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Sliding mode tracking control for unmanned helicopter
using extended disturbance observer

IHSAN ULLAH and HAI-LONG PEI

This paper presents a robust control technique for small-scale unmanned helicopters to
track predefined trajectories (velocities and heading) in the presence of bounded external dis-
turbances. The controller design is based on the linearized state-space model of the helicopter.
The multivariable dynamics of the helicopter is divided into two subsystems, longitudinal-
lateral and heading-heave dynamics respectively. There is no strong coupling between these two
subsystems and independent controllers are designed for each subsystem. The external distur-
bances and model mismatch in the longitudinal-lateral subsystem are present in all (matched
and mismatched) channels. This model mismatch and external disturbances are estimated as
lumped disturbances using extended disturbance observer and an extended disturbance ob-
server based sliding mode controller is designed for it to counter the effect of these distur-
bances. In the case of heading-heave subsystem, external disturbances and model mismatch
only occur in matched channels so a second order sliding mode controller is designed for it
as it is insensitive to matched uncertainties. The control performance is successfully tested in
Simulink.

Key words: unmanned helicopter, external disturbances, sliding mode control, extended
disturbance observer, mismatched uncertainty

1. Introduction

Miniature helicopters are highly unstable, agile, nonlinear under-actuated
system with significant inter-axis dynamic coupling. They are considered to be
much more unstable than fixed-wing unmanned air vehicles (UAVs), and constant
control action is required at all times. However, a helicopter is a highly flexible
aircraft, having the ability to hover, maneuvers accurately and carry heavy loads
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relative to its own weight [1]. Fixed-wing aircraft are used for application in
favorable non-hostile conditions but in adverse condition, agile miniature heli-
copters become a necessity. The conditions where a helicopter can perform better
than fixed-wing UAVs include military investigation, bad weather, firefighting,
search and rescue, accessing remote locations and ship operations. In such con-
ditions, helicopters are subjected to unknown external disturbances such as wind
and ground effect. These external disturbances have a significant opposing effect
on helicopter stability and can have disastrous results in extreme cases. So it is
essential to design a controller for the helicopter which can efficiently reject the
effects of these unknown external disturbances.

In last two decades, there is substantial research about helicopter control
problem. Early results showed that classical control methods using Single-Input
Single-Output feedback loops for each input exhibit moderate performance since
they are unable to coup with the highly coupled multivariable dynamics of the
helicopter [2]. Control schemes typically used to maintain stable control of heli-
copters include PID [3], Linear Quadratic Regulator (LQR) and Linear Quadratic
Gaussian (LQG) [4], H2 [5], H∞ [6] and µ-synthesis [7]. To development a flight
control system for a robotic helicopter in [8] a mixing of system identification
and multivariable H∞ loop shaping control techniques are applied. An interesting
comparative study of several control methods is given in [9, 10]. The majority of
linear controllers designed for unmanned helicopter are based on the H∞method.
These linear control methods guarantee stability and robustness only when the
system states are near equilibrium but during the flight operations as the speed is
increased these methods start losing tracking accuracy significantly. In [11] back-
stepping control design techniques is used for linear tracking control of miniature
helicopter without considering external disturbances, the control design is based
on the linearized model of helicopter and shows good results in X-plane flight
simulator. Disturbance Observer-based control techniques are used in [12, 13],
but in presence of external disturbances, there is steady state error in helicopter
rotational and translational dynamics.

