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Abstract. The optimal design of excitation signal is a procedure of generating an informative input signal to extract the model parameters with 
maximum pertinence during the identification process. The fractional calculus provides many new possibilities for system modeling based 
on the definition of a derivative of noninteger-order. A novel optimal input design methodology for fractional-order systems identification is 
presented in the paper. The Oustaloup recursive approximation (ORA) method is used to obtain the fractional-order differentiation in an in-
teger order state-space representation. Then, the presented methodology is utilized to solve optimal input design problem for fractional-order 
system identification. The fundamental objective of this approach is to design an input signal that yields maximum information on the value 
of the fractional-order model parameters to be estimated. The method described in this paper was verified using a numerical example, and the 
computational results were discussed.
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However, the fundamental goal of identification experiment 
is to minimize or maximize selected criterion based on Fisher 
information matrix, in the presence of disturbances affecting 
a plant around its operating point [15]. Identification is car-
ried out by disturbing the system using an optimal input signal 
and use an output data to extract a plant model using minimal 
cost and resources [16]. The improper experimental conditions 
can lead to performance degradation of the control loop, and 
therefore the cost of the experiment (i.e., departure from the 
nominal operating point) should be quantified. The objective 
of input signal design is minimizing the cost of identification 
experiment, which still delivers acceptable application perfor-
mance. It was shown that more than 60% of the investigated 
control processes are not ensuring the appropriate quality [17].

Studies show that model development contains over 75% 
of the cost related to industrial control loops design [18]. The 
expenses of the system identification are also defined by effi-
ciency degradation of the closed-loop system, during pertur-
bation, subject to the closed-loop system under optimal oper-
ational policy [19].

Plant-friendly input design is based on the framework of 
application-oriented system identification. The idea is to find 
a trade-off between minimal disruption to the operating condi-
tions and expected properties of the model to be identified [20]. 
The plant friendliness assumptions are often inconsistent with de-
mands for precise model parameters estimation [21]. That is why, 
more safe perturbations which are providing a good accuracy of 
parameter estimates, should be considered [22]. In [23] a robust 
formulation of a plant friendly input design problem with the 
power of the excitation trajectory and output fitting constraints 
was proposed. This kind of research is a combination of solving 
the sequential and robust problems. The methodology for solving 
input design in the economic, plant friendly and application-ori-
ented setup, where the purpose is to minimize the departure from 
the standard operating conditions was outlined in [24‒26].

1.	 Introduction

Taking into consideration a derivative of noninteger-order, the 
fractional calculus provides a new modeling tool for precise 
system identification and controller tuning purposes [1, 2]. It 
was shown that fractional models guarantee a more precise 
specification of the system dynamics than models obtained 
using ordinary differential equations [3‒5]. Moreover, frac-
tional calculus is a generalization of the ordinary differential 
equations by partial order differentiation [6]. Many reports have 
been created to examine in details the accuracy of fractional 
calculus, applied to solving problems in various domains, such 
as bioengineering [7], physics [8, 9], chaos theory [10], control 
systems [11, 12] and fractional processes [13].

Implementation of the noninteger-order identification 
methods to real-life industrial problems should cause per-
formance improvement and finally cost minimization. Thus, 
fractional calculus is mostly helpful in mechatronics and con-
trol engineering areas where fractional identification methods 
are applied to more accurate control strategies development 
and control loops improvements [2]. It was shown that frac-
tional-order controllers behaviour varies from integer-order 
controllers, and in some applications, fractional PID control-
lers have a better precision in comparison with classic PID’s 
[14].

Identification is usually performed by perturbing processes 
or plants during an identification experiment in order to model 
parameters extraction. The selection of an informative input 
utilized for plant excitation is an essential step in the task of an 
unknown model parameters extraction.
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In previous papers, the theory of optimal control methods 
for linear and nonlinear integer order systems was reviewed. 
In this paper, a novel optimal input design formulation and the 
numerical scheme for fractional-order system identification 
are presented. The Oustaloup recursive approximation (ORA) 
method provides a precise approximation of the fractional op-
erator, which is then converted into zero-pole transfer function. 
The affine problem can also be described by the state-space 
formulation to solve a fractional-order input design problem. 
Numerical examples for fractional-order linear time-invariant 
model identification to verify pertinence of the method are pre-
sented. The issues of the optimal input design, in the classic 
framework, are considered in earlier works of the author 
[27, 28].

2.	 Fractional-order optimal input problem 
formulation

Fractional calculus is an idea as old as the ordinary differential 
equations calculus description where differentiation and inte-
gration are applied to fractional index operator. The continuous 
operator of the fractional order α is featured as follows: 
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where: a, t - signify the integration limits and α is the 
operator order. Presently many different forms of 
fractional derivation and integration operators were 
developed [1]. 

The Riemann-Liouville differentiation (α > 0) of a 
function f at t is commonly utilized definition: 
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where: Γ(·) is a gamma function defined by Euler limit, 
and .1,0(for  N,,1   mmm  The above 
expression could be reformulated into the following 
equation: 
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Another fractional-order derivative (α > 0) is called 
the Caputo’s fractional derivative of order α given by: 
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where:        .1, mmtfdtdtf mmm    In like 
manner, Caputo’s fractional integral for  1,0(  can be 
converted to the Caputo fractional derivative of order α as 
follows: 
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It has been proven that for real values, the fractional 
derivatives defined by Riemann-Liouville and Grünwald-
Letnikov are the same [11]. 

Eventually, the Grünwald-Letnikov fractional formula 
for α  R should be noticed: 
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Based on the equation (7) the fractional formula (6) 
should be obtained from: 
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where a = 0, t = kh denotes step index and the step 
duration h. 

The fractional calculus is the special case of traditional 
ordinary differential equations approach (ODE). Linear 
noninteger SISO continuous-time dynamic model  is 
comensature-order if  all powers of derivative are integer 
multiples of the order q in such a way that αk, βk = kq, q  
R+ as follows [1, 2]: 
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where: ak, bk are systems constant coefficients. The 
description for a discrete signal and different degrees 
could be discovered from [29]. The LTI system is the 
rational-order if q = r-1, and q  R+. Using Laplace law to 
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It has been proven that for real values, the fractional 
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Letnikov are the same [11]. 
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where a = 0, t = kh denotes step index and the step 
duration h. 

The fractional calculus is the special case of traditional 
ordinary differential equations approach (ODE). Linear 
noninteger SISO continuous-time dynamic model  is 
comensature-order if  all powers of derivative are integer 
multiples of the order q in such a way that αk, βk = kq, q  
R+ as follows [1, 2]: 
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where: ak, bk are systems constant coefficients. The 
description for a discrete signal and different degrees 
could be discovered from [29]. The LTI system is the 
rational-order if q = r-1, and q  R+. Using Laplace law to 
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which are calculated recursively from:

	

2 

design in the economic, plant friendly and application-
oriented setup, where the purpose is to minimise the 
departure from the standard operating conditions was 
outlined in [24-26]. 

In previous papers, the theory of optimal control 
methods for linear and nonlinear integer order systems 
was reviewed. In this paper, a novel optimal input design 
formulation and the numerical scheme for fractional-order 
system identification are presented. The Oustaloup 
recursive approximation (ORA) method provides a 
precise approximation of the fractional operator, which is 
then converted into zero-pole transfer function. The affine 
problem can also be described by the state-space 
formulation to solve a fractional-order input design 
problem. Numerical examples for fractional-order linear 
time-invariant model identification to verify pertinence of 
the method are presented. The issues of the optimal input 
design, in the classic framework, are considered in earlier 
works of the author [27, 28]. 

2. Fractional-order optimal input problem 
formulation 

Fractional calculus is an idea as old as the ordinary 
differential equations calculus description where 
differentiation and integration are applied to fractional 
index operator. The continuous operator of the fractional 
order α is featured as follows:  



 

 

   





















 
t

a

ta

d

dt
d

D

0

,01

0













  

where: a, t - signify the integration limits and α is the 
operator order. Presently many different forms of 
fractional derivation and integration operators were 
developed [1]. 

The Riemann-Liouville differentiation (α > 0) of a 
function f at t is commonly utilized definition: 

   
 

 
  












t

a
m

m

ta d
t

f
dt
d

mdt
tfdtfD ,1

1 



 


 (2) 

where: Γ(·) is a gamma function defined by Euler limit, 
and .1,0(for  N,,1   mmm  The above 
expression could be reformulated into the following 
equation: 

    
 

 
 



t

a
ta d

t
f

dt
d

dt
tfdtfD ,

1
1 




 


  (3) 

Another fractional-order derivative (α > 0) is called 
the Caputo’s fractional derivative of order α given by: 

    
 

  
  


t

m

p

ta d
t

f
mdt

tfdtfD
0

1 ,1 



 


  (4) 

where:        .1, mmtfdtdtf mmm    In like 
manner, Caputo’s fractional integral for  1,0(  can be 
converted to the Caputo fractional derivative of order α as 
follows: 

    
 

 
 

.
1
1

0





t

ta d
t
f

dt
tfdtfD 




 


  (5) 

It has been proven that for real values, the fractional 
derivatives defined by Riemann-Liouville and Grünwald-
Letnikov are the same [11]. 

Eventually, the Grünwald-Letnikov fractional formula 
for α  R should be noticed: 

      ,11lim
00

jhtf
jh

tfD
k

j

j

hta 







 






  (6) 

where:   









j
j

j


 1  represents polynomial 

coefficients, which are calculated recursively from: 

 ,...,2,1,11,1 10 






 
  j

j jj
   (7) 

Based on the equation (7) the fractional formula (6) 
should be obtained from: 

    ,1
0

jhtf
h

tfD
k

j
jta  






   (8) 

where a = 0, t = kh denotes step index and the step 
duration h. 

The fractional calculus is the special case of traditional 
ordinary differential equations approach (ODE). Linear 
noninteger SISO continuous-time dynamic model  is 
comensature-order if  all powers of derivative are integer 
multiples of the order q in such a way that αk, βk = kq, q  
R+ as follows [1, 2]: 

     
 

n

k

m

k
tktk tuDbtyDa kk

0 0
,  (9) 

where: ak, bk are systems constant coefficients. The 
description for a discrete signal and different degrees 
could be discovered from [29]. The LTI system is the 
rational-order if q = r-1, and q  R+. Using Laplace law to 

,� (7)

Based on the equation (7) the fractional formula (6) should be 
obtained from:

	

2 

design in the economic, plant friendly and application-
oriented setup, where the purpose is to minimise the 
departure from the standard operating conditions was 
outlined in [24-26]. 

In previous papers, the theory of optimal control 
methods for linear and nonlinear integer order systems 
was reviewed. In this paper, a novel optimal input design 
formulation and the numerical scheme for fractional-order 
system identification are presented. The Oustaloup 
recursive approximation (ORA) method provides a 
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where: a, t - signify the integration limits and α is the 
operator order. Presently many different forms of 
fractional derivation and integration operators were 
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where: Γ(·) is a gamma function defined by Euler limit, 
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Another fractional-order derivative (α > 0) is called 
the Caputo’s fractional derivative of order α given by: 
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It has been proven that for real values, the fractional 
derivatives defined by Riemann-Liouville and Grünwald-
Letnikov are the same [11]. 

Eventually, the Grünwald-Letnikov fractional formula 
for α  R should be noticed: 
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where a = 0, t = kh denotes step index and the step 
duration h. 

