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Robust stability of positive discrete-time linear systems with
multiple delays with linear unity rank uncertainty structure

or non-negative perturbation matrices
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Abstract. Simple necessary and sufficient conditions for robust stability of the positive linear discrete-time systems with delays
with linear uncertainty structure in two cases: 1) unity rank uncertainty structure, 2) non-negative perturbation matrices, are
established. The proposed conditions are compared with the suitable conditions for the standard systems. The considerations
are illustrated by numerical examples.
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1. Introduction
In positive systems inputs, state variables and outputs
take only non-negative values for non-negative initial
states and non-negative controls. A variety of models hav-
ing positive linear systems behaviour can be found in engi-
neering, management science, economics, social sciences,
biology and medicine, etc. [1,2]. Recently, conditions for
stability and robust stability of positive discrete-time sys-
tems with delays were given in [3–11].

The main purpose of the paper is to give the sim-
ple necessary and sufficient conditions for robust stability
of linear positive discrete-time systems with delays with
linear uncertainty structure in two cases: 1) unity rank
uncertainty structure, 2) non-negative perturbation ma-
trices. The proposed conditions will be compared with the
suitable conditions for the standard systems.

2. Problem formulation
Let <n×m

+ be the set of n × m matrices with real non-
negative entries and <n

+ = <n×1
+ . The set of non-negative

integers will be denoted by Z+.
Consider an uncertain positive discrete-time linear

system with delays described by the homogeneous equa-
tion

xi+1 =
h∑

k=0

Ak(qk)xi−k, qk ∈ Qk, i ∈ Z+, (1)

where h is a positive integer, xi ∈ <n is the state vector,

Ak(qk) = Ak0 +
mk∑
r=1

qkrEkr, k = 0, 1, ..., h, (2)

Ak0 ∈ <n×n
+ and Ekr ∈ <n×n (k = 0, 1, ..., h, r =

1, 2, ...,mk) are the nominal and the perturbation ma-
trices, respectively, qk = [qk1, qk2, ..., qkmk

] ∈ Qk is the

k-th (k = 0, 1, ..., h) sub-vector of uncertain parameters
qk1, qk2, ..., qkmk

and

Qk = {qk : qkr ∈ [q−kr, q
+
kr], r = 1, 2, . . . ,mk} (3)

with q−kr 6 0, q+
kr > 0 (k = 0, 1, ..., h, r = 1, 2, ...,mk) is

the value set of these parameters.
Then q = [q0, q1, ..., qh] is the vector of uncertain pa-

rameters of the system (1) and

Q = Q0 × Q1 × · · · × Qh (4)

is the value set of uncertain parameters.
The perturbed system (1) is positive if and only if

Ak(qk) ∈ <n×n
+ , ∀qk ∈ Qk (k = 0, 1, ..., h). (5)

The condition (5) can be written in the form

ak
ij +

mk∑
r=1

αkr
ij > 0, i, j = 1, 2, ..., n, (6a)

where

αkr
ij =

{
q−kre

kr
ij if ekr

ij > 0

q+
kre

kr
ij if ekr

ij < 0
(6b)

with Ak0 = [ak
ij ], Ekr = [ekr

ij ], i, j = 1, 2, ..., n, k =
0, 1, ..., h.

Let us introduce the following assumptions.

Assumption 1. The system (1) has unity rank uncer-
tainty structure, that is the following conditions hold

rankEkr = 1 for k = 0, 1, ..., h, r = 1, 2, ...,mk. (7)

Assumption 2. The positive nominal system

xi+1 =
h∑

k=0

Ak0xi−k, i ∈ Z+, (8)
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corresponding to the nominal values of uncertain param-
eters qkr = 0, k = 0, 1, ..., h, r = 1, 2, ...,mk is asymptoti-
cally stable, that is all roots z1, z2, ..., zñ with ñ = (h+1)n
of the characteristic equation w(z) = 0 have absolute val-
ues less than 1, where [11]

w(z) = det(zh+1In −
h∑

k=0

Ak0z
h−k). (9)

The perturbed positive system (1) is robustly stable if
and only if all roots z1(q), z2(q), . . . zñ(q), ñ = (h + 1)n,
of the characteristic equation

w(z, q) = det(zh+1In −
h∑

k=0

Ak(qk)zh−k) = 0 (10)

satisfy the conditions |zi(q)| < 1, i = 1, 2, . . . , ñ =
(h + 1)n, for all q ∈ Q.