Sliding mode control (SMC) is an efficient famous control technique for
systems affected by parametric uncertainties and external disturbances having
a number of applications in various fields [14]. The traditional SMC method
is insensitivity to matched uncertainties and disturbances but many practical
systems like the permanent magnet synchronous motors [15], missiles [16, 17]
and helicopter [18] are affected by mismatched uncertainties. In these systems
parametric uncertainties, un-modeled dynamics and external disturbances affect
the states of the system directly rather than through the input channels. Integral
sliding mode control (I-SMC) [19] have been proposed in the literature to handle
mismatched uncertainties. Although I-SMC is a simple technique and applied
to various systems [20, 21], it has disadvantages, such as longer settling time
and large overshoots. A novel disturbance observer based sliding mode control
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(DOB-SMC) method is proposed in [22] which employ disturbance observer
(DO) to cancel the effect of the mismatched uncertainties acting on the system
using a modified sliding surface which includes estimation of the mismatched
uncertainties. Along with handling the effect of mismatched uncertainties, DOB-
SMC also significantly reduces chatter in control but the results are based on
the assumption that the mismatched uncertainties and their first derivatives are
bounded and the first derivatives go to zero in the steady state. In case of a
helicopter, this assumption is very restrictive and the external wind disturbances
acting on the helicopter is very complex and can be a function of the power
of time t. In [23] an extended disturbance observer based sliding mode control
(EDOB-SMC) technique is developed for single-input single-output systems to
handle higher order mismatched uncertainties.

In this paper, a simplified EDOB-SMC is proposed for small-scale unmanned
helicopters to track predefined velocities trajectories in the presence of bounded
external disturbances. The controller design is based on the linearized state-space
model of the helicopter. As in [11, 24, 25] the linearized model of the helicopter
can be divided into two subsystems, such as the longitudinal-lateral subsystem
and the heading-heave subsystem as there is no strong coupling between the
two subsystems. The mismatched uncertainties are only present in longitudinal-
lateral subsystem while in head-heave subsystem the external disturbances enter
the system only through the control input channels. To counteract both matched
and mismatched uncertainties in longitudinal-lateral subsystem a new sliding
surface augmented with the disturbance estimations of EDOB is designed. The
model mismatch and external distances are estimated as lumped disturbances and
are compensated in the controller design. As mismatched uncertainties are absent
in head-heave subsystem, a 2nd order super-twisting sliding mode controller (ST-
SMC) is designed for it. ST-SMC is robust against matched uncertainties and
helps reduce control chatter. The rotor flapping dynamics are approximated by
the steady-state dynamics of the main rotor which help reducing controller order.
The proposed control method has three attractive features. First, it is insensitive
to mismatched uncertainties. Second, the chattering problem is substantially
reduced as the switching gain is only required to be greater than the bound
on the disturbance estimation error of observer instead of lumped disturbance.
Third, the proposed controller has better tracking performance than an I-SMC.
Simulink simulation has demonstrated successful performance of the proposed
controller.

The rest of the paper is organized as follows. A complete nonlinear model
of the helicopter and the linearized model for controllers design are presented
in section 2. The control problem is stated in section 3. The proposed control
laws for longitudinal-lateral and head-heave subsystem are derived in details in
section 4 and 5 respectively. Simulation results are given in section 6 and finally
concluding remarks are given in section 7.
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2. Helicopter model

2.1. Nonlinear dynamics of helicopter

The general 11th state nonlinear model [26] of the miniature unmanned heli-
copter is given as

u̇ = vr −wq−g sinθ + Xmr/m+ dw1 ,

v̇ = wp−ur +g sinφcos θ +Ymr/m+ dw2 ,

ẇ = uq− vp+g cosφcosθ + Zmr/m+ dw3 ,

φ̇ = p+
(
sinφ tanθ

)
q+

(
cosφ tanθ

)
r,

θ̇ =
(
cosφ

)
q− (

sinφ
)

r,

ψ̇ = sinφ/cos θ + cosφ/cos θ,

ṗ = qr
(
Iyy − Izz

)
/Ixx + Lmr/Ixx + dw4 ,

q̇ = pr
(
Izz − Ixx

)
/Iyy +Mmr/Iyy + dw5 ,

ṙ = Nvv+Npp+Nww+Nrr +Nped .uped +Ncol .ucol + dmm + dw6 ,

ȧ = −q−1/t f .a+ Ab.b+ Alon.ulon + Alat .ulat ,

ḃ = −p−1/t f .b+Ba.a+Blon.ulon+Blat .ulat ,

(1)

where x =
[
u v w φ θ ψ p q r a b

]T is the vector of state variable all avail-
able for measurement except a and b; u, v and w represents linear velocities in
longitudinal, lateral and vertical direction respectively; m is mass of helicopter;
g represents acceleration due to gravity; p, q and r represents angular velocities
in roll, pitch and yaw axis respectively; φ, θ and ψ are Euler angles of roll,