The fractional calculus is the special case of traditional 
ordinary differential equations approach (ODE). Linear 
noninteger SISO continuous-time dynamic model  is 
comensature-order if  all powers of derivative are integer 
multiples of the order q in such a way that αk, βk = kq, q  
R+ as follows [1, 2]: 
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where: ak, bk are systems constant coefficients. The 
description for a discrete signal and different degrees 
could be discovered from [29]. The LTI system is the 
rational-order if q = r-1, and q  R+. Using Laplace law to 
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equation (9) with zero initial conditions the fractional-
order linear time-invariant model can be described by a 
transfer function written as:  
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The quantity of fractional poles in transfer function 
(10) is referred to as the pseudo-order of the system. The 
system with commensurate order q can be reformulated to 
obtain the pseudo-rational transfer formula H(λ) given by: 
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where: λ = sq. On the basis of this idea, the state space 
representation of a fractional-order linear and nonlinear 
dynamic models can be written as: 
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Such a description is called an internal system 
representation because all the state variables are included 
in state space notation.  

From any of the presented above fractional-order 
derivative definitions, we can specify the problem of 
optimal excitation signal design for the fractional system 
identification. The objective function to be minimized can 
be written as: 
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in respect to the plant dynamics with  the initial condition: 
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subject to the trajectory constraints: 
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where x is the state-space vector, t[t0, tf] denotes time 
duration, q = {1,…,q} and l, g, h are a priori linear or 
nonlinear functions. The functions g(·,·) and l(·,·,·) with 
indexes tc, eec, and eic are trajectory constraint, endpoint 
equality constraint and endpoint inequality constraint, 
respectively. 

3. Fractional-order operator approximation  

Some continuous filters, which provide a possibility of 
approximating the fractional operators have been 
discussed in [1]. The Oustaloup methods, which have an 
excellent matching to the noninteger-order zero-pole 
transfer functions approximation, are often utilized in 
practical implementations. We tend to take into the 
consideration the recursive Oustaloup approximation 
method (ORA) during an experiment. Assuming the 
expected frequency fitting range, the fractional operators 
could be approximated by following formulas: 
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from: 
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where: N is the degree of the approximation and (ωb, ωh) 
is the given pulsation interval. The degree of the 
approximation is N and order of the filter is 2N+1, 
considering successive values of N the parameters of the 
filter became more precise. Application of higher order N 
increases the amount of the evaluations. 

The Oustaloup approximation method provides a 
pretty accurate approximation of fractional operators in an 
established wide fitting range. Applying ORA filter for 
the fractional operators where α ≥ 1 one should separate 
fractional orders using  the following strategy: 
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The quantity of fractional poles in transfer function (10) 
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with commensurate order q can be reformulated to obtain the 
pseudo-rational transfer formula H(λ) given by:
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where: λ = sq. On the basis of this idea, the state space rep-
resentation of a fractional-order linear and nonlinear dynamic 
models can be written as:
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where: λ = sq. On the basis of this idea, the state space 
representation of a fractional-order linear and nonlinear 
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Such a description is called an internal system 
representation because all the state variables are included 
in state space notation.  

From any of the presented above fractional-order 
derivative definitions, we can specify the problem of 
optimal excitation signal design for the fractional system 
identification. The objective function to be minimized can 
be written as: 
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where x is the state-space vector, t[t0, tf] denotes time 
duration, q = {1,…,q} and l, g, h are a priori linear or 
nonlinear functions. The functions g(·,·) and l(·,·,·) with 
indexes tc, eec, and eic are trajectory constraint, endpoint 
equality constraint and endpoint inequality constraint, 
respectively. 

3. Fractional-order operator approximation  

Some continuous filters, which provide a possibility of 
approximating the fractional operators have been 
discussed in [1]. The Oustaloup methods, which have an 
excellent matching to the noninteger-order zero-pole 
transfer functions approximation, are often utilized in 
practical implementations. We tend to take into the 
consideration the recursive Oustaloup approximation 
method (ORA) during an experiment. Assuming the 
expected frequency fitting range, the fractional operators 
could be approximated by following formulas: 
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where: N is the degree of the approximation and (ωb, ωh) 
is the given pulsation interval. The degree of the 
approximation is N and order of the filter is 2N+1, 
considering successive values of N the parameters of the 
filter became more precise. Application of higher order N 
increases the amount of the evaluations. 

The Oustaloup approximation method provides a 
pretty accurate approximation of fractional operators in an 
established wide fitting range. Applying ORA filter for 
the fractional operators where α ≥ 1 one should separate 
fractional orders using  the following strategy: 
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Such a description is called an internal system 
representation because all the state variables are included 
in state space notation.  

From any of the presented above fractional-order 
derivative definitions, we can specify the problem of 
optimal excitation signal design for the fractional system 
identification. The objective function to be minimized can 
be written as: 
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duration, q = {1,…,q} and l, g, h are a priori linear or 
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approximating the fractional operators have been 
discussed in [1]. The Oustaloup methods, which have an 
excellent matching to the noninteger-order zero-pole 
transfer functions approximation, are often utilized in 
practical implementations. We tend to take into the 
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method (ORA) during an experiment. Assuming the 
expected frequency fitting range, the fractional operators 
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where: N is the degree of the approximation and (ωb, ωh) 
is the given pulsation interval. The degree of the 
approximation is N and order of the filter is 2N+1, 
considering successive values of N the parameters of the 
filter became more precise. Application of higher order N 
increases the amount of the evaluations. 

The Oustaloup approximation method provides a 
pretty accurate approximation of fractional operators in an 
established wide fitting range. Applying ORA filter for 
the fractional operators where α ≥ 1 one should separate 
fractional orders using  the following strategy: 
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(10) is referred to as the pseudo-order of the system. The 
system with commensurate order q can be reformulated to 
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Such a description is called an internal system 
representation because all the state variables are included 
in state space notation.  

From any of the presented above fractional-order 
derivative definitions, we can specify the problem of 
optimal excitation signal design for the fractional system 
identification. The objective function to be minimized can 
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where x is the state-space vector, t[t0, tf] denotes time 
duration, q = {1,…,q} and l, g, h are a priori linear or 
nonlinear functions. The functions g(·,·) and l(·,·,·) with 
indexes tc, eec, and eic are trajectory constraint, endpoint 
equality constraint and endpoint inequality constraint, 
respectively. 

3. Fractional-order operator approximation  

Some continuous filters, which provide a possibility of 
approximating the fractional operators have been 
discussed in [1]. The Oustaloup methods, which have an 
excellent matching to the noninteger-order zero-pole 
transfer functions approximation, are often utilized in 
practical implementations. We tend to take into the 
consideration the recursive Oustaloup approximation 
method (ORA) during an experiment. Assuming the 
expected frequency fitting range, the fractional operators 
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where: N is the degree of the approximation and (ωb, ωh) 
is the given pulsation interval. The degree of the 
approximation is N and order of the filter is 2N+1, 
considering successive values of N the parameters of the 
filter became more precise. Application of higher order N 
increases the amount of the evaluations. 

The Oustaloup approximation method provides a 
pretty accurate approximation of fractional operators in an 
established wide fitting range. Applying ORA filter for 
the fractional operators where α ≥ 1 one should separate 
fractional orders using  the following strategy: 
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where x is the state-space vector, t 2 [t0, tf ] denotes time dura-
tion, q = {1, …, q} and l, g, h are a priori linear or nonlinear 
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are often utilized in practical implementations. We tend to take 
into the consideration the recursive Oustaloup approximation 
method (ORA) during an experiment. Assuming the expected 
frequency fitting range, the fractional operators could be ap-
proximated by following formulas:

	 sα ¼ 

3 

equation (9) with zero initial conditions the fractional-
order linear time-invariant model can be described by a 
transfer function written as:  

    
  .

01

01

01

01




sasasa
sbsbsb

sU
sYsG

nn

mm

nn

mm
















 (10) 

The quantity of fractional poles in transfer function 
(10) is referred to as the pseudo-order of the system. The 
system with commensurate order q can be reformulated to 
obtain the pseudo-rational transfer formula H(λ) given by: 
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where: λ = sq. On the basis of this idea, the state space 
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Such a description is called an internal system 
representation because all the state variables are included 
in state space notation.  

From any of the presented above fractional-order 
derivative definitions, we can specify the problem of 
optimal excitation signal design for the fractional system 
identification. The objective function to be minimized can 
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where x is the state-space vector, t[t0, tf] denotes time 
duration, q = {1,…,q} and l, g, h are a priori linear or 
nonlinear functions. The functions g(·,·) and l(·,·,·) with 
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where: N is the degree of the approximation and (ωb, ωh) 
is the given pulsation interval. The degree of the 
approximation is N and order of the filter is 2N+1, 
considering successive values of N the parameters of the 
filter became more precise. Application of higher order N 
increases the amount of the evaluations. 

The Oustaloup approximation method provides a 
pretty accurate approximation of fractional operators in an 
established wide fitting range. Applying ORA filter for 
the fractional operators where α ≥ 1 one should separate 
fractional orders using  the following strategy: 
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The quantity of fractional poles in transfer function 
(10) is referred to as the pseudo-order of the system. The 
system with commensurate order q can be reformulated to 
obtain the pseudo-rational transfer formula H(λ) given by: 
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Such a description is called an internal system 
representation because all the state variables are included 
in state space notation.  

From any of the presented above fractional-order 
derivative definitions, we can specify the problem of 
optimal excitation signal design for the fractional system 
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where x is the state-space vector, t[t0, tf] denotes time 
duration, q = {1,…,q} and l, g, h are a priori linear or 
nonlinear functions. The functions g(·,·) and l(·,·,·) with 
indexes tc, eec, and eic are trajectory constraint, endpoint 
equality constraint and endpoint inequality constraint, 
respectively. 

3. Fractional-order operator approximation  

Some continuous filters, which provide a possibility of 
approximating the fractional operators have been 
discussed in [1]. The Oustaloup methods, which have an 
excellent matching to the noninteger-order zero-pole 
transfer functions approximation, are often utilized in 
practical implementations. We tend to take into the 
consideration the recursive Oustaloup approximation 
method (ORA) during an experiment. Assuming the 
expected frequency fitting range, the fractional operators 
could be approximated by following formulas: 
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where: N is the degree of the approximation and (ωb, ωh) 
is the given pulsation interval. The degree of the 
approximation is N and order of the filter is 2N+1, 
considering successive values of N the parameters of the 
filter became more precise. Application of higher order N 
increases the amount of the evaluations. 

The Oustaloup approximation method provides a 
pretty accurate approximation of fractional operators in an 
established wide fitting range. Applying ORA filter for 
the fractional operators where α ≥ 1 one should separate 
fractional orders using  the following strategy: 
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The quantity of fractional poles in transfer function 
(10) is referred to as the pseudo-order of the system. The 
system with commensurate order q can be reformulated to 
obtain the pseudo-rational transfer formula H(λ) given by: 
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where: λ = sq. On the basis of this idea, the state space 
representation of a fractional-order linear and nonlinear 
dynamic models can be written as: 
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Such a description is called an internal system 
representation because all the state variables are included 
in state space notation.  