In the paper we give simple necessary and sufficient
conditions for robust stability of the positive discrete-time
system (1) with delays with linear uncertainty structure
in two cases:

1) unity rank uncertainty structure (the conditions (7)
hold),

2) non-negative perturbation matrices, i.e. Ekr ∈ <n×n
+

for k = 0, 1, ..., h, r = 1, 2, ...,mk (satisfaction of (7) is
not necessary).

3. The main results

The positive system without delays equivalent to (1) has
the form

x̃i+1 = A(q)x̃i, q ∈ Q, (11)

where the state vector x̃i ∈ <ñ
+ with ñ = (h + 1)n and

A(q) =


A0(q0) A1(q1) · · · Ah(qh)

In 0 · · · 0
...

...
. . .

...
0 0 In 0

 ∈ <ñ×ñ
+ . (12)

The positive system (11) is robustly stable if and only
if

wA(z, q) = det(zIñ − A(q)) 6= 0 for |z| > 1, ∀q ∈ Q.
(13)

It is easy to see that w(z, q) = wA(z, q) (see for ex-
ample [11] for the system without uncertain parameters).
Hence, robust stability of the positive system (1) (with
delays) is equivalent to robust stability of the positive
system (11) (without delays).

Substituting q = 0 in (11), (12) and (2) we obtain
that the positive system without delays equivalent to the
nominal system (8) with delays has the form

x̃i+1 = A0x̃i, i ∈ Z+, (14)

where x̃i ∈ <ñ
+, ñ = (h + 1)n and

A0 =


A00 A10 · · · Ah0

In 0 · · · 0
...

...
. . .

...
0 0 In 0

 ∈ <ñ×ñ
+ . (15)

From [11] (see also [6]) we have the following theorems
and lemma.

Theorem 1. The positive system (8) with delays is
asymptotically stable if and only if the following equiva-
lent conditions hold:
1) all coefficients of the characteristic polynomial of the
matrix S0 = A0 − Iñ, of the form

det[(z + 1)Iñ−A0 ]

= det

[
(z + 1)h+1In −

h∑
k=0

Ak0(z + 1)h−k

]
= zñ + añ−1z

ñ−1 + . . . + a1z + a0

(16)

are positive, i.e. ai > 0 for i = 0, 1, ..., ñ − 1,
2) all leading principal minors of the matrix Ā0 = Iñ−A0

are positive.

Theorem 2. The positive system with delays (8) is
unstable if the positive system without delays

xi+1 = A00xi, i ∈ Z+, (17)

is unstable.

Lemma 1. The positive system (17) is unstable if at
least one diagonal entry of the matrix A00 =

[
a0

ij

]
is

greater than 1, i.e. a0
ii > 1 for some i ∈ (1, 2, ..., n).

By generalisation of Theorem 1 to the system (1) with
uncertain parameters we obtain the following theorem.

Theorem 3. The positive system with delays (1) is
robustly stable if and only if the following equivalent con-
ditions hold:
1) all coefficients of the characteristic polynomial of the
matrix S(q) = A(q) − Iñ of the form

S(q) =


A0(q0) − In A1(q1) · · · Ah(qh)

In −In · · · 0
...

...
. . .

...
0 0 In −In

 , (18)

are positive for all q ∈ Q,
2) all leading principal minors ∆i(q) (i = 1, 2, ..., ñ) of the
matrix Ā(q) = Iñ − A(q) = −S(q) of the form

Ā(q) =


In − A0(q0) −A1(q1) · · · −Ah(qh)

−In In · · · 0
...

...
. . .

...
0 0 −In In

 , (19)

are positive for all q ∈ Q.
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From (19) it follows that positivity of all leading prin-
cipal minors of the matrix In − A0(q0), q0 ∈ Q0, is nec-
essary for positivity of all leading principal minors of the
matrix Ā(q) for all q ∈ Q. This means that robust stability
of the positive system without delays

xi+1 = A0(q0)xi, q0 ∈ Q0, (20)

is necessary for robust stability of the positive system (1).
From the above we have the following generalisation

of Theorem 2 to the positive system (1) with uncertain
parameters.

Theorem 4. Robust stability of the positive system
(20) (without delays) is necessary for robust stability of
the positive system (1) (with delays).