pitch and yaw axes; uc(t) =
[
ulon ulat ucol uped

]T
is the control input vector;

dwi ∀i = 1,2, . . .6 are unknown external wind disturbances effecting translational
as well as rotational dynamics of helicopter; Ixx, Iyy and Izz are the rolling moment
of inertia, pitching moment of inertia and yawing moment of inertia respectively;
a and b are flapping angles of tip-path-plane(TPP) in longitudinal and lateral
direction respectively; Xmr,Ymr and Zmr are the force components of main rotor
trust along x, y and z axis; Lmr and Mmr are roll and pitch moments generated by
main rotor; Nv, Np,Nw and Nr are helicopter stability derivatives and Nped and
Ncol are input derivatives of yaw dynamics identified as in [11]; t f is flapping
time constant; Ba, Blat and Blon are lateral flapping derivatives; Ab, Alon and Alat

are longitudinal flapping derivatives. A diagram showing the directions of the
helicopter body fixed coordinate system is given in Fig. 1.
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Figure 1: Helicopter body-fixed coordinate system [11]

The force components generated by the main rotor trust in x, y and z direction
are given as

Xmr = −T sina,

Ymr = T sinb,

Zmr = −T cosa cos b,

(2)

where T is the total trust generated by the main rotor. The moments generated by
the main rotor along the x and y direction are calculated as

Lmr =

(
k β +T .hmr

)
sinb,

Mmr =

(
k β +T .hmr

)
sina

(3)

where k β is the torsional stiffness of the main rotor hub; hmr is main rotor hub
height above the center of gravity of helicopter.

The trust of the main rotor is calculated by iteratively solving the equations
of trust and the induced inflow velocity [27].

T = (wb− vi)
ρΩR2Cm

lα
bmcm

4
,

v
2
i =

√(
v̄2

2

)2

+

(
T

2ρπR2

)2

− v̄
2

2
,

v̄
2
= u2
+ v

2
+w(w−2vi),

wb = w+
2

3
ΩRkakcolucol ,

(4)
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where vi is the induced inflow velocity; Ω is rotational speed of the main rotors;
ρ is air density; R is main rotor radius; bm is the number of main rotor blades;
cm is the chord length of the main rotor; Cm

lα
is coefficient of lift curve slope of

the main rotor; is control gain of the servo actuator; kcol is linkage gain from the
collective actuator to the main blade.

2.2. Linearized State Space Model of the helicopter

To derive the control law, the nonlinear model (1) of the helicopter is linearized
at hover condition as

ẋ = Ax+Buc +Edt ,

y = Cx.
(5)

At hover condition, the longitudinal-lateral and heading-heave dynamics of the
helicopter are weakly coupled with each other and are expressed as two separate
sub-systems [11].

ẋ1 = A11x1+B11uc1+E11dt1 ,

y1 = C1x1 ;
(6)

ẋ2 = A21x1+ A22x2+B22uc2+E22dt2 ,

y2 = C2x2 ,
(7)

where (6) represents longitudinal-lateral subsystem and (7) represents the
heading-heave subsystem, x1 =

[
u v θ φ q p a b

]T ; uc1 = [ulon ulat]T ;
dt1 = [dt1 dt2 dt3 dt4 dt5 dt6 0 0]T ; E11 is an 8 × 8 identity matrix;

x2 =
[
ψ r w

]T ; uc2 =
[
uped ucol

]T
; dt2 = [0 dt7 dt8]T ; E11 is 3 × 3 identity

matrix; Matrices A11, A21, A22, B11,B22, C1, C2 are given as

A11 =



Xu 0 −g 0 0 0 0 0

0 Yv 0 g 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

Mu Mv 0 0 0 0 Ma 0

Lu Lv 0 0 0 0 0 Lb

0 0 0 0 −1 0 −1/t f Ab

0 0 0 0 0 −1 Ba −1/t f



, (8a)
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B11 =



0 0

0 0

0 0

0 0

0 0

0 0

Alon Alat

Blon Blat



, C1 =



1 0

0 1

0 0

0 0

0 0

0 0

0 0

0 0



T

(8b)

A21 =


0 0 0 0 0 0 0 0

0 Nv 0 0 0 Np 0 0

0 0 0 0 0 0 Za Zb


, C2 =


1 0

0 0

0 1


,

A22 =


0 1 0

0 Nr Nw

0 Zr Zw


, B22 =


0 0

Nped Ncol

0 Zcol


.