From any of the presented above fractional-order 
derivative definitions, we can specify the problem of 
optimal excitation signal design for the fractional system 
identification. The objective function to be minimized can 
be written as: 

        ,,,,
0

0 
ft

t
f dttuxltxtxgJ  (13) 

in respect to the plant dynamics with  the initial condition: 

      ,,,,,,)( 00 00 fttt tttxtxtuxhtxD   (14) 

subject to the trajectory constraints: 

        ,,,, 0maxmin fttttututu   (15) 

       ,, 0max0min0 txtxtx    (16) 

       ,,,q,0,, 0tc ftc ttttutxtl    (17) 

      ,q,0, eic0  
feic txtxg  (18) 

      .q,0, eec0  
feec txtxg  (19) 

where x is the state-space vector, t[t0, tf] denotes time 
duration, q = {1,…,q} and l, g, h are a priori linear or 
nonlinear functions. The functions g(·,·) and l(·,·,·) with 
indexes tc, eec, and eic are trajectory constraint, endpoint 
equality constraint and endpoint inequality constraint, 
respectively. 

3. Fractional-order operator approximation  

Some continuous filters, which provide a possibility of 
approximating the fractional operators have been 
discussed in [1]. The Oustaloup methods, which have an 
excellent matching to the noninteger-order zero-pole 
transfer functions approximation, are often utilized in 
practical implementations. We tend to take into the 
consideration the recursive Oustaloup approximation 
method (ORA) during an experiment. Assuming the 
expected frequency fitting range, the fractional operators 
could be approximated by following formulas: 
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where: N is the degree of the approximation and (ωb, ωh) 
is the given pulsation interval. The degree of the 
approximation is N and order of the filter is 2N+1, 
considering successive values of N the parameters of the 
filter became more precise. Application of higher order N 
increases the amount of the evaluations. 

The Oustaloup approximation method provides a 
pretty accurate approximation of fractional operators in an 
established wide fitting range. Applying ORA filter for 
the fractional operators where α ≥ 1 one should separate 
fractional orders using  the following strategy: 
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The quantity of fractional poles in transfer function 
(10) is referred to as the pseudo-order of the system. The 
system with commensurate order q can be reformulated to 
obtain the pseudo-rational transfer formula H(λ) given by: 
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Such a description is called an internal system 
representation because all the state variables are included 
in state space notation.  

From any of the presented above fractional-order 
derivative definitions, we can specify the problem of 
optimal excitation signal design for the fractional system 
identification. The objective function to be minimized can 
be written as: 
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where x is the state-space vector, t[t0, tf] denotes time 
duration, q = {1,…,q} and l, g, h are a priori linear or 
nonlinear functions. The functions g(·,·) and l(·,·,·) with 
indexes tc, eec, and eic are trajectory constraint, endpoint 
equality constraint and endpoint inequality constraint, 
respectively. 

3. Fractional-order operator approximation  

Some continuous filters, which provide a possibility of 
approximating the fractional operators have been 
discussed in [1]. The Oustaloup methods, which have an 
excellent matching to the noninteger-order zero-pole 
transfer functions approximation, are often utilized in 
practical implementations. We tend to take into the 
consideration the recursive Oustaloup approximation 
method (ORA) during an experiment. Assuming the 
expected frequency fitting range, the fractional operators 
could be approximated by following formulas: 
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where: N is the degree of the approximation and (ωb, ωh) 
is the given pulsation interval. The degree of the 
approximation is N and order of the filter is 2N+1, 
considering successive values of N the parameters of the 
filter became more precise. Application of higher order N 
increases the amount of the evaluations. 

The Oustaloup approximation method provides a 
pretty accurate approximation of fractional operators in an 
established wide fitting range. Applying ORA filter for 
the fractional operators where α ≥ 1 one should separate 
fractional orders using  the following strategy: 
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The quantity of fractional poles in transfer function 
(10) is referred to as the pseudo-order of the system. The 
system with commensurate order q can be reformulated to 
obtain the pseudo-rational transfer formula H(λ) given by: 
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where: λ = sq. On the basis of this idea, the state space 
representation of a fractional-order linear and nonlinear 
dynamic models can be written as: 
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Such a description is called an internal system 
representation because all the state variables are included 
in state space notation.  

From any of the presented above fractional-order 
derivative definitions, we can specify the problem of 
optimal excitation signal design for the fractional system 
identification. The objective function to be minimized can 
be written as: 
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      ,,,,,,)( 00 00 fttt tttxtxtuxhtxD   (14) 

subject to the trajectory constraints: 

        ,,,, 0maxmin fttttututu   (15) 

       ,, 0max0min0 txtxtx    (16) 

       ,,,q,0,, 0tc ftc ttttutxtl    (17) 

      ,q,0, eic0  
feic txtxg  (18) 

      .q,0, eec0  
feec txtxg  (19) 

where x is the state-space vector, t[t0, tf] denotes time 
duration, q = {1,…,q} and l, g, h are a priori linear or 
nonlinear functions. The functions g(·,·) and l(·,·,·) with 
indexes tc, eec, and eic are trajectory constraint, endpoint 
equality constraint and endpoint inequality constraint, 
respectively. 

3. Fractional-order operator approximation  

Some continuous filters, which provide a possibility of 
approximating the fractional operators have been 
discussed in [1]. The Oustaloup methods, which have an 
excellent matching to the noninteger-order zero-pole 
transfer functions approximation, are often utilized in 
practical implementations. We tend to take into the 
consideration the recursive Oustaloup approximation 
method (ORA) during an experiment. Assuming the 
expected frequency fitting range, the fractional operators 
could be approximated by following formulas: 
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from: 
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where: N is the degree of the approximation and (ωb, ωh) 
is the given pulsation interval. The degree of the 
approximation is N and order of the filter is 2N+1, 
considering successive values of N the parameters of the 
filter became more precise. Application of higher order N 
increases the amount of the evaluations. 

The Oustaloup approximation method provides a 
pretty accurate approximation of fractional operators in an 
established wide fitting range. Applying ORA filter for 
the fractional operators where α ≥ 1 one should separate 
fractional orders using  the following strategy: 
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The quantity of fractional poles in transfer function 
(10) is referred to as the pseudo-order of the system. The 
system with commensurate order q can be reformulated to 
obtain the pseudo-rational transfer formula H(λ) given by: 
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where: λ = sq. On the basis of this idea, the state space 
representation of a fractional-order linear and nonlinear 
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Such a description is called an internal system 
representation because all the state variables are included 
in state space notation.  

From any of the presented above fractional-order 
derivative definitions, we can specify the problem of 
optimal excitation signal design for the fractional system 
identification. The objective function to be minimized can 
be written as: 
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where x is the state-space vector, t[t0, tf] denotes time 
duration, q = {1,…,q} and l, g, h are a priori linear or 
nonlinear functions. The functions g(·,·) and l(·,·,·) with 
indexes tc, eec, and eic are trajectory constraint, endpoint 
equality constraint and endpoint inequality constraint, 
respectively. 

3. Fractional-order operator approximation  

Some continuous filters, which provide a possibility of 
approximating the fractional operators have been 
discussed in [1]. The Oustaloup methods, which have an 
excellent matching to the noninteger-order zero-pole 
transfer functions approximation, are often utilized in 
practical implementations. We tend to take into the 
consideration the recursive Oustaloup approximation 
method (ORA) during an experiment. Assuming the 
expected frequency fitting range, the fractional operators 
could be approximated by following formulas: 
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where: N is the degree of the approximation and (ωb, ωh) 
is the given pulsation interval. The degree of the 
approximation is N and order of the filter is 2N+1, 
considering successive values of N the parameters of the 
filter became more precise. Application of higher order N 
increases the amount of the evaluations. 

The Oustaloup approximation method provides a 
pretty accurate approximation of fractional operators in an 
established wide fitting range. Applying ORA filter for 
the fractional operators where α ≥ 1 one should separate 
fractional orders using  the following strategy: 
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where a and b specify the coefficients of the polynomials 
in descending powers of s, and a0 =1. Then, it is possible 
to solve optimal input design problem for fractional-order 
system identification using integer state-space 
representation [30]. 

Because the choice of the state factors can vary, the 
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To design an optimal input signal for fractional system 
identification it is required to approximate the noninteger-
order operator, and convert our problem to be solved 
using one of the accessible programs for optimal control 
tasks. 

4. Optimal input design problem 
reformulation 

For this case study, the following equations (13)–(19) 
were reformulated to provide the optimal input problem 
solution. The optimal input for fractional order dynamical 
system that minimizes performance index is as follows: 
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The original state-space variable x(t) is: 
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with a set of possible constraints: 
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where x is the state-space vector, t[t0, tf] denotes time 
duration, q = {1,…,q} and l, g, h are a priori linear or 
nonlinear functions. The functions g(·,·) and l(·,·,·) with 
indexes tc, eec, and eic are: trajectory constraint, endpoint 
equality constraint and endpoint inequality constraint, 
respectively. 

The convergence of optimization depends on the 
selection of vector T. Concerning vector B, which is given 
by the equation (29), vector T should have the following 
form: 

   .0001 TT   (41) 

The bandwidth for the Oustaloup recursive 
approximation was chosen as [0.01, 100] rad/s. The 
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where a and b specify the coefficients of the polynomials in 
descending powers of s, and a0 = 1. Then, it is possible to solve 
optimal input design problem for fractional-order system iden-
tification using integer state-space representation [30].

Because the choice of the state factors can vary, the transfer 
function implementation can also be different. Regarding pub-
lication [31], the fractional-order operator t0
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where α signifies the order of the differentiation and sγ 
was approximated based on (20) utilizing ORA filter 
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To design an optimal input signal for fractional system 
identification it is required to approximate the noninteger-
order operator, and convert our problem to be solved 
using one of the accessible programs for optimal control 
tasks. 

4. Optimal input design problem 
reformulation 

For this case study, the following equations (13)–(19) 
were reformulated to provide the optimal input problem 
solution. The optimal input for fractional order dynamical 
system that minimizes performance index is as follows: 
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where x is the state-space vector, t[t0, tf] denotes time 
duration, q = {1,…,q} and l, g, h are a priori linear or 
nonlinear functions. The functions g(·,·) and l(·,·,·) with 
indexes tc, eec, and eic are: trajectory constraint, endpoint 
equality constraint and endpoint inequality constraint, 
respectively. 

The convergence of optimization depends on the 
selection of vector T. Concerning vector B, which is given 
by the equation (29), vector T should have the following 
form: 

   .0001 TT   (41) 

The bandwidth for the Oustaloup recursive 
approximation was chosen as [0.01, 100] rad/s. The 
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where α signifies the order of the differentiation and sγ 
was approximated based on (20) utilizing ORA filter 
method. The transfer function obtained from Oustaloup 
filter method is used for converting external model 
representation into the integer-order internal state-space 
formulation. For a general n-th order transfer function 
obtained from pole-zero formulation is given by: 
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where a and b specify the coefficients of the polynomials 
in descending powers of s, and a0 =1. Then, it is possible 
to solve optimal input design problem for fractional-order 
system identification using integer state-space 
representation [30]. 

Because the choice of the state factors can vary, the 
transfer function implementation can also be different. 
Regarding publication [31], the fractional-order operator 
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To design an optimal input signal for fractional system 
identification it is required to approximate the noninteger-
order operator, and convert our problem to be solved 
using one of the accessible programs for optimal control 
tasks. 