From generalisation of Lemma 1 it follows that the
positive system (20) is not robustly stable if there exists
q0 ∈ Q0 such that at least one diagonal entry of the matrix
A0(q0) is greater than 1.

Let us denote by q̄1, q̄2, . . . , q̄L (L = 2m, m =
m0 + m1 + . . . + mh), where q̄l =

[
ql
0, q

l
1, . . . , q

l
h

]
and

ql
k = [ql

k1, q
l
k2, ..., q

l
kmk

] with ql
kr = q−kr or ql

kr = q+
kr,

k = 0, 1, ..., h, r = 1, 2, ...,mk the vertices of hiperrect-
angle (4).

Moreover, by Av
l = A(q̄l), l = 1, 2, ..., L, denote the

vertex matrices of the family of non-negative matrices
{A(q) : q ∈ Q} where A(q) has the form (12). These
matrices correspond to the vertices of the set (4).

Theorem 5. The positive system (1) with linear unity
rank uncertainty structure is robustly stable if and only
if the finite family of positive systems

x̃i+1 = Av
l x̃i, l = 1, 2, ..., L = 2m, (21)

is asymptotically stable, i.e. the conditions of Theorem 3
are satisfied for all q = q̄l, l = 1, 2, ..., L.

Proof. Necessity. Necessity is obvious because the sys-
tems (21) belong to the family (11) of the positive sys-
tems.

Sufficiency. Characteristic polynomial of the matrix
(18) can be written in the form

det(zIñ − (A(q) − Iñ)) = zñ +
ñ−1∑
i=0

ãi(q)zi. (22)

It is easy to see that if Assumption 1 holds then
the matrix A(q) of the form (12) has linear unity rank
uncertainty structure. Hence, the coefficients ãi(q), i =
0, 1, ..., ñ − 1, of (22) are real multilinear functions of un-
certain parameters qkr, k = 0, 1, ..., h, r = 1, 2, ...,mk [12]
and

min
q∈Q

ãi(q) = min
l

ãi(q̄l), i = 0, 1, ..., ñ − 1. (23)

From the condition 1) of Theorem 1 it follows that if
the family (21) of the positive systems is asymptotically
stable, then all coefficients of the characteristic polyno-
mials of the matrices S(q̄l) = Av

l − Iñ, l = 1, 2, ..., L, are
positive, i.e.

ãi(q̄l) > 0, i = 0, 1, ..., ñ − 1, l = 1, 2, ..., L. (24)

Hence, min
l

ãi(q̄l) > 0 for i = 0, 1, ..., ñ − 1, and by (23),

min
q∈Q

ãi(q) > 0, i = 0, 1, ..., ñ − 1. (25)

This means that all coefficients of the polynomial (22)
are positive for all q ∈ Q, and by condition 1) of Theo-
rem 3, the positive system (1) is robustly stable.

To asymptotic stability analysis of the positive sys-
tems (21) we can apply Theorem 1 putting Av

l = A(q̄l)
for l = 1, 2, ..., L, instead of the matrix A0.

Lemma 2. Asymptotic stability of the positive sys-
tems

xi+1 = A−
0 xi and xi+1 = A+

0 xi, (26)

where A−
0 = A00 +

m0∑
r=1

q−0rE0r, A+
0 = A00 +

m0∑
r=1

q+
0rE0r is

necessary for robust stability of the positive system (1)
with uncertain parameters.

Proof. In the same way as in the proof of Theorem
5 we can show that the positive system (20) with linear
unity rank uncertainty structure is robustly stable if and
only if the positive systems (26) are asymptotically stable.
Hence, the proof follows directly from Theorem 4.

Lemma 3. The perturbed positive system (1) is not
robustly stable if at least one diagonal entry of the matrix
A0(q0) is greater than 1 for some q0 ∈ Q0.

Proof. It follows directly form Theorem 4 and gener-
alisation of Lemma 1 to the positive system (20).