(9)

Assumption 1 The matrix pairs (A11,B11) and (A22,B22) are controllable [11].

Assumption 2 Each matrix B11 and B22 have two linearly independent rows [11].

Assumption 3 The stability derivatives g, Ma and Lb are nonzero [11].

Assumptions 1, 2 and 3 reflect the fact that the linearized models (6) and (7) are
physically meaningful.

Assumption 4 The disturbances dti, ∀ i = 1,2, . . .,6 acting at the system (6) are
continuous and satisfy

����d j (dti)
/
dt j

���� ¬ µi j ∀ i = 1,2, . . .,6 and j = 0,1,2,3 (10a)

and let
µ j =




µ1 j µ2 j µ3 j µ4 j µ5 j µ6 j



2
, (10b)

where all µi j and µ j are positive bounded constant.

Assumption 5 The disturbances acting at the subsystem (7) are also continuous
and satisfies

����d j (dti)
/
dt j

���� ¬ µi j f or i = 7,8 and j = 0,1, (11)

where µi j is positive bounded constant.
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3. Control problem statement

The principal objective of this paper is to derive the control laws uc1 and uc2
for the helicopter system (1) to follow a predefined reference velocity trajectory
vr = [ur vr wr]T and yaw angle

(
ψr

)
, in presence of external wind disturbances

satisfying assumption 4. As subsystem (6) and (7) are decoupled, separate con-
trollers are designed for each subsystem in the following sections.

Assumption 6 The desired reference velocities and yaw angle are continuous and

bounded such that
di

dt
(ur ),

di

dt
(vr ) ∈ L∞ (i = 0,1,2,3, ) and

di

dt
(wr ),

di

dt

(
ψr

) ∈ L∞
(i = 0,1).

4. Longitudinal-lateral subsystem

The subsystem (6) is expanded as

u̇ = Xuu−gθ + dt1 ,

v̇ = Yvv+gφ+ dt2 ,

θ̇ = q+ dt3 ,

φ̇ = p+ dt4 ,

q̇ = Muu+Mvv+Maa+ dt5 ,

ṗ = Luu+ Lvv+ Lbb+ dt6 ,

ȧ = −q−1/t f .a+ Ab.b+ Alon.ulon+ Alat .ulat ,

ḃ = −p−1/t f .b+Ba.a+Blon.ulon+Blat .ulat ,

(12)

y1 = [u v]T , (13)

where Xu, Yv, Mu, Mv, Ma, Lu, Lv and Lb are stability derivatives; Alon, Alat, Blon

and Blat are input derivatives; dti ∀ i = 1,2, · · · ,6 is the total disturbance including
both model mismatch and external disturbances acting at channel i.

The flapping angles a and b of the main rotor can be approximated by the
steady state dynamics of the main rotor as in [28]

a = −t f q+ t f (Ab.b+ Alon.ulon+ Alat .ulat) , (14)

b = −t f p+ t f (Ba.a+Blon.ulon+Blat .ulat) . (15)



SLIDING MODE TRACKING CONTROL FOR UNMANNED HELICOPTER
USING EXTENDED DISTURBANCE OBSERVER 177

Solving (14) and (15) for a and b and then substituting it in (12) gives the reduced
order linearized model for the longitudinal-lateral systems as

u̇ = Xuu−gθ + dt1 ,

v̇ = Yvv+gφ+ dt2 ,

θ̇ = q+ dt3 ,

φ̇ = p+ dt4 ,

q̇ = Muu+Mvv−Mpp−Mqq+Mlon.ulon+Mlat .ulat + dt5 ,

ṗ = Luu+ Lvv− Lpp− Lqq+ Llon .ulon + Llat .ulat + dt6 .