4. Optimal input design problem 
reformulation 

For this case study, the following equations (13)–(19) 
were reformulated to provide the optimal input problem 
solution. The optimal input for fractional order dynamical 
system that minimizes performance index is as follows: 
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according to the fractional system dynamics: 
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The original state-space variable x(t) is: 

    ,)( tuDtzCtx FF    (35) 

with a set of possible constraints: 
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where x is the state-space vector, t[t0, tf] denotes time 
duration, q = {1,…,q} and l, g, h are a priori linear or 
nonlinear functions. The functions g(·,·) and l(·,·,·) with 
indexes tc, eec, and eic are: trajectory constraint, endpoint 
equality constraint and endpoint inequality constraint, 
respectively. 

The convergence of optimization depends on the 
selection of vector T. Concerning vector B, which is given 
by the equation (29), vector T should have the following 
form: 

   .0001 TT   (41) 

The bandwidth for the Oustaloup recursive 
approximation was chosen as [0.01, 100] rad/s. The 
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where the compatible matrices are respectively:
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where α signifies the order of the differentiation and sγ 
was approximated based on (20) utilizing ORA filter 
method. The transfer function obtained from Oustaloup 
filter method is used for converting external model 
representation into the integer-order internal state-space 
formulation. For a general n-th order transfer function 
obtained from pole-zero formulation is given by: 
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where a and b specify the coefficients of the polynomials 
in descending powers of s, and a0 =1. Then, it is possible 
to solve optimal input design problem for fractional-order 
system identification using integer state-space 
representation [30]. 

Because the choice of the state factors can vary, the 
transfer function implementation can also be different. 
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To design an optimal input signal for fractional system 
identification it is required to approximate the noninteger-
order operator, and convert our problem to be solved 
using one of the accessible programs for optimal control 
tasks. 

4. Optimal input design problem 
reformulation 

For this case study, the following equations (13)–(19) 
were reformulated to provide the optimal input problem 
solution. The optimal input for fractional order dynamical 
system that minimizes performance index is as follows: 
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where x is the state-space vector, t[t0, tf] denotes time 
duration, q = {1,…,q} and l, g, h are a priori linear or 
nonlinear functions. The functions g(·,·) and l(·,·,·) with 
indexes tc, eec, and eic are: trajectory constraint, endpoint 
equality constraint and endpoint inequality constraint, 
respectively. 

The convergence of optimization depends on the 
selection of vector T. Concerning vector B, which is given 
by the equation (29), vector T should have the following 
form: 

   .0001 TT   (41) 

The bandwidth for the Oustaloup recursive 
approximation was chosen as [0.01, 100] rad/s. The 
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where α signifies the order of the differentiation and sγ 
was approximated based on (20) utilizing ORA filter 
method. The transfer function obtained from Oustaloup 
filter method is used for converting external model 
representation into the integer-order internal state-space 
formulation. For a general n-th order transfer function 
obtained from pole-zero formulation is given by: 
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where a and b specify the coefficients of the polynomials 
in descending powers of s, and a0 =1. Then, it is possible 
to solve optimal input design problem for fractional-order 
system identification using integer state-space 
representation [30]. 

Because the choice of the state factors can vary, the 
transfer function implementation can also be different. 
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To design an optimal input signal for fractional system 
identification it is required to approximate the noninteger-
order operator, and convert our problem to be solved 
using one of the accessible programs for optimal control 
tasks. 

4. Optimal input design problem 
reformulation 

For this case study, the following equations (13)–(19) 
were reformulated to provide the optimal input problem 
solution. The optimal input for fractional order dynamical 
system that minimizes performance index is as follows: 
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where x is the state-space vector, t[t0, tf] denotes time 
duration, q = {1,…,q} and l, g, h are a priori linear or 
nonlinear functions. The functions g(·,·) and l(·,·,·) with 
indexes tc, eec, and eic are: trajectory constraint, endpoint 
equality constraint and endpoint inequality constraint, 
respectively. 

The convergence of optimization depends on the 
selection of vector T. Concerning vector B, which is given 
by the equation (29), vector T should have the following 
form: 

   .0001 TT   (41) 

The bandwidth for the Oustaloup recursive 
approximation was chosen as [0.01, 100] rad/s. The 
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where α signifies the order of the differentiation and sγ 
was approximated based on (20) utilizing ORA filter 
method. The transfer function obtained from Oustaloup 
filter method is used for converting external model 
representation into the integer-order internal state-space 
formulation. For a general n-th order transfer function 
obtained from pole-zero formulation is given by: 
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where a and b specify the coefficients of the polynomials 
in descending powers of s, and a0 =1. Then, it is possible 
to solve optimal input design problem for fractional-order 
system identification using integer state-space 
representation [30]. 

Because the choice of the state factors can vary, the 
transfer function implementation can also be different. 
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To design an optimal input signal for fractional system 
identification it is required to approximate the noninteger-
order operator, and convert our problem to be solved 
using one of the accessible programs for optimal control 
tasks. 

4. Optimal input design problem 
reformulation 

For this case study, the following equations (13)–(19) 
were reformulated to provide the optimal input problem 
solution. The optimal input for fractional order dynamical 
system that minimizes performance index is as follows: 
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according to the fractional system dynamics: 
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and initial condition 
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The original state-space variable x(t) is: 

    ,)( tuDtzCtx FF    (35) 

with a set of possible constraints: 
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where x is the state-space vector, t[t0, tf] denotes time 
duration, q = {1,…,q} and l, g, h are a priori linear or 
nonlinear functions. The functions g(·,·) and l(·,·,·) with 
indexes tc, eec, and eic are: trajectory constraint, endpoint 
equality constraint and endpoint inequality constraint, 
respectively. 

The convergence of optimization depends on the 
selection of vector T. Concerning vector B, which is given 
by the equation (29), vector T should have the following 
form: 

   .0001 TT   (41) 

The bandwidth for the Oustaloup recursive 
approximation was chosen as [0.01, 100] rad/s. The 
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where α signifies the order of the differentiation and sγ 
was approximated based on (20) utilizing ORA filter 
method. The transfer function obtained from Oustaloup 
filter method is used for converting external model 
representation into the integer-order internal state-space 
formulation. For a general n-th order transfer function 
obtained from pole-zero formulation is given by: 
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where a and b specify the coefficients of the polynomials 
in descending powers of s, and a0 =1. Then, it is possible 
to solve optimal input design problem for fractional-order 
system identification using integer state-space 
representation [30]. 

Because the choice of the state factors can vary, the 
transfer function implementation can also be different. 
Regarding publication [31], the fractional-order operator 
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To design an optimal input signal for fractional system 
identification it is required to approximate the noninteger-
order operator, and convert our problem to be solved 
using one of the accessible programs for optimal control 
tasks. 

4. Optimal input design problem 
reformulation 

For this case study, the following equations (13)–(19) 
were reformulated to provide the optimal input problem 
solution. The optimal input for fractional order dynamical 
system that minimizes performance index is as follows: 

 
        
  ,,,

,

0

00

 


ft

t
FF

fFfFFF

dttuuDzCl

tuDtzCtuDtzCgJ
 (32) 

according to the fractional system dynamics: 
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and initial condition 
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The original state-space variable x(t) is: 

    ,)( tuDtzCtx FF    (35) 

with a set of possible constraints: 
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where x is the state-space vector, t[t0, tf] denotes time 
duration, q = {1,…,q} and l, g, h are a priori linear or 
nonlinear functions. The functions g(·,·) and l(·,·,·) with 
indexes tc, eec, and eic are: trajectory constraint, endpoint 
equality constraint and endpoint inequality constraint, 
respectively. 

The convergence of optimization depends on the 
selection of vector T. Concerning vector B, which is given 
by the equation (29), vector T should have the following 
form: 

   .0001 TT   (41) 

The bandwidth for the Oustaloup recursive 
approximation was chosen as [0.01, 100] rad/s. The 
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where α signifies the order of the differentiation and sγ 
was approximated based on (20) utilizing ORA filter 
method. The transfer function obtained from Oustaloup 
filter method is used for converting external model 
representation into the integer-order internal state-space 
formulation. For a general n-th order transfer function 
obtained from pole-zero formulation is given by: 
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where a and b specify the coefficients of the polynomials 
in descending powers of s, and a0 =1. Then, it is possible 
to solve optimal input design problem for fractional-order 
system identification using integer state-space 
representation [30]. 

Because the choice of the state factors can vary, the 
transfer function implementation can also be different. 
Regarding publication [31], the fractional-order operator 
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To design an optimal input signal for fractional system 
identification it is required to approximate the noninteger-
order operator, and convert our problem to be solved 
using one of the accessible programs for optimal control 
tasks. 

4. Optimal input design problem 
reformulation 

For this case study, the following equations (13)–(19) 
were reformulated to provide the optimal input problem 
solution. The optimal input for fractional order dynamical 
system that minimizes performance index is as follows: 
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according to the fractional system dynamics: 

   ,,,)( tuuDzChBzAtz FFFF   (33) 

and initial condition 
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The original state-space variable x(t) is: 

    ,)( tuDtzCtx FF    (35) 

with a set of possible constraints: 
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where x is the state-space vector, t[t0, tf] denotes time 
duration, q = {1,…,q} and l, g, h are a priori linear or 
nonlinear functions. The functions g(·,·) and l(·,·,·) with 
indexes tc, eec, and eic are: trajectory constraint, endpoint 
equality constraint and endpoint inequality constraint, 
respectively. 

The convergence of optimization depends on the 
selection of vector T. Concerning vector B, which is given 
by the equation (29), vector T should have the following 
form: 

   .0001 TT   (41) 

The bandwidth for the Oustaloup recursive 
approximation was chosen as [0.01, 100] rad/s. The 
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where α signifies the order of the differentiation and sγ 
was approximated based on (20) utilizing ORA filter 
method. The transfer function obtained from Oustaloup 
filter method is used for converting external model 
representation into the integer-order internal state-space 
formulation. For a general n-th order transfer function 
obtained from pole-zero formulation is given by: 
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where a and b specify the coefficients of the polynomials 
in descending powers of s, and a0 =1. Then, it is possible 
to solve optimal input design problem for fractional-order 
system identification using integer state-space 
representation [30]. 

Because the choice of the state factors can vary, the 
transfer function implementation can also be different. 
Regarding publication [31], the fractional-order operator 
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To design an optimal input signal for fractional system 
identification it is required to approximate the noninteger-
order operator, and convert our problem to be solved 
using one of the accessible programs for optimal control 
tasks. 

4. Optimal input design problem 
reformulation 

For this case study, the following equations (13)–(19) 
were reformulated to provide the optimal input problem 
solution. The optimal input for fractional order dynamical 
system that minimizes performance index is as follows: 
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according to the fractional system dynamics: 
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and initial condition 
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The original state-space variable x(t) is: 

    ,)( tuDtzCtx FF    (35) 

with a set of possible constraints: 
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where x is the state-space vector, t[t0, tf] denotes time 
duration, q = {1,…,q} and l, g, h are a priori linear or 
nonlinear functions. The functions g(·,·) and l(·,·,·) with 
indexes tc, eec, and eic are: trajectory constraint, endpoint 
equality constraint and endpoint inequality constraint, 
respectively. 

The convergence of optimization depends on the 
selection of vector T. Concerning vector B, which is given 
by the equation (29), vector T should have the following 
form: 

   .0001 TT   (41) 

The bandwidth for the Oustaloup recursive 
approximation was chosen as [0.01, 100] rad/s. The 
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where α signifies the order of the differentiation and sγ 
was approximated based on (20) utilizing ORA filter 
method. The transfer function obtained from Oustaloup 
filter method is used for converting external model 
representation into the integer-order internal state-space 
formulation. For a general n-th order transfer function 
obtained from pole-zero formulation is given by: 
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where a and b specify the coefficients of the polynomials 
in descending powers of s, and a0 =1. Then, it is possible 
to solve optimal input design problem for fractional-order 
system identification using integer state-space 
representation [30]. 

