a microcontroller system is 
very difficult.

3.1. Classic controller. In the first stage, a classic PID con-
troller was tuned using quality integral criteria, and parameters 
Kp, Ki and Kd were calculated [11, 12, 18]. Coefficients were 
obtained based on integral quality criteria [12, 19, 20]:

Integral square error 
0

t

∫e2(t)dt

The controller has the following form:

	 C(s)C = 
X(s)
Y(s)

 =  Kp + Ki s–1 + Kd s ,� (19)

where:
	 Kp = 6.786, Ki = 0.07022, Kd = 0.0216

and then

	 C(s)C = 
X(s)
Y(s)

 = 6.786 + 0.07022s–1 + 0.0216s ,� (20)
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3.2. Fractional-order controllers. In the next step, the param-
eters PIλDµ of the controller were determined. This means that 
a fractional order controller in the form of PIλDµ was proposed. 
It can be generalized as the form of the PID controller with 
integral and differential terms of a fractional order with positive 
exponent λ, µ.

The transfer function of such type of controller in the La-
place domain take form [21].

C(s)CF = 
X(s)
Y(s)

 = KpF + KiF s–λ + KdF sµ, (λ, µ > 0)� (21)

where: KpF is the proportional constant, KiF is the integration 
constant and KdF is the differentiation constant. Substituting 
λ = 1 and µ = 1, we get a classic PID controller. However, if 
λ = 0 and KpF = 1, we obtain a PDµ controller, etc.

All PID controllers are a special case of the PIλDµ con-
troller. Therefore, the PIλDµ controller has greater possibility 
of implementation.

3.3. PI λDμ controller design and tuning. The fractional-order 
PID controller was first introduced by Podlubny in [22]. This 
generalized controller is called the PIλDµ controller and has 
an integrator with order λ and a differentiator of order µ. Re-
cent studies show that the fractional-order PID outperforms the 

Fig. 6. PIλDµ controller plane
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3.2 Fractional-order controllers 

In the next step, the parameters PI D   of the controller 
were determined. It means, that there was proposed 
fractional order controller in form of PI D  , which can be 
generalized as the form of PID controller with integral and 
differential terms of a fractional order with positive 
exponent ,  . 
The transfer function of such type the controller in Laplace 
domain has form [21]. 

( )( ) , ( , 0)
( )CF pF iF dF

X sC s K K s K s
Y s

         

where: pFK  is the proportional constant, iFK  is the 
integration constant and dFK  is the differentiation 
constant. Substituting 1   and 1  , we get classic PID 
controller. However, if 0   and 1pFK   we obtain PD  
controller etc. 
All PID controllers are a special case of the controller 
PI D  . Therefore, the PI D   controller has a greater 
possibility of implementation. 
 
3.3. PI D  controller design and tuning 

The fractional-order PID controller was first introduced 
by Podlubny in [22]. This generalized controller is called 
the PI D  controller and has an integrator with an order   
and a differentiator of order  . Recent researches show 
that the fractional-order PID outperforms the classical PID 
[23] [24][25]. Obviously, when taking 1   the result 
is the classical integer-order PID controller. With more 
freedom in tuning the controller, the four-point PID 
diagram can now be seen as a PID controller plane, which 
is conveyed in Fig. 6 

 
Fig. 6 The PI D   controller plane 

 
In the subsequent step determined gain coefficients pK , 

iK , dK  were entered to PI D   controller and then 
coefficients 1   and 1   were tuned in Matlab 

optimization toolbox. The parameters of the FOC selection 
have been developed over the last ten years by many 
researchers [26] [22] [16]. 
Finally, the ( )FOC s  controller coefficients were obtained: 

 0.011 1.134( ) 7.609 29.365 0.799FOC s s s     (22) 

Fig. 7 to Fig.10 show the simulation results of the plant 
( )obG s  described by transfer function of integer order. 

Simulations were performed for both the classic PID
controller and the fractional order controller PI D  . 
Simulation were done for typical excitation signals, step, 
ramp, sinusoid multi-pulses position profile. 
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3.2 Fractional-order controllers 

In the next step, the parameters PI D   of the controller 
were determined. It means, that there was proposed 
fractional order controller in form of PI D  , which can be 
generalized as the form of PID controller with integral and 
differential terms of a fractional order with positive 
exponent ,  . 
The transfer function of such type the controller in Laplace 
domain has form [21]. 