(16)

The reduced order linearized model (16) is written in state space form as follows

ẋr = Arxr +Bruc1+Erdtr , (17)

y1 = Crxr , (18)

where xr =
[
u v θ φ q p

]T ; uc1 = [ulon ulat]
T ; dtr = [dt1 dt2 dt3 dt4 dt5 dt6]T ;

Er is 6×6 identity matrix; yr is output vector; Matrices Ar, Br and Cr are given as

Ar =



Xu 0 −g 0 0 0

0 Yv 0 g 0 0

0 0 0 0 1 0

0 0 0 0 0 1

Mu Mv 0 0 −Mq −Mp

Lu Lv 0 0 −Lq −Lp


, Br =



0 0

0 0

0 0

0 0

Mlon Mlat

Llon Llat


, Cr =



1 0

0 1

0 0

0 0

0 0

0 0



T

.

4.1. Extended disturbance observer design

It is difficult to measure directly the disturbance vector dtr and its higher
derivatives, a 3rd order EDO is used to estimate the unknown total disturbance
vector dtr and its higher derivatives. The observer is designed as

Ṗ1 = −L1 (P1+ L1xr )− L1 (Arxr +Bruc1)+ ˆ̇dtr , (19a)

d̂tr = P1+ L1xr , (19b)

Ṗ2 = −L2 (P1+ L1xr )− L2 (Arxr +Bruc1)+ ˆ̈dtr , (20a)

ˆ̇dtr = P2+ L2xr , (20b)

Ṗ3 = −L3 (P1+ L1xr )− L3 (Arxr +Bruc1) , (21a)

ˆ̈dtr = P3+ L3xr , (21b)
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where P1, P2 and P3 are auxiliary state vectors of the observer; d̂tr ,
ˆ̇dtr and ˆ̈dtr

are estimation of the disturbance vector dtr and its higher derivatives; L1, L2 and
L3 are observer gains defined as

Li = li I6×6 for i = 1,2,3. (22)

The observer estimation error vector is defined as

e =
[
ed eḋ ed̈

]
, (23)

where

ed = d̂tr −dtr = [edt1 edt2 edt3 edt4 edt5 edt6]T (24a)

eḋ =
ˆ̇dtr − ḋtr =

[
eḋt1 eḋt2 eḋt3 eḋt4 eḋt5 eḋt6

]T
, (24b)

ed̈ =
ˆ̈dtr − d̈tr =

[
ed̈t1 ed̈t2 ed̈t3 ed̈t4 ed̈t5 ed̈t6

]T
. (24c)

From (19a), (19b) and (17)

˙̂dtr = −L1ed+
ˆ̇dtr . (25)

Subtracting both sides of (25) from ḋtr

ėd = −L1ed+ eḋ . (26)

Similarly using (20a), (20b), (17) and (21a), (21b), (17) gives

ėḋ = −L2ed+ ed̈ , (27)

ėd̈ = −L3ed+
...
d tr . (28)

Combining (26), (27) and (28) the observer error dynamics is written in compact
form as

ė = De+E
...
d tr , (29)

where

D =


−L1 I6×6 06×6

−L2 06×6 I6×6

−L3 06×6 06×6


, E =


06×6

06×6

I6×6


. (30)

If l1, l2 and l3 are selected such that the following equation is Hurwitz

s3
+ l1s2

+ l2s+ l3 = 0 (31)

then D is Hurwitz and a positive definite matrix P1 always exist satisfying the
following equation

DT P1+P1D = −Q1 . (32)
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Theorem 1 If L1, L2 and L3 are chosen such that D is Hurwitz, the estima-
tion error e of the EDOB asymptotically goes inside a ball b0 = {e ∈ R18 |
e ¬ 2µ3 [λmax(P1)/λmin (Q1)]} and stays inside for the remaining period of time.

Proof. Defining the Lyapunov function as

V (e) = eT P1e. (33)

Differentiating V (e) with respect to time t gives

V̇ (e) = eT
(
DT P1+P1D

)
e+2eT P1E

...
d tr

¬ −eT (Q1) e+2eTλmax(P1)µ3

¬ −‖e‖ [λmin (Q1) ‖e‖ −2λmax(P1) µ3].