Because the choice of the state factors can vary, the 
transfer function implementation can also be different. 
Regarding publication [31], the fractional-order operator 
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To design an optimal input signal for fractional system 
identification it is required to approximate the noninteger-
order operator, and convert our problem to be solved 
using one of the accessible programs for optimal control 
tasks. 

4. Optimal input design problem 
reformulation 

For this case study, the following equations (13)–(19) 
were reformulated to provide the optimal input problem 
solution. The optimal input for fractional order dynamical 
system that minimizes performance index is as follows: 
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according to the fractional system dynamics: 
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and initial condition 
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The original state-space variable x(t) is: 

    ,)( tuDtzCtx FF    (35) 

with a set of possible constraints: 
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where x is the state-space vector, t[t0, tf] denotes time 
duration, q = {1,…,q} and l, g, h are a priori linear or 
nonlinear functions. The functions g(·,·) and l(·,·,·) with 
indexes tc, eec, and eic are: trajectory constraint, endpoint 
equality constraint and endpoint inequality constraint, 
respectively. 

The convergence of optimization depends on the 
selection of vector T. Concerning vector B, which is given 
by the equation (29), vector T should have the following 
form: 

   .0001 TT   (41) 

The bandwidth for the Oustaloup recursive 
approximation was chosen as [0.01, 100] rad/s. The 
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where α signifies the order of the differentiation and sγ 
was approximated based on (20) utilizing ORA filter 
method. The transfer function obtained from Oustaloup 
filter method is used for converting external model 
representation into the integer-order internal state-space 
formulation. For a general n-th order transfer function 
obtained from pole-zero formulation is given by: 
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where a and b specify the coefficients of the polynomials 
in descending powers of s, and a0 =1. Then, it is possible 
to solve optimal input design problem for fractional-order 
system identification using integer state-space 
representation [30]. 

Because the choice of the state factors can vary, the 
transfer function implementation can also be different. 
Regarding publication [31], the fractional-order operator 
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To design an optimal input signal for fractional system 
identification it is required to approximate the noninteger-
order operator, and convert our problem to be solved 
using one of the accessible programs for optimal control 
tasks. 

4. Optimal input design problem 
reformulation 

For this case study, the following equations (13)–(19) 
were reformulated to provide the optimal input problem 
solution. The optimal input for fractional order dynamical 
system that minimizes performance index is as follows: 
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according to the fractional system dynamics: 
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and initial condition 
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The original state-space variable x(t) is: 

    ,)( tuDtzCtx FF    (35) 

with a set of possible constraints: 
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where x is the state-space vector, t[t0, tf] denotes time 
duration, q = {1,…,q} and l, g, h are a priori linear or 
nonlinear functions. The functions g(·,·) and l(·,·,·) with 
indexes tc, eec, and eic are: trajectory constraint, endpoint 
equality constraint and endpoint inequality constraint, 
respectively. 

The convergence of optimization depends on the 
selection of vector T. Concerning vector B, which is given 
by the equation (29), vector T should have the following 
form: 

   .0001 TT   (41) 

The bandwidth for the Oustaloup recursive 
approximation was chosen as [0.01, 100] rad/s. The 
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where α signifies the order of the differentiation and sγ 
was approximated based on (20) utilizing ORA filter 
method. The transfer function obtained from Oustaloup 
filter method is used for converting external model 
representation into the integer-order internal state-space 
formulation. For a general n-th order transfer function 
obtained from pole-zero formulation is given by: 
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where a and b specify the coefficients of the polynomials 
in descending powers of s, and a0 =1. Then, it is possible 
to solve optimal input design problem for fractional-order 
system identification using integer state-space 
representation [30]. 

Because the choice of the state factors can vary, the 
transfer function implementation can also be different. 
Regarding publication [31], the fractional-order operator 
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To design an optimal input signal for fractional system 
identification it is required to approximate the noninteger-
order operator, and convert our problem to be solved 
using one of the accessible programs for optimal control 
tasks. 

4. Optimal input design problem 
reformulation 

For this case study, the following equations (13)–(19) 
were reformulated to provide the optimal input problem 
solution. The optimal input for fractional order dynamical 
system that minimizes performance index is as follows: 
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according to the fractional system dynamics: 

   ,,,)( tuuDzChBzAtz FFFF   (33) 

and initial condition 
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The original state-space variable x(t) is: 

    ,)( tuDtzCtx FF    (35) 

with a set of possible constraints: 
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where x is the state-space vector, t[t0, tf] denotes time 
duration, q = {1,…,q} and l, g, h are a priori linear or 
nonlinear functions. The functions g(·,·) and l(·,·,·) with 
indexes tc, eec, and eic are: trajectory constraint, endpoint 
equality constraint and endpoint inequality constraint, 
respectively. 

The convergence of optimization depends on the 
selection of vector T. Concerning vector B, which is given 
by the equation (29), vector T should have the following 
form: 

   .0001 TT   (41) 

The bandwidth for the Oustaloup recursive 
approximation was chosen as [0.01, 100] rad/s. The 
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where α signifies the order of the differentiation and sγ 
was approximated based on (20) utilizing ORA filter 
method. The transfer function obtained from Oustaloup 
filter method is used for converting external model 
representation into the integer-order internal state-space 
formulation. For a general n-th order transfer function 
obtained from pole-zero formulation is given by: 
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where a and b specify the coefficients of the polynomials 
in descending powers of s, and a0 =1. Then, it is possible 
to solve optimal input design problem for fractional-order 
system identification using integer state-space 
representation [30]. 

Because the choice of the state factors can vary, the 
transfer function implementation can also be different. 
Regarding publication [31], the fractional-order operator 
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To design an optimal input signal for fractional system 
identification it is required to approximate the noninteger-
order operator, and convert our problem to be solved 
using one of the accessible programs for optimal control 
tasks. 

4. Optimal input design problem 
reformulation 

For this case study, the following equations (13)–(19) 
were reformulated to provide the optimal input problem 
solution. The optimal input for fractional order dynamical 
system that minimizes performance index is as follows: 
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according to the fractional system dynamics: 

   ,,,)( tuuDzChBzAtz FFFF   (33) 

and initial condition 
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The original state-space variable x(t) is: 

    ,)( tuDtzCtx FF    (35) 

with a set of possible constraints: 
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where x is the state-space vector, t[t0, tf] denotes time 
duration, q = {1,…,q} and l, g, h are a priori linear or 
nonlinear functions. The functions g(·,·) and l(·,·,·) with 
indexes tc, eec, and eic are: trajectory constraint, endpoint 
equality constraint and endpoint inequality constraint, 
respectively. 

The convergence of optimization depends on the 
selection of vector T. Concerning vector B, which is given 
by the equation (29), vector T should have the following 
form: 

   .0001 TT   (41) 

The bandwidth for the Oustaloup recursive 
approximation was chosen as [0.01, 100] rad/s. The 
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where α signifies the order of the differentiation and sγ 
was approximated based on (20) utilizing ORA filter 
method. The transfer function obtained from Oustaloup 
filter method is used for converting external model 
representation into the integer-order internal state-space 
formulation. For a general n-th order transfer function 
obtained from pole-zero formulation is given by: 
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where a and b specify the coefficients of the polynomials 
in descending powers of s, and a0 =1. Then, it is possible 
to solve optimal input design problem for fractional-order 
system identification using integer state-space 
representation [30]. 

Because the choice of the state factors can vary, the 
transfer function implementation can also be different. 
Regarding publication [31], the fractional-order operator 
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To design an optimal input signal for fractional system 
identification it is required to approximate the noninteger-
order operator, and convert our problem to be solved 
using one of the accessible programs for optimal control 
tasks. 

4. Optimal input design problem 
reformulation 

For this case study, the following equations (13)–(19) 
were reformulated to provide the optimal input problem 
solution. The optimal input for fractional order dynamical 
system that minimizes performance index is as follows: 
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according to the fractional system dynamics: 

   ,,,)( tuuDzChBzAtz FFFF   (33) 

and initial condition 

   ,0
0 TC

Tx
tz

F

t   (34) 

The original state-space variable x(t) is: 

    ,)( tuDtzCtx FF    (35) 

with a set of possible constraints: 
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where x is the state-space vector, t[t0, tf] denotes time 
duration, q = {1,…,q} and l, g, h are a priori linear or 
nonlinear functions. The functions g(·,·) and l(·,·,·) with 
indexes tc, eec, and eic are: trajectory constraint, endpoint 
equality constraint and endpoint inequality constraint, 
respectively. 

The convergence of optimization depends on the 
selection of vector T. Concerning vector B, which is given 
by the equation (29), vector T should have the following 
form: 

   .0001 TT   (41) 

The bandwidth for the Oustaloup recursive 
approximation was chosen as [0.01, 100] rad/s. The 

4 

where α signifies the order of the differentiation and sγ 
was approximated based on (20) utilizing ORA filter 
method. The transfer function obtained from Oustaloup 
filter method is used for converting external model 
representation into the integer-order internal state-space 
formulation. For a general n-th order transfer function 
obtained from pole-zero formulation is given by: 
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where a and b specify the coefficients of the polynomials 
in descending powers of s, and a0 =1. Then, it is possible 
to solve optimal input design problem for fractional-order 
system identification using integer state-space 
representation [30]. 

Because the choice of the state factors can vary, the 
transfer function implementation can also be different. 
Regarding publication [31], the fractional-order operator 
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To design an optimal input signal for fractional system 
identification it is required to approximate the noninteger-
order operator, and convert our problem to be solved 
using one of the accessible programs for optimal control 
tasks. 

4. Optimal input design problem 
reformulation 

For this case study, the following equations (13)–(19) 
were reformulated to provide the optimal input problem 
solution. The optimal input for fractional order dynamical 
system that minimizes performance index is as follows: 
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according to the fractional system dynamics: 
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and initial condition 
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The original state-space variable x(t) is: 

    ,)( tuDtzCtx FF    (35) 

with a set of possible constraints: 
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where x is the state-space vector, t[t0, tf] denotes time 
duration, q = {1,…,q} and l, g, h are a priori linear or 
nonlinear functions. The functions g(·,·) and l(·,·,·) with 
indexes tc, eec, and eic are: trajectory constraint, endpoint 
equality constraint and endpoint inequality constraint, 
respectively. 

The convergence of optimization depends on the 
selection of vector T. Concerning vector B, which is given 
by the equation (29), vector T should have the following 
form: 

   .0001 TT   (41) 

The bandwidth for the Oustaloup recursive 
approximation was chosen as [0.01, 100] rad/s. The 
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where α signifies the order of the differentiation and sγ 
was approximated based on (20) utilizing ORA filter 
method. The transfer function obtained from Oustaloup 
filter method is used for converting external model 
representation into the integer-order internal state-space 
formulation. For a general n-th order transfer function 
obtained from pole-zero formulation is given by: 
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where a and b specify the coefficients of the polynomials 
in descending powers of s, and a0 =1. Then, it is possible 
to solve optimal input design problem for fractional-order 
system identification using integer state-space 
representation [30]. 

Because the choice of the state factors can vary, the 
transfer function implementation can also be different. 
Regarding publication [31], the fractional-order operator 
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To design an optimal input signal for fractional system 
identification it is required to approximate the noninteger-
order operator, and convert our problem to be solved 
using one of the accessible programs for optimal control 
tasks. 