Now consider the positive system (1) with non-
negative perturbation matrices, i.e. with Ekr ∈ <n×n

+ ,
k = 0, 1, ..., h, r = 1, 2, ...,mk. In such a case qkrEkr ∈[
q−krEkr, q

+
krEkr

]
for any fixed qkr ∈

[
q−kr, q

+
kr

]
. There-

fore, robust stability of the positive system (1) with non-
negative perturbation matrices is equivalent to robust sta-
bility of the positive interval system

xi+1 =
h∑

k=0

Akxi−k, Ak ∈
[
A−

k , A+
k

]
⊂ <n×n

+ (27)

where

A−
k = Ak0 +

mk∑
r=1

q−krEkr, A+
k = Ak0 +

mk∑
r=1

q+
krEkr (28)

for k = 0, 1, ..., h.
Moreover, for non-negative perturbation matrices

Ekr(k = 0, 1, ..., h, r = 1, 2, ...,mk), from (12) and (2)
we have that A(q) ∈ [A−, A+] for all q ∈ Q, where
A− = A(q−), A+ = A(q+) with q− =

[
q−0 , q−1 , ..., q−h

]
and q+ =

[
q+
0 , q+

1 , ..., q+
h

]
, i.e.

A− =


A−

0 A−
1 · · · A−

h

In 0 · · · 0
...

...
. . .

...
0 0 In 0

 , A+ =


A+

0 A+
1 · · · A+

h

In 0 · · · 0
...

...
. . .

...
0 0 In 0

 ,

(29)
where A−

k and A+
k are computed from (28).
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It is easy to see that interval matrix [A−, A+] is non-
negative if and only if A− ∈ <ñ×ñ

+ .
From the above it follows that robust stability of the

positive system (1) with linear uncertainty structure and
non-negative perturbation matrices is equivalent to ro-
bust stability of the interval positive discrete-time system
without delays

x̃i+1 = Ax̃i, A ∈
[
A−, A+

]
⊂ <ñ×ñ

+ (30)

The robust stability problem of the positive discrete-
time interval systems with delays was considered in [6].
From the above and [6] we have the following Theorem
and Lemma.

Theorem 6. The positive system (1) with non-
negative perturbation matrices is robustly stable if and
only if the positive system without delays

x̃i+1 = A+x̃i, i ∈ Z+, (31)

where A+ has the form given in (29), is asymptotically
stable, i.e. the conditions of Theorem 3 hold for q = q+ =
[q+

0 , q+
1 , ..., q+

h ].

Lemma 4. The positive system (1) with non-negative
perturbation matrices is not robustly stable if at least one
diagonal entry of the matrix A+

0 is greater than 1.

4. Comparison of robust stability
conditions for positive and standard
systems

The proposed conditions for robust stability of the pos-
itive system (1) with delays are expressed in terms of
the equivalent positive discrete-time system without de-
lays (11).

In this section we compare the proposed conditions of
robust stability of the positive system (11) with the suit-
able conditions for the standard system (11), i.e. without
assumption that A(q) ∈ <ñ×ñ

+ for all q ∈ Q.
The problem of robust stability analysis of standard

linear systems without delays, with structured uncer-
tainty in the state-space description or in the characteris-
tic polynomials was considered in many papers and books,
see monographs [12–16], for example. These papers are
mainly directed to the robust stability problems of char-
acteristic polynomials with linear and multilinear uncer-
tainty structure.

In the case of the standard (or positive) systems with
linear unity rank uncertainty structure the coefficients of
the characteristic polynomial wA(z, q) = det(zIñ − A(q))
are multilinear functions of uncertain parameters [14].
Therefore, applying the Mapping Theorem of Zadeh and
Desoer and the Edge Theorem (see [12–14,16], for exam-
ple) we obtain the following sufficient condition for robust
stability of the standard system (11).

Theorem 7. The standard system (11) with linear
unity rank uncertainty structure is robustly stable if the

vertex standard systems (21) are asymptotically stable
and the following set of one parameter standard systems

x̃i+1 = Ajk(λ)x̃i, j, k = 1, 2, ..., L = 2m, j > k, (32)

is robustly stable, where

Ajk(λ) = (1 − λ)A(q̄j) + λA(q̄k), (33)

and A(q̄j), A(q̄k) are the vertex matrices of the system
(11), corresponding to the vertices of the set (4).

According to Theorem 7, the standard system (11)
with linear unity rank uncertainty structure is robustly
stable if the edge systems (32), corresponding to all the
edges of the value set (4) (not only exposed) are robustly
stable. Asymptotic stability of the vertex systems (21) is
also necessary for robust stability.

From Theorem 5 it follows that asymptotic stability of
the vertex systems (21) is necessary and sufficient for ro-
bust stability of the positive system (11) with linear unity
rank uncertainty structure.