(34)

From V̇ (e) ¬ 0, it is concluded that the observer estimation error norm ‖e‖
asymptotically converges to b0 and stay inside for the remaining period of time
such that

‖e‖ ¬ 2µ3 [λmax(P1)/λmin (Q1)] . (35)

�

Assumption 7 The estimation error of EDOB is bounded such that

e∗dti =max
t>0
|edti | ∀ i = 1,2, · · · ,6. (36)

4.2. EDOB-SMC design

4.2.1. Input-output linearization

First, the longitudinal-lateral dynamics (17) is written in input-output lin-
earized form. The system output (18) is expanded as

y1 =
[
u v

]T
. (37)

Differentiating y1 gives

ẏ1 = K1
[
u v

]T
+K2

[
θ φ

]T
+dtr1 , (38)

where K1 = diag (Xu, Yv); K2 = diag
(−g, g) and dtr1 = [dt1 dt2]T . Differentiating

(38) gives

ÿ1 = K2
1

[
u v

]T
+K1K2

[
θ φ

]T
+K2

[
q p

]T
+K1dtr1+K2dtr2+ ḋtr1 , (39)
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where dtr2 = [dt3 dt4]T . Differentiating (39) gives

...
y 1 = K3

1

[
u v

]T
+K2

1 K2
[
θ φ

]T
+K1K2

[
q p

]T
+K2K3 [ulon ulat]

T

+K2K4
[
u v q p

]T
+K2

1dtr1+K1K2dtr2+K2dtr3+K1ḋtr1

+K2ḋtr2+ d̈tr1 ,

(40)

where dtr3 =

[
dt5

dt6

]
; K3 =

[
Mlon Mlat

Llon Llat

]
; K4 =

[
Mu Mv −Mq −Mp

Lu Lv −Lp −Lq

]
.

4.2.2. Controller design

In this section EDOB-SMC method is used to derive the control law uc1 for
longitudinal and lateral velocities tracking of helicopter in presence of external
disturbances. The reference velocity vector is given as

yr =
[
ur vr

]T
. (41)

The sliding surface augmented with the estimated disturbances is designed as
follows

S = C1 (y1−yr )+C2

(
ˆ̇y1− ẏr

)
+ ˆ̈y1− ÿr

= C1ey +C2 ˆ̇ey + ˆ̈ey ,
(42)

where S = [s1 s2]T ; C1 = diag (c1, c2); C2 = diag (c3, c4). C1 and C2 are designed
such that S = b f 0 is Hurwitz; ẏr , ÿr are higher derivatives of yr ; ˆ̇y1 and ˆ̈y1 are
expressed as follows

ˆ̇y1 = K1
[
u v

]T
+K2

[
θ φ

]T
+ d̂tr1 , (43)

ˆ̈y1 = K2
1

[
u v

]T
+K1K2

[
θ φ

]T
+K2

[
q p

]T
+K1d̂tr1+K2d̂tr2+

ˆ̇dtr1 , (44)

where d̂tr1 =
[
d̂t1 d̂t2

]T
, d̂tr2 =

[
d̂t3 d̂t4

]T
and ˆ̇dtr1 =

[̂̇dt1
̂̇dt2

]T

.

Then the EDOB-SMC is designed as follows

uc1 = (−K2K3)−1

(
h+C1d̂tr1+C2

(
K1d̂tr1+K2d̂tr2

)
+K2

1 d̂tr1+K1K2d̂tr2

+K2d̂tr3+ (C2+K1) ˆ̇dtr1+K2
ˆ̇dtr2+

ˆ̈dtr1+ βsgn(S)

)
,

(45)
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where ˆ̈dtr1 =

[
ˆ̈dt1

ˆ̈dt2

]T

; d̂tr3 =
[
d̂t5 d̂t6

]T
; sgn(S) =

[
sgn (s1) sgn (s2)

]T ;

β = diag
(
β1, β2

)
and

h = C1

(
K1

[
u v

]T
+K2

[
θ φ

]T − ẏr

)
+C2

(
K2

1

[
u v

]T
+K1K2

[
θ φ

]T

+ K2
[
q p

]T − ÿr

)
+K3

1

[
u v

]T
+K2

1 K2
[
θ φ

]T
+K1K2

[
q p

]T

+ K2K4
[
u v q p

]T − ...
y r .