4. Optimal input design problem 
reformulation 

For this case study, the following equations (13)–(19) 
were reformulated to provide the optimal input problem 
solution. The optimal input for fractional order dynamical 
system that minimizes performance index is as follows: 
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according to the fractional system dynamics: 
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and initial condition 

   ,0
0 TC

Tx
tz

F

t   (34) 

The original state-space variable x(t) is: 

    ,)( tuDtzCtx FF    (35) 

with a set of possible constraints: 
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where x is the state-space vector, t[t0, tf] denotes time 
duration, q = {1,…,q} and l, g, h are a priori linear or 
nonlinear functions. The functions g(·,·) and l(·,·,·) with 
indexes tc, eec, and eic are: trajectory constraint, endpoint 
equality constraint and endpoint inequality constraint, 
respectively. 

The convergence of optimization depends on the 
selection of vector T. Concerning vector B, which is given 
by the equation (29), vector T should have the following 
form: 

   .0001 TT   (41) 

The bandwidth for the Oustaloup recursive 
approximation was chosen as [0.01, 100] rad/s. The 

.� (31)

To design an optimal input signal for fractional system iden-
tification it is required to approximate the noninteger-order op-
erator, and convert our problem to be solved using one of the 
accessible programs for optimal control tasks.

4.	 Optimal input design problem reformulation

For this case study, the following equations (13‒19) were re-
formulated to provide the optimal input problem solution. The 
optimal input for fractional order dynamical system that mini-
mizes performance index is as follows:
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where α signifies the order of the differentiation and sγ 
was approximated based on (20) utilizing ORA filter 
method. The transfer function obtained from Oustaloup 
filter method is used for converting external model 
representation into the integer-order internal state-space 
formulation. For a general n-th order transfer function 
obtained from pole-zero formulation is given by: 
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where a and b specify the coefficients of the polynomials 
in descending powers of s, and a0 =1. Then, it is possible 
to solve optimal input design problem for fractional-order 
system identification using integer state-space 
representation [30]. 

Because the choice of the state factors can vary, the 
transfer function implementation can also be different. 
Regarding publication [31], the fractional-order operator 
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To design an optimal input signal for fractional system 
identification it is required to approximate the noninteger-
order operator, and convert our problem to be solved 
using one of the accessible programs for optimal control 
tasks. 

4. Optimal input design problem 
reformulation 

For this case study, the following equations (13)–(19) 
were reformulated to provide the optimal input problem 
solution. The optimal input for fractional order dynamical 
system that minimizes performance index is as follows: 

 
        
  ,,,

,

0

00

 


ft

t
FF

fFfFFF

dttuuDzCl

tuDtzCtuDtzCgJ
 (32) 

according to the fractional system dynamics: 
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and initial condition 
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The original state-space variable x(t) is: 

    ,)( tuDtzCtx FF    (35) 

with a set of possible constraints: 
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where x is the state-space vector, t[t0, tf] denotes time 
duration, q = {1,…,q} and l, g, h are a priori linear or 
nonlinear functions. The functions g(·,·) and l(·,·,·) with 
indexes tc, eec, and eic are: trajectory constraint, endpoint 
equality constraint and endpoint inequality constraint, 
respectively. 

The convergence of optimization depends on the 
selection of vector T. Concerning vector B, which is given 
by the equation (29), vector T should have the following 
form: 

   .0001 TT   (41) 

The bandwidth for the Oustaloup recursive 
approximation was chosen as [0.01, 100] rad/s. The 

� (32)

according to the fractional system dynamics:
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where α signifies the order of the differentiation and sγ 
was approximated based on (20) utilizing ORA filter 
method. The transfer function obtained from Oustaloup 
filter method is used for converting external model 
representation into the integer-order internal state-space 
formulation. For a general n-th order transfer function 
obtained from pole-zero formulation is given by: 
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where a and b specify the coefficients of the polynomials 
in descending powers of s, and a0 =1. Then, it is possible 
to solve optimal input design problem for fractional-order 
system identification using integer state-space 
representation [30]. 

Because the choice of the state factors can vary, the 
transfer function implementation can also be different. 
Regarding publication [31], the fractional-order operator 
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To design an optimal input signal for fractional system 
identification it is required to approximate the noninteger-
order operator, and convert our problem to be solved 
using one of the accessible programs for optimal control 
tasks. 

4. Optimal input design problem 
reformulation 

For this case study, the following equations (13)–(19) 
were reformulated to provide the optimal input problem 
solution. The optimal input for fractional order dynamical 
system that minimizes performance index is as follows: 
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according to the fractional system dynamics: 
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and initial condition 
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The original state-space variable x(t) is: 

    ,)( tuDtzCtx FF    (35) 

with a set of possible constraints: 
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where x is the state-space vector, t[t0, tf] denotes time 
duration, q = {1,…,q} and l, g, h are a priori linear or 
nonlinear functions. The functions g(·,·) and l(·,·,·) with 
indexes tc, eec, and eic are: trajectory constraint, endpoint 
equality constraint and endpoint inequality constraint, 
respectively. 

The convergence of optimization depends on the 
selection of vector T. Concerning vector B, which is given 
by the equation (29), vector T should have the following 
form: 

   .0001 TT   (41) 

The bandwidth for the Oustaloup recursive 
approximation was chosen as [0.01, 100] rad/s. The 
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and initial condition
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where α signifies the order of the differentiation and sγ 
was approximated based on (20) utilizing ORA filter 
method. The transfer function obtained from Oustaloup 
filter method is used for converting external model 
representation into the integer-order internal state-space 
formulation. For a general n-th order transfer function 
obtained from pole-zero formulation is given by: 
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where a and b specify the coefficients of the polynomials 
in descending powers of s, and a0 =1. Then, it is possible 
to solve optimal input design problem for fractional-order 
system identification using integer state-space 
representation [30]. 

Because the choice of the state factors can vary, the 
transfer function implementation can also be different. 
Regarding publication [31], the fractional-order operator 
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To design an optimal input signal for fractional system 
identification it is required to approximate the noninteger-
order operator, and convert our problem to be solved 
using one of the accessible programs for optimal control 
tasks. 

4. Optimal input design problem 
reformulation 

For this case study, the following equations (13)–(19) 
were reformulated to provide the optimal input problem 
solution. The optimal input for fractional order dynamical 
system that minimizes performance index is as follows: 
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according to the fractional system dynamics: 
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The original state-space variable x(t) is: 
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with a set of possible constraints: 
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where x is the state-space vector, t[t0, tf] denotes time 
duration, q = {1,…,q} and l, g, h are a priori linear or 
nonlinear functions. The functions g(·,·) and l(·,·,·) with 
indexes tc, eec, and eic are: trajectory constraint, endpoint 
equality constraint and endpoint inequality constraint, 
respectively. 

The convergence of optimization depends on the 
selection of vector T. Concerning vector B, which is given 
by the equation (29), vector T should have the following 
form: 

   .0001 TT   (41) 

The bandwidth for the Oustaloup recursive 
approximation was chosen as [0.01, 100] rad/s. The 
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The original state-space variable x(t) is:
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where α signifies the order of the differentiation and sγ 
was approximated based on (20) utilizing ORA filter 
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where a and b specify the coefficients of the polynomials 
in descending powers of s, and a0 =1. Then, it is possible 
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To design an optimal input signal for fractional system 
identification it is required to approximate the noninteger-
order operator, and convert our problem to be solved 
using one of the accessible programs for optimal control 
tasks. 

4. Optimal input design problem 
reformulation 

For this case study, the following equations (13)–(19) 
were reformulated to provide the optimal input problem 
solution. The optimal input for fractional order dynamical 
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according to the fractional system dynamics: 
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The original state-space variable x(t) is: 
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with a set of possible constraints: 
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where x is the state-space vector, t[t0, tf] denotes time 
duration, q = {1,…,q} and l, g, h are a priori linear or 
nonlinear functions. The functions g(·,·) and l(·,·,·) with 
indexes tc, eec, and eic are: trajectory constraint, endpoint 
equality constraint and endpoint inequality constraint, 
respectively. 

The convergence of optimization depends on the 
selection of vector T. Concerning vector B, which is given 
by the equation (29), vector T should have the following 
form: 
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with a set of possible constraints:
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where x is the state-space vector, t 2 [t0, tf ] denotes time dura-
tion, q = {1, …, q} and l, g, h are a priori linear or nonlinear 
functions. The functions g(∙, ∙) and l(∙, ∙, ∙) with indexes tc, eec, 
and eic are: trajectory constraint, endpoint equality constraint 
and endpoint inequality constraint, respectively.

The convergence of optimization depends on the selection of 
vector T. Concerning vector B, which is given by the equation 
(29), vector T should have the following form:

	 T = [1  0  0  …  0 ]T .� (41)

The bandwidth for the Oustaloup recursive approximation 
was chosen as [0.01, 100] rad/s. The choice of the frequency 
range was related to the digitization of the control duration 
imposed by a package for solving OCP, a wide fitting range 
causes a significant calculation effort. The assumed termination 
time is tf  = 1.5 [s], and the choice of Oustaloup filter N was 
expressed as:

	 N = log(ωh) ¡ log(ωb).� (42)

The choice of frequency fitting range for the ORA method is 
especially important as a narrow bandwidth lead to incorrect 
results.

5.	 Optimal input design for fractional system 
identification

In this section, the problem of synthesizing of an optimal input 
for fractional-order time-invariant system identification is con-
sidered. The matrix computation method for fractional variable 
order time-invariant control models in state-space representa-
tion was presented in [32].

Our aim is to transcript the problem of optimal input design 
using the Lagrange method with the suitable set of restrictions. 
In order to verify the suitability of this technique to the model 
identification, a fractional inertial object was used:
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where k = 1 is the gain of the system, and T = a1/a0 = 1 is 
the time constant.  

In a general case, the fractional-order linear or 
nonlinear time-invariant system can be then expressed by 
the state-space formulation denoted by:  
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where u(t), y(t) are the input and output vectors, x(t) is the 
state vector, A, B, C, D are the state-space matrices 
describing the system dynamics, and v(t) is a stationary 
random Gaussian process with zero mean: 
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The fundamental principle of system parameter estimation 
is to maximize the sensitivity of the state variable to the 
unidentified parameters [15]. The motivation for such an 
experiment is the Cramer-Rao definition, which gives a 
lower bound for the variance of an unbiased parameter to 
be estimated. Applying the above definition to input 
design purposes, we calculate the parameter estimate 
which has a tendency to getting lower for optimal input: 

   .,,,cov 1 MDCBA   (46) 

In the considerations which follow it was assumed that n 
= 1 to obtain an optimal excitation signal for model 
parameter estimation where measurements do not include 
additive white noise. 

In this paragraph, the optimal input design for 
fractional inertial model identification is considered. 
According to the above definition, the sensitivity of the 
state variable x(t, d) to the coefficient d (i.e., the gain of 
the open circuit) was maximized. The performance index 
is as follows: 
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The problem of minimum control energy for the fractional 
positive system with constraint inputs was presented in 
[33, 34].  

In general the task of designing an optimal input signal 
to the fractional linear inertial model is presented in the 
form: 
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where A = -1, B = 1, and C = 1 are constant model 
parameters (with reference to (43)), with  the initial 
condition: 

   .50 x   (51) 

Utilizing the presented method for the reformulated 
problem described by the equations (32-41), which 
maximizes the performance index is: 
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in respect to constraints: 
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where k = 1 is the gain of the system, and T = a1/a0 = 1 is the 
time constant.