In the case of the standard (or positive) system (11)
with non-negative perturbation matrices the coefficients
of the characteristic polynomial are polynomial functions
of uncertain parameters, in general. In such a case:

– robust stability analysis of the standard system (11) is
a very difficult problem (see [12–14,16], for example),

– robust stability of the positive system (11) is equiva-
lent to the asymptotic stability of only one the positive
system (31), according to Theorem 6.

From the above considerations it follows that robust
stability conditions for the positive discrete-time systems
with delays, given in this paper, are very simple in com-
parison with the suitable conditions for the standard sys-
tems.

5. Illustrative examples
Example 1. Check robust stability of the positive system
(1) with h = 2, mk = 2 for k = 0, 1, 2 and the matrices

A00 =
[

0.2 0.2
0 0

]
, E01 =

[
1 1
0 0

]
, E02 =

[
1 −1
0 0

]
, (34a)

A10 =
[

0.2 0
0.1 0.1

]
, E11 =

[
1 0
−1 0

]
, E12 =

[
1 0
0 0

]
, (34b)

A20 =
[

0 0
0.2 0.1

]
, E21 =

[
0 0
−1 1

]
, E22 =

[
0 0
−1 0

]
,

(34c)
where q = [q0, q1, q2] ∈ Q with

Q = Q0 × Q1 × Q2 (35a)

and, for k = 0, 1, 2,

Qk = {[qk1, qk2] : qkr ∈ [−0.1, 0.1], r = 1, 2} (35b)

It is easy to check that the condition (5) holds. Hence,
the system (1) with the matrices (34) is positive. More-
over, it is easy to see that this system has unity rank
uncertainty structure (the conditions (7) holds) and the
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nominal system (8) is asymptotically stable. Hence, the
assumptions 1 and 2 are satisfied. Therefore, we apply
Theorem 5 to the robust stability analysis.

The set (35) of m = m0 + m1 + m2 = 6 uncertain
parameters has L = 2m = 26 = 64 vertices. Hence, there
is L = 64 the vertex system (21). Asymptotic stability of
these systems is necessary and sufficient for robust stabil-
ity of the system under consideration.

Computing the vertices of the set of uncertain param-
eters (35), the vertex matrices Av

l = A(q̄l), l = 1, 2, ..., 64,
and coefficients of characteristic polynomials of the ma-
trices S(q̄l) = Av

l − Iñ, l = 1, 2, ..., 64, we obtain that
they are positive. Hence, the system is robustly stable,
according to Theorem 5.

Example 2. Check robust stability of the positive sys-
tem (1) with h = 2 and the matrices A00, A10 and A20 of
the forms given in (34) and

E01 =
[

1 1
0 0

]
, E02 =

[
1 1
0 0

]
, E11 =

[
1 0
1 0

]
, (36a)

E12 =
[

1 0
0 0

]
, E21 =

[
0 0
1 1

]
, E22 =

[
0 0
1 0

]
, (36b)

where the set Q is given by (35).
The system under consideration is a positive system

with linear uncertainty structure with non-negative per-
turbation matrices because Ekr ∈ <2×2

+ for k = 0, 1, 2,
r = 1, 2. Therefore, we apply Theorem 6 to the robust
stability analysis.

Computing the matrix A+ = A(q+) from (29) with
q+
kr = 0.1, k = 0, 1, 2, r = 1, 2, and characteristic polyno-

mial of the matrix S+ = A+ − I6, we obtain

det
[
(z + 1)I6 − A+

]
= z6 + 5.6z5 + 12.5z4 + 13.76z3 + 7.24z2 + 1.28z − 0.1.

(37)
Because ã0 = −0.1 < 0, from Theorem 6 it follows

that the system is not robustly stable.

6. Concluding remarks
Simple necessary and sufficient conditions for robust sta-
bility of the positive discrete-time linear system (1) with
linear uncertainty structure in two cases: 1) unity rank
uncertainty structure, 2) non-negative perturbation ma-
trices, have been given.

It has been shown that:

– the positive system (1) with delays with linear unity
rank uncertainty structure is robustly stable if and only
if the positive systems (21) are asymptotically stable
(Theorem 5),

– the positive system (1) with delays with non-negative
perturbation matrices is robustly stable if and only if
the system (31) is asymptotically stable (Theorem 6).

The proposed conditions for the positive systems have
been compared with the suitable conditions for the stan-
dard systems.
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