(46)

4.2.3. Stability analysis

Theorem 2 Suppose system (17) satisfy assumptions 4 and 7 then system (17)
under the proposed control law (45) is asymptotically stable if the high frequency
switching gain in the control law is designed such that the following two conditions
hold

β1 > ��( [1 0
]

M∗
) �� (47)

and

β2 > ��( [0 1
]

M∗
) ��, (48)

where

M∗ = −
[
C1+K2

1 +C2K1+ l1 (C2+K1)+ l2 (I2×2)
]
e∗d1

− [C2K2+K1K2+ l2K2]e∗d2−K2e∗d3;

e∗d1 =
[
e∗dt1 e∗dt2

]T
; e∗d2 =

[
e∗dt3 e∗dt4

]T
and e∗d3 =

[
e∗dt5 e∗dt6

]T
.

Proof. Differentiating the sliding surface (42) gives

Ṡ = h+K2K3uc1+C1dtr1+C2 (K1dtr1+K2dtr2)+K2
1dtr1+K1K2dtr2

+ K2dtr3+ (K1+C2) ˙̂dtr1+K2
˙̂dtr2+

˙̂
ḋtr1 .

(49)

Expanding (25) gives

˙̂dtr2 = −l1ed1+
ˆ̇dtr1 , (50)

˙̂dtr2 = −l1ed2+
ˆ̇dtr2 , (51)

where ed1 = [edt1 edt2]T and ed2 = [edt3 edt4]T . Similarly (27) gives

˙̂
ḋtr1 = −l2ed1+

ˆ̈dtr1 . (52)
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Substituting (50), (51) and (52) in (49) gives

Ṡ = h+K2K3uc1+C1dtr1+C2 (K1dtr1+K2dtr2)

+ (C2+K1)

(
−l1ed1+

ˆ̇dtr1

)
+K2

(
−l1ed2+

ˆ̇dtr2

)

+ K2
1dtr1+K1K2dtr2+K2dtr3− l2ed1+

ˆ̈dtr1 .

(53)

Substituting the control law (45) in (53) gives

Ṡ = −
[
C1+K2

1 +C2K1+ l1 (C2 +K1)+ l2 (I2×2)
]
ed1

− [C2K2+K1K2+ l2K2]ed2−K2ed3− βsgn(S)

= M − βsgn(S),

(54)

where M is bounded by M∗. Using the conditions (47) and (48) it is concluded
from (54) that the system will reach the sliding surface S = 0. At condition S = 0,
(42) becomes

ˆ̈ey = −C1ey −C2 ˆ̇ey . (55)

Substituting (38) and (39) in (55) gives

ëy = −
[
C1ey +C2ėy + (K1+C2) ed1+K2ed2+ eḋ1

]
. (56)

Combining (56) with EDOB error dynamics (29) gives

ëy = −
[
C1ey +C2ėy + (K1+C2) ed1+K2ed2+ eḋ1

]
,

ėd1 = −l1ed1+ eḋ1 ,

ėd2 = −l1ed2+ eḋ2 ,

ėḋ1 = −l2ed1+ ed̈1 ,

ėḋ2 = −l2ed2+ ed̈2 ,

ėd̈1 = −l3ed1+
...
d tr1 ,

ėd̈2 = −l3ed2+
...
d tr2 .