In a general case, the fractional-order linear or nonlinear 
time-invariant system can be then expressed by the state-space 
formulation denoted by:
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where u(t), y(t) are the input and output vectors, x(t) is the 
state vector, A, B, C, D are the state-space matrices describing 
the system dynamics, and v(t) is a stationary random Gaussian 
process with zero mean:
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where u(t), y(t) are the input and output vectors, x(t) is the 
state vector, A, B, C, D are the state-space matrices 
describing the system dynamics, and v(t) is a stationary 
random Gaussian process with zero mean: 
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The fundamental principle of system parameter estimation 
is to maximize the sensitivity of the state variable to the 
unidentified parameters [15]. The motivation for such an 
experiment is the Cramer-Rao definition, which gives a 
lower bound for the variance of an unbiased parameter to 
be estimated. Applying the above definition to input 
design purposes, we calculate the parameter estimate 
which has a tendency to getting lower for optimal input: 
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In the considerations which follow it was assumed that n 
= 1 to obtain an optimal excitation signal for model 
parameter estimation where measurements do not include 
additive white noise. 

In this paragraph, the optimal input design for 
fractional inertial model identification is considered. 
According to the above definition, the sensitivity of the 
state variable x(t, d) to the coefficient d (i.e., the gain of 
the open circuit) was maximized. The performance index 
is as follows: 
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The problem of minimum control energy for the fractional 
positive system with constraint inputs was presented in 
[33, 34].  

In general the task of designing an optimal input signal 
to the fractional linear inertial model is presented in the 
form: 
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where A = -1, B = 1, and C = 1 are constant model 
parameters (with reference to (43)), with  the initial 
condition: 

   .50 x   (51) 

Utilizing the presented method for the reformulated 
problem described by the equations (32-41), which 
maximizes the performance index is: 
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The fundamental principle of system parameter estimation is to 
maximize the sensitivity of the state variable to the unidenti-
fied parameters [15]. The motivation for such an experiment is 
the Cramer-Rao definition, which gives a lower bound for the 
variance of an unbiased parameter to be estimated. Applying 
the above definition to input design purposes, we calculate the 
parameter estimate which has a tendency to getting lower for 
optimal input:
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In the considerations which follow it was assumed that σn = 1 to  
obtain an optimal excitation signal for model parameter estima-
tion where measurements do not include additive white noise.

In this paragraph, the optimal input design for fractional 
inertial model identification is considered. According to the 
above definition, the sensitivity of the state variable x(t, d) to 
the coefficient d (i.e., the gain of the open circuit) was maxi-
mized. The performance index is as follows:
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choice of the frequency range was related to the 
digitization of the control duration imposed by a package 
for solving OCP, a wide fitting range causes a significant 
calculation effort. The assumed termination time is tf = 1.5 
[s], and the choice of Oustaloup filter N was expressed as: 

    .loglog bhN     (42) 

The choice of frequency fitting range for the ORA method 
is especially important as a narrow bandwidth lead to 
incorrect results. 

5. Optimal input design for fractional system 
identification 

In this section, the problem of synthesizing of an 
optimal input for fractional-order time-invariant system 
identification is considered. The matrix computation 
method for fractional variable order time-invariant control 
models in state-space representation was presented in 
[32].  

Our aim is to transcript the problem of optimal input 
design using the Lagrange method with the suitable set of 
restrictions. In order to verify the suitability of this 
technique to the model identification, a fractional inertial 
object was used: 
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where k = 1 is the gain of the system, and T = a1/a0 = 1 is 
the time constant.  

In a general case, the fractional-order linear or 
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where u(t), y(t) are the input and output vectors, x(t) is the 
state vector, A, B, C, D are the state-space matrices 
describing the system dynamics, and v(t) is a stationary 
random Gaussian process with zero mean: 
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The fundamental principle of system parameter estimation 
is to maximize the sensitivity of the state variable to the 
unidentified parameters [15]. The motivation for such an 
experiment is the Cramer-Rao definition, which gives a 
lower bound for the variance of an unbiased parameter to 
be estimated. Applying the above definition to input 
design purposes, we calculate the parameter estimate 
which has a tendency to getting lower for optimal input: 
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In the considerations which follow it was assumed that n 
= 1 to obtain an optimal excitation signal for model 
parameter estimation where measurements do not include 
additive white noise. 
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fractional inertial model identification is considered. 
According to the above definition, the sensitivity of the 
state variable x(t, d) to the coefficient d (i.e., the gain of 
the open circuit) was maximized. The performance index 
is as follows: 
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The problem of minimum control energy for the fractional 
positive system with constraint inputs was presented in 
[33, 34].  

In general the task of designing an optimal input signal 
to the fractional linear inertial model is presented in the 
form: 
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where A = -1, B = 1, and C = 1 are constant model 
parameters (with reference to (43)), with  the initial 
condition: 

   .50 x   (51) 

Utilizing the presented method for the reformulated 
problem described by the equations (32-41), which 
maximizes the performance index is: 
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choice of the frequency range was related to the 
digitization of the control duration imposed by a package 
for solving OCP, a wide fitting range causes a significant 
calculation effort. The assumed termination time is tf = 1.5 
[s], and the choice of Oustaloup filter N was expressed as: 

    .loglog bhN     (42) 

The choice of frequency fitting range for the ORA method 
is especially important as a narrow bandwidth lead to 
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5. Optimal input design for fractional system 
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optimal input for fractional-order time-invariant system 
identification is considered. The matrix computation 
method for fractional variable order time-invariant control 
models in state-space representation was presented in 
[32].  

Our aim is to transcript the problem of optimal input 
design using the Lagrange method with the suitable set of 
restrictions. In order to verify the suitability of this 
technique to the model identification, a fractional inertial 
object was used: 
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where k = 1 is the gain of the system, and T = a1/a0 = 1 is 
the time constant.  
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where u(t), y(t) are the input and output vectors, x(t) is the 
state vector, A, B, C, D are the state-space matrices 
describing the system dynamics, and v(t) is a stationary 
random Gaussian process with zero mean: 
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The fundamental principle of system parameter estimation 
is to maximize the sensitivity of the state variable to the 
unidentified parameters [15]. The motivation for such an 
experiment is the Cramer-Rao definition, which gives a 
lower bound for the variance of an unbiased parameter to 
be estimated. Applying the above definition to input 
design purposes, we calculate the parameter estimate 
which has a tendency to getting lower for optimal input: 
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In the considerations which follow it was assumed that n 
= 1 to obtain an optimal excitation signal for model 
parameter estimation where measurements do not include 
additive white noise. 

In this paragraph, the optimal input design for 
fractional inertial model identification is considered. 
According to the above definition, the sensitivity of the 
state variable x(t, d) to the coefficient d (i.e., the gain of 
the open circuit) was maximized. The performance index 
is as follows: 
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The problem of minimum control energy for the fractional 
positive system with constraint inputs was presented in 
[33, 34].  

In general the task of designing an optimal input signal 
to the fractional linear inertial model is presented in the 
form: 
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where A = -1, B = 1, and C = 1 are constant model 
parameters (with reference to (43)), with  the initial 
condition: 
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Utilizing the presented method for the reformulated 
problem described by the equations (32-41), which 
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choice of the frequency range was related to the 
digitization of the control duration imposed by a package 
for solving OCP, a wide fitting range causes a significant 
calculation effort. The assumed termination time is tf = 1.5 
[s], and the choice of Oustaloup filter N was expressed as: 

    .loglog bhN     (42) 

The choice of frequency fitting range for the ORA method 
is especially important as a narrow bandwidth lead to 
incorrect results. 

5. Optimal input design for fractional system 
identification 

In this section, the problem of synthesizing of an 
optimal input for fractional-order time-invariant system 
identification is considered. The matrix computation 
method for fractional variable order time-invariant control 
models in state-space representation was presented in 
[32].  

Our aim is to transcript the problem of optimal input 
design using the Lagrange method with the suitable set of 
restrictions. In order to verify the suitability of this 
technique to the model identification, a fractional inertial 
object was used: 

   ,0.15.0,
1




 Ts
ksG  (43) 

where k = 1 is the gain of the system, and T = a1/a0 = 1 is 
the time constant.  
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where u(t), y(t) are the input and output vectors, x(t) is the 
state vector, A, B, C, D are the state-space matrices 
describing the system dynamics, and v(t) is a stationary 
random Gaussian process with zero mean: 
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The fundamental principle of system parameter estimation 
is to maximize the sensitivity of the state variable to the 
unidentified parameters [15]. The motivation for such an 
experiment is the Cramer-Rao definition, which gives a 
lower bound for the variance of an unbiased parameter to 
be estimated. Applying the above definition to input 
design purposes, we calculate the parameter estimate 
which has a tendency to getting lower for optimal input: 
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In the considerations which follow it was assumed that n 
= 1 to obtain an optimal excitation signal for model 
parameter estimation where measurements do not include 
additive white noise. 

In this paragraph, the optimal input design for 
fractional inertial model identification is considered. 
According to the above definition, the sensitivity of the 
state variable x(t, d) to the coefficient d (i.e., the gain of 
the open circuit) was maximized. The performance index 
is as follows: 
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The problem of minimum control energy for the fractional 
positive system with constraint inputs was presented in 
[33, 34].  

In general the task of designing an optimal input signal 
to the fractional linear inertial model is presented in the 
form: 
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where A = -1, B = 1, and C = 1 are constant model 
parameters (with reference to (43)), with  the initial 
condition: 
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choice of the frequency range was related to the 
digitization of the control duration imposed by a package 
for solving OCP, a wide fitting range causes a significant 
calculation effort. The assumed termination time is tf = 1.5 
[s], and the choice of Oustaloup filter N was expressed as: 

    .loglog bhN     (42) 

The choice of frequency fitting range for the ORA method 
is especially important as a narrow bandwidth lead to 
incorrect results. 

5. Optimal input design for fractional system 
identification 

In this section, the problem of synthesizing of an 
optimal input for fractional-order time-invariant system 
identification is considered. The matrix computation 
method for fractional variable order time-invariant control 
models in state-space representation was presented in 
[32].  

Our aim is to transcript the problem of optimal input 
design using the Lagrange method with the suitable set of 
restrictions. In order to verify the suitability of this 
technique to the model identification, a fractional inertial 
object was used: 
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where k = 1 is the gain of the system, and T = a1/a0 = 1 is 
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where u(t), y(t) are the input and output vectors, x(t) is the 
state vector, A, B, C, D are the state-space matrices 
describing the system dynamics, and v(t) is a stationary 
random Gaussian process with zero mean: 
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The fundamental principle of system parameter estimation 
is to maximize the sensitivity of the state variable to the 
unidentified parameters [15]. The motivation for such an 
experiment is the Cramer-Rao definition, which gives a 
lower bound for the variance of an unbiased parameter to 
be estimated. Applying the above definition to input 
design purposes, we calculate the parameter estimate 
which has a tendency to getting lower for optimal input: 
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In the considerations which follow it was assumed that n 
= 1 to obtain an optimal excitation signal for model 
parameter estimation where measurements do not include 
additive white noise. 