( )( ) , ( , 0)
( )CF pF iF dF

X sC s K K s K s
Y s

         

where: pFK  is the proportional constant, iFK  is the 
integration constant and dFK  is the differentiation 
constant. Substituting 1   and 1  , we get classic PID 
controller. However, if 0   and 1pFK   we obtain PD  
controller etc. 
All PID controllers are a special case of the controller 
PI D  . Therefore, the PI D   controller has a greater 
possibility of implementation. 
 
3.3. PI D  controller design and tuning 

The fractional-order PID controller was first introduced 
by Podlubny in [22]. This generalized controller is called 
the PI D  controller and has an integrator with an order   
and a differentiator of order  . Recent researches show 
that the fractional-order PID outperforms the classical PID 
[23] [24][25]. Obviously, when taking 1   the result 
is the classical integer-order PID controller. With more 
freedom in tuning the controller, the four-point PID 
diagram can now be seen as a PID controller plane, which 
is conveyed in Fig. 6 

 
Fig. 6 The PI D   controller plane 
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optimization toolbox. The parameters of the FOC selection 
have been developed over the last ten years by many 
researchers [26] [22] [16]. 
Finally, the ( )FOC s  controller coefficients were obtained: 
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Fig. 7 to Fig.10 show the simulation results of the plant 
( )obG s  described by transfer function of integer order. 

Simulations were performed for both the classic PID
controller and the fractional order controller PI D  . 
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Fig. 8. System responses to multi-pulses position profile
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3.2 Fractional-order controllers 

In the next step, the parameters PI D   of the controller 
were determined. It means, that there was proposed 
fractional order controller in form of PI D  , which can be 
generalized as the form of PID controller with integral and 
differential terms of a fractional order with positive 
exponent ,  . 
The transfer function of such type the controller in Laplace 
domain has form [21]. 
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( )CF pF iF dF

X sC s K K s K s
Y s

         

where: pFK  is the proportional constant, iFK  is the 
integration constant and dFK  is the differentiation 
constant. Substituting 1   and 1  , we get classic PID 
controller. However, if 0   and 1pFK   we obtain PD  
controller etc. 
All PID controllers are a special case of the controller 
PI D  . Therefore, the PI D   controller has a greater 
possibility of implementation. 
 
3.3. PI D  controller design and tuning 

The fractional-order PID controller was first introduced 
by Podlubny in [22]. This generalized controller is called 
the PI D  controller and has an integrator with an order   
and a differentiator of order  . Recent researches show 
that the fractional-order PID outperforms the classical PID 
[23] [24][25]. Obviously, when taking 1   the result 
is the classical integer-order PID controller. With more 
freedom in tuning the controller, the four-point PID 
diagram can now be seen as a PID controller plane, which 
is conveyed in Fig. 6 

 
Fig. 6 The PI D   controller plane 

 
In the subsequent step determined gain coefficients pK , 
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Finally, the ( )FOC s  controller coefficients were obtained: 

 0.011 1.134( ) 7.609 29.365 0.799FOC s s s     (22) 

Fig. 7 to Fig.10 show the simulation results of the plant 
( )obG s  described by transfer function of integer order. 

Simulations were performed for both the classic PID
controller and the fractional order controller PI D  . 
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Fig. 9 System responses to a ramp signal  
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Fig. 9. System responses to ramp signal
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3.2 Fractional-order controllers 

In the next step, the parameters PI D   of the controller 
were determined. It means, that there was proposed 
fractional order controller in form of PI D  , which can be 
generalized as the form of PID controller with integral and 
differential terms of a fractional order with positive 
exponent ,  . 
The transfer function of such type the controller in Laplace 
domain has form [21]. 

( )( ) , ( , 0)
( )CF pF iF dF

X sC s K K s K s
Y s

         

where: pFK  is the proportional constant, iFK  is the 
integration constant and dFK  is the differentiation 
constant. Substituting 1   and 1  , we get classic PID 
controller. However, if 0   and 1pFK   we obtain PD  
controller etc. 
All PID controllers are a special case of the controller 
PI D  . Therefore, the PI D   controller has a greater 
possibility of implementation. 
 
3.3. PI D  controller design and tuning 

The fractional-order PID controller was first introduced 
by Podlubny in [22]. This generalized controller is called 
the PI D  controller and has an integrator with an order   
and a differentiator of order  . Recent researches show 
that the fractional-order PID outperforms the classical PID 
[23] [24][25]. Obviously, when taking 1   the result 
is the classical integer-order PID controller. With more 
freedom in tuning the controller, the four-point PID 
diagram can now be seen as a PID controller plane, which 
is conveyed in Fig. 6 

 
Fig. 6 The PI D   controller plane 
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optimization toolbox. The parameters of the FOC selection 
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Finally, the ( )FOC s  controller coefficients were obtained: 
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Fig. 7 to Fig.10 show the simulation results of the plant 
( )obG s  described by transfer function of integer order. 

Simulations were performed for both the classic PID
controller and the fractional order controller PI D  . 
Simulation were done for typical excitation signals, step, 
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Fig. 9 System responses to a ramp signal  
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classical PID [23‒25]. Obviously, when taking λ = µ = 1, the 
result is the classical integer-order PID controller. With more 
freedom in tuning the controller, the four-point PID diagram 
can now be seen as a PID controller plane, which is conveyed 
in Fig. 6.

In the subsequent step, the determined gain coefficients Kp, 
Ki and Kd were entered into the PIλDµ controller and then coef-
ficients λ = 1 and µ = 1 were tuned in the Matlab optimization 
toolbox. The parameters of the FOC selection have been devel-
oped over the last ten years by many researchers [16, 22, 26].

Finally, the C(s)FO controller coefficients were obtained:

	 C(s)FO = 7.609 + 29.365s– 0.011 + 0.799s1.134.� (22)

Figure 7 to 10 show the simulation results of plant G(s)ob 
described by the transfer function of integer order.

Simulations were performed for both the classic PID con-
troller and the fractional order controller PIλDµ.

Simulations were done for typical excitation signals, the 
step, ramp and sinusoid multi-pulses position profiles.
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3.4. Experimental research. Figure 10 to 12 show the experi-
ment results of plant G(s)ob described by the transfer function of 
integer order. Experiments were performed for both the classic 
PID controller and the fractional order controller PIλDµ.

Experiments were done for typical excitation c, the step, 
ramp and sinusoid multi-pulses position profiles.

Table 1 presents the integral quality criteria from the tests 
conducted.

Table 1 
Integral quality criteria ISE = 

0

t

∫e2(t)dt

Simulation research

reference 
signal

Integer  
PID 

controller

Integer  
+ FO PID 
controller

Fractional 
order 
PID 

controller

Fractional 
order 

FOPID 
controller

Time 
(s)

sine wave 0.00451 0.00016 0.00452 0.00016 14

step 0.01409 0.01407 0.01410 0.01408 1.4

ramp 0.00119 0.00005 0.00119 0.000045 1.4

multi step 0.01309 0.01286 0.01298 0.01275 14

Experimental research

reference signal FOPID controller PID controller Time  
(s)

ramp 0.00005 0.00007 2

sine 0.00029 0.00142 14

multi step 0.00766 – 10

4.	 Conclusions

This paper presented a case study of fractional order feedback 
control of a pneumatic servo-drive. Based on the experimental 
and simulation tests performed, it can be noted that for the 
PIλDµ type controller, the results of following up a set signal 
are better than for the classic PID controller. One of the cases 
in which both controllers do not meet the requirements is that 
of dynamic point-to-point movements. This is due to the fact of 
high friction forces and the stick-slip phenomenon.

Fig. 10. System responses to sine wave signal
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Fig. 10 System responses to a sine wave signal  

3.4. Experimental research 
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Fig. 11 System responses to a multi-pulses position profile 
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Fig. 13 System responses to a sine wave signal  

Table 1 presents the integral quality criteria from 
conducted tests. 
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Conclusions 
 

In this paper was presented a case study of fractional 
order feedback control of a pneumatic servo drive. Based 
on the experimental and simulation tests performed, it can 
be noticed that for the PI D   type controller, the results 
of following up set signal are better than for the classic PID 
controller. One of the cases in which both controllers do not 
meet the requirements are dynamic point-to-point 
movements. This is due to the fact of high friction forces 
and stick slip phenomenon. 