In this paragraph, the optimal input design for 
fractional inertial model identification is considered. 
According to the above definition, the sensitivity of the 
state variable x(t, d) to the coefficient d (i.e., the gain of 
the open circuit) was maximized. The performance index 
is as follows: 
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The problem of minimum control energy for the fractional 
positive system with constraint inputs was presented in 
[33, 34].  

In general the task of designing an optimal input signal 
to the fractional linear inertial model is presented in the 
form: 
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where A = -1, B = 1, and C = 1 are constant model 
parameters (with reference to (43)), with  the initial 
condition: 
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Utilizing the presented method for the reformulated 
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choice of the frequency range was related to the 
digitization of the control duration imposed by a package 
for solving OCP, a wide fitting range causes a significant 
calculation effort. The assumed termination time is tf = 1.5 
[s], and the choice of Oustaloup filter N was expressed as: 

    .loglog bhN     (42) 

The choice of frequency fitting range for the ORA method 
is especially important as a narrow bandwidth lead to 
incorrect results. 

5. Optimal input design for fractional system 
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In this section, the problem of synthesizing of an 
optimal input for fractional-order time-invariant system 
identification is considered. The matrix computation 
method for fractional variable order time-invariant control 
models in state-space representation was presented in 
[32].  

Our aim is to transcript the problem of optimal input 
design using the Lagrange method with the suitable set of 
restrictions. In order to verify the suitability of this 
technique to the model identification, a fractional inertial 
object was used: 
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where k = 1 is the gain of the system, and T = a1/a0 = 1 is 
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where u(t), y(t) are the input and output vectors, x(t) is the 
state vector, A, B, C, D are the state-space matrices 
describing the system dynamics, and v(t) is a stationary 
random Gaussian process with zero mean: 
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The fundamental principle of system parameter estimation 
is to maximize the sensitivity of the state variable to the 
unidentified parameters [15]. The motivation for such an 
experiment is the Cramer-Rao definition, which gives a 
lower bound for the variance of an unbiased parameter to 
be estimated. Applying the above definition to input 
design purposes, we calculate the parameter estimate 
which has a tendency to getting lower for optimal input: 
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In the considerations which follow it was assumed that n 
= 1 to obtain an optimal excitation signal for model 
parameter estimation where measurements do not include 
additive white noise. 

In this paragraph, the optimal input design for 
fractional inertial model identification is considered. 
According to the above definition, the sensitivity of the 
state variable x(t, d) to the coefficient d (i.e., the gain of 
the open circuit) was maximized. The performance index 
is as follows: 
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The problem of minimum control energy for the fractional 
positive system with constraint inputs was presented in 
[33, 34].  

In general the task of designing an optimal input signal 
to the fractional linear inertial model is presented in the 
form: 
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where A = -1, B = 1, and C = 1 are constant model 
parameters (with reference to (43)), with  the initial 
condition: 

   .50 x   (51) 

Utilizing the presented method for the reformulated 
problem described by the equations (32-41), which 
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The problem of minimum control energy for the fractional pos-
itive system with constraint inputs was presented in [33, 34].

In general the task of designing an optimal input signal to 
the fractional linear inertial model is presented in the form:
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Utilizing the presented method for the reformulated problem 
described by the equations (32‒41), which maximizes the per-
formance index is:
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choice of the frequency range was related to the 
digitization of the control duration imposed by a package 
for solving OCP, a wide fitting range causes a significant 
calculation effort. The assumed termination time is tf = 1.5 
[s], and the choice of Oustaloup filter N was expressed as: 

    .loglog bhN     (42) 

The choice of frequency fitting range for the ORA method 
is especially important as a narrow bandwidth lead to 
incorrect results. 

5. Optimal input design for fractional system 
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In this section, the problem of synthesizing of an 
optimal input for fractional-order time-invariant system 
identification is considered. The matrix computation 
method for fractional variable order time-invariant control 
models in state-space representation was presented in 
[32].  

Our aim is to transcript the problem of optimal input 
design using the Lagrange method with the suitable set of 
restrictions. In order to verify the suitability of this 
technique to the model identification, a fractional inertial 
object was used: 
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In a general case, the fractional-order linear or 
nonlinear time-invariant system can be then expressed by 
the state-space formulation denoted by:  
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where u(t), y(t) are the input and output vectors, x(t) is the 
state vector, A, B, C, D are the state-space matrices 
describing the system dynamics, and v(t) is a stationary 
random Gaussian process with zero mean: 
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The fundamental principle of system parameter estimation 
is to maximize the sensitivity of the state variable to the 
unidentified parameters [15]. The motivation for such an 
experiment is the Cramer-Rao definition, which gives a 
lower bound for the variance of an unbiased parameter to 
be estimated. Applying the above definition to input 
design purposes, we calculate the parameter estimate 
which has a tendency to getting lower for optimal input: 

   .,,,cov 1 MDCBA   (46) 

In the considerations which follow it was assumed that n 
= 1 to obtain an optimal excitation signal for model 
parameter estimation where measurements do not include 
additive white noise. 

In this paragraph, the optimal input design for 
fractional inertial model identification is considered. 
According to the above definition, the sensitivity of the 
state variable x(t, d) to the coefficient d (i.e., the gain of 
the open circuit) was maximized. The performance index 
is as follows: 
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where 
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in respect to constraint 

   ,)(
0

T Edttutu
ft

   (49) 

The problem of minimum control energy for the fractional 
positive system with constraint inputs was presented in 
[33, 34].  

In general the task of designing an optimal input signal 
to the fractional linear inertial model is presented in the 
form: 
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where A = -1, B = 1, and C = 1 are constant model 
parameters (with reference to (43)), with  the initial 
condition: 

   .50 x   (51) 

Utilizing the presented method for the reformulated 
problem described by the equations (32-41), which 
maximizes the performance index is: 
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in respect to constraints: 

,� (52)

in respect to constraints:

	

–1 ∙ u(t) ∙ 1, t 2 b0, tfc,

0

tf

∫(tf  ¡ t)2(1 ¡ α)u(t)Tu(t)dt ∙ 1, t 2 [0, tf ] ,
� (53)

The controllability Gramian [35] of fractional order α, from the du-
ration interval [0, tf ] is responsible for the system constraint. The  
term (tf  – t)2(1 ¡ α) under the integral (53) is called a neutralizer 
of the singularity at t = tf . It is needed to ensure the conver-
gence of the integral. The reformulated system dynamics (ac-
cording to (33), and (50)) is:

	 z ̇  = AF z + BF

³
–(CF z + DF u) + u

´
,� (54)

with the initial conditions

	 z(0) = [5  0  …  0 ]T .� (55)

Solving the optimal input problem, the system’s dynamics was 
discretized according to chosen grid interval using Runge-Kutta 
method.

6.	 Simulation results for linear time-invariant 
problem

The bandwidth for the Oustaloup recursive approximation was 
chosen as [10–2, 102] rad/s. Therefore, the order of filter was 
chosen according to equation (42) as N = 4. Such a narrow 
Oustaloup filter fitting range was established using trial and 
error method and was related to the discretization of the in-
tegration algorithm adopted in Riots_95 [36]. This software 
is implemented in Matlab package as a separate module and 
has tools for solving constrained optimal problems of control 
including fixed or free terminal conditions.

Constrained optimal inputs for fractional inertial system 
identification were then computed for the assumed prelimi-
nary parameters value (50): A = –1, B = 1, C = 1, and selected 
time interval t = 

£
0, 1.5
¤
 seconds, using sequential quadratic 

programming (SQP) routine. The grater terminal time tf  causes 
significant computational burden. The initial state conditions 
of the fractional time-invariant system were selected according 
to (55), and the excitation initial value was chosen as u(0) = 1. 
It should be noted that an optimal control u(t) has been re-
stricted to the interval 

£
–1, +1

¤
 to prevent rapid changes of the 

input signal. The computational results were obtained utilizing 
the Runge-Kutta 4th order technique with mesh interval of 
0.01 sec.
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Table 1 
Comparison of the performance index rates for different values of α

α 1.00 0.98 0.96 0.94 0.92 0.90 0.80 0.70 0.60 0.50

Jα(u) 10.18 8.13 6.54 5.27 4.25 3.60 1.52 0.72 0.41 0.28

Figure 3 shows the state variable xd(t) sensitivity to the coef-
ficient d of the system as a function of duration for different 
orders of α. The parameter d is the gain of the noninteger model 
(27) after the process of Oustaloup approximation.

The visualization of the performance index component 
obtained for increasing values of α subject to controllability 
Gramian of fractional-order is shown in Fig. 4. The ratio of 
the objective function, which determines the interpolation 

Fig. 3. The sensitivity zd(t) of the state variable to the coefficient 
d for the fractional inertial system as function of time t for various 

orders of α

Fig. 1. The optimal input signals u(t) to the fractional inertial system 
as function of time t for various orders of α

Fig. 2. The state variable z(t) to the fractional inertial system as func-
tion of time t for various orders of α

Fig. 4. Interpolation of the performance index component for various 
orders of α

Figure 1 shows the optimal control signal for fractional in-
ertial system received for different values of alpha (i.e., from 
the interval α = <0.5, 1.0> in the equation (50)). As has been 
seen, the excitation signal is appreciably different when the 
corresponding order of α decreases. For the orders of α ∙ 1.0 
the control signal switching time reduces its duration, while the 
optimal signal received for α = 0.5 is an almost constant value 
(i.e., step input signal-yellow solid line). Comparison of the per-
formance indexes for different orders of α to the fractional iner-
tial system is displayed in Table 1. As it could be noticed based 
on the presented method (Table 1), when the desired order of 
the factor α increases, the ratio of the optimal excitation signal 
performance index also increases (according to (52)).
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nodes is indicated as red stars. As we can see (Fig. 4) the most 
considerable loss in the performance index ratio was obtained 
from the interval 0.9 ∙ α ∙ 1.0. Such a significant loss of the 
performance index value was the result of the fractional-order 
differentiator transition into the integer index form.

The optimal input design method for fractional system iden-
tification, presented in this paper, does not appear to be correct 
for jα j > 1. If the order of the approximated numerator is higher 
than the order of the denominator, it becomes impossible to con-
vert from a zero-pole transfer function to a state space model. 
However, this problem could be solved by incorporation the 
fractional-order system dynamics with one extra state.

7.	 Conclusions

In this work, a novel optimal input design methodology for 
fractional-order system identification has been presented. The 
methodology for the issue solution was verified using the 
numerical example. The formulation is based on appropriate 
Oustaloup’s estimation and was then utilized for modeling the 
fractional-order operator in the form of integer transfer func-
tion. If the numerator order is equal to the denominator order, it 
becomes possible to convert a transfer function to a state-space 
form. Investigations described in this paper present a solution 
of the fractional-order optimal input signal task, where the sen-
sitivity of the state variable to the fractional model parameter d 
(gain of the system) was maximized, at the same time providing 
a set of constraints on input signal design. Increasing the gain 
makes the system underdamped, and further increases lead to 
instability of the open-loop dynamical system. Therefore the ac-
curate gain parameter estimation during fractional-order system 
identification is very important.

One of the essential steps in the presented methodology 
was to reformulate the problem into a similar fractional optimal 
input design problem described using Lagrange formulation 
with the series of constraints. The optimal excitation signal 
was then calculated utilizing one of the existing toolboxes for 
solving optimal control tasks. Numerical experiments show that 
solution for the integer order case (i.e., for α = 1) is similar to 
the results of the fractional-order optimal input design problem. 
However, the choice of frequency fitting range for the Ousta-
loup filter method is especially important.
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