In future we will conduct research and describe the 
plant where exponents of fractional order function will not 
be constant.  
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Fig. 11. System responses to multi-pulses position profile
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Fig. 10 System responses to a sine wave signal  

3.4. Experimental research 

Fig. 10 to Fig. 12 show the experiments results of the 
plant ( )obG s  described by transfer function of integer 
order. Experiments were performed for both the classic 
PID controller and the fractional order controller PI D  . 
Experiments were done for typical excitation c, step, ramp, 
sinusoid multi-pulses position profile. 
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Fig. 13 System responses to a sine wave signal  

Table 1 presents the integral quality criteria from 
conducted tests. 
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order feedback control of a pneumatic servo drive. Based 
on the experimental and simulation tests performed, it can 
be noticed that for the PI D   type controller, the results 
of following up set signal are better than for the classic PID 
controller. One of the cases in which both controllers do not 
meet the requirements are dynamic point-to-point 
movements. This is due to the fact of high friction forces 
and stick slip phenomenon. 
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Fig. 12. System responses to ramp signal
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Fig. 10 System responses to a sine wave signal  

3.4. Experimental research 

Fig. 10 to Fig. 12 show the experiments results of the 
plant ( )obG s  described by transfer function of integer 
order. Experiments were performed for both the classic 
PID controller and the fractional order controller PI D  . 
Experiments were done for typical excitation c, step, ramp, 
sinusoid multi-pulses position profile. 
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Fig. 13 System responses to a sine wave signal  

Table 1 presents the integral quality criteria from 
conducted tests. 
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Conclusions 
 

In this paper was presented a case study of fractional 
order feedback control of a pneumatic servo drive. Based 
on the experimental and simulation tests performed, it can 
be noticed that for the PI D   type controller, the results 
of following up set signal are better than for the classic PID 
controller. One of the cases in which both controllers do not 
meet the requirements are dynamic point-to-point 
movements. This is due to the fact of high friction forces 
and stick slip phenomenon. 
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Fig. 13. System responses to sine wave signal
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Fig. 10 System responses to a sine wave signal  

3.4. Experimental research 

Fig. 10 to Fig. 12 show the experiments results of the 
plant ( )obG s  described by transfer function of integer 
order. Experiments were performed for both the classic 
PID controller and the fractional order controller PI D  . 
Experiments were done for typical excitation c, step, ramp, 
sinusoid multi-pulses position profile. 
 

 
Fig. 11 System responses to a multi-pulses position profile 

 
Fig. 12 System responses to a ramp signal  

 
Fig. 13 System responses to a sine wave signal  

Table 1 presents the integral quality criteria from 
conducted tests. 

Table 1 

Integral quality criteria 2

0

( ) d
t

ISE e t t   

Simulation research 

reference 
signal 

Integer  
PID controller 

Integer +FO 
PID controller 

Fractional 
Order 
PID controller 

Fractional 
Order  
FOPID 
controller 

Time 
(s) 

sine wave 0.00451 0.00016 0.00452 0.00016 14 

step 0.01409 0.01407 0.01410 0.01408 1.4 

ramp 0.00119 0.00005 0.00119 0.000045 1.4 

multi step 0.01309 0.01286 0.01298 0.01275 14 

Experimental research 
reference 
signal FOPID controller PID controller Time 

(s) 

ramp 0.00005 0.00007 2 

sine 0.00029 0.00142 14 

multi step 0.00766 - 10 

 
Conclusions 
 

In this paper was presented a case study of fractional 
order feedback control of a pneumatic servo drive. Based 
on the experimental and simulation tests performed, it can 
be noticed that for the PI D   type controller, the results 
of following up set signal are better than for the classic PID 
controller. One of the cases in which both controllers do not 
meet the requirements are dynamic point-to-point 
movements. This is due to the fact of high friction forces 
and stick slip phenomenon. 

In future we will conduct research and describe the 
plant where exponents of fractional order function will not 
be constant.  
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In the future, we will conduct further research and describe 
a plant where exponents of the fractional order function will 
not be constant.
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