(57)

Let

ε =
[
ε1 ε2 ε3 ε4 ε5 ε6 ε7 ε8

]
=

[
ey ėy ed1 ed2 eḋ1 eḋ2 ed̈1 ed̈2

] (58)

and

...
d12 =

[...
d tr1

...
d tr1

]T
, (59)
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...d12


 ¬ µ3r , (60)

where µ3r is positive bounded constant. Then (57) is written in state space form as

ε̇ = Aεε +Bε
...
d12 , (61)

where Aε and Bε are given as

Aε =



| 0 0 0 0 0 0
Aεr | − (K1+C2) −K2 −1 0 0 0

−− | −− −− −− −− −− −−
012×4 | Dr


;

Bε =
[

04×4 04×4 04×4 I4×4

]T

(62)

and

Aεr =

[
0 1
−C1 −C2

]
; Dr =


−l1I4×4 I4×4 04×4

−l2I4×4 04×4 I4×4

−l3I4×4 04×4 04×4]]


(63)

as Aε is block triangular matrix, its eigenvalues are given by the following equation

det (λI4×4− Aε1) · det(λI12×12−Dr ) = 0 (64)

where det(·) denotes the determinant of a matrix and λ ∈ R is an eigenvalue of
Aε. Earlier (31) and (42) were designed Hurwitz so both Aεr and Dr are Hurwitz
and all eigenvalues of Aε have strictly negative real parts. As Aε is Hurwitz so a
positive definite matrix P2 always exist satisfying the following equation

AT
εP2+P2 Aε = −Q2 . (65)

Defining the following Lyapunov function

V (ε) = εT P2ε . (66)

Differentiating V (ε) with respect to time t gives

V̇ (ε) = εT
(
AT
εP2+P2 Aε

)
ε +2εT P2Bε

...
d12

¬ −εT (Q2) ε +2eTλmax(P2) µ3r

¬ −‖ε‖ [λmin (Q2) ‖ε‖ −2λmax (P2) µ3r

]
.

(67)

From V̇ (ε) ¬ 0, it is concluded that the states of the system (61) converges
asymptotically inside a ball b1 ∈ R16 and stay inside for the remaining period of
time such that

‖ε‖ ¬ 2µ3r

[
λmax(P2)/λmin (Q2)

]
. (68)

�
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5. Heading-heave subsystem

In this section, ST-SMC method is used to derive the control laws uped and
ucol for heading and vertical velocity tracking of the helicopter in presence of
external disturbances. The subsystem (7) is divided in two separate systems as

ψ̇ = r,

ṙ = Nvv+Nww+Nrr +Npeduped +Ncolucol + dt7 ,

y21 = ψ;

(69)

lẇ = Zww+ Zcolucol + dt8 ,

y22 = w,
(70)

where (69) and (70) represent the heading dynamics and the heave dynamics of the
helicopter respectively, Nv , Nw , Nr and Zw are stability derivatives, Nped , Ncol and
Zcol are input derivatives, dt7 and dt8 are the total disturbances (including model
mismatch and external disturbances). Both dt7 and dt8 are matched disturbances
(acting at control input channel) and there is no need of disturbance observer for
(69) and (70) as SMC is insensitive to matched disturbance.

5.1. Controller for heading dynamics

The yaw tracking error eψ and its derivative are defined as

eψ = ψ−ψr , (71)

ėψ = r − ψ̇r . (72)

The sliding surface for controller design is defined as

Sψ = cψeψ + ėψ , (73)

where cψ > 0 so that Sψ = 0 is Hurwitz. Then the ST-SMC law is designed as

uped = −1/Nped

(
cψ ėψ − ψ̇r +Nvv+Nww+Nrr +Ncolucol

+ kψ1
���sψ���1/2 sgn

(
sψ

)
+ kψ2

∫
sgn(sψ)d sψ

)
.

(74)

Theorem 3 System (69) under the proposed control law (74) is ultimately expo-
nentially stable if the following condition holds

kψ2 > µ71 , (75)

where µ71 is positive bounded constant such that ḋt7 < µ71.
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Proof. Differentiating the sliding surface (73) gives

ṡψ = cψ ėψ +Nvv+Nww+Nrr +Npeduped +Ncolucol − ψ̇r + ḋt7 . (76)

Substituting the control law (74) in (76) gives

ṡψ = −kψ1
���sψ���1/2 sgn

(
sψ

)
− kψ2

∫
sgn(sψ)d sψ + ḋt7 . (77)

Dynamics of (77) is similar to a usual super twisting algorithm and from [29] it is
known that (77) is finite time stable and Sψ and Ṡψ will converge to zero in finite
time. At condition Sψ = 0, (73) becomes

ėψ = −cψeψ . (78)

As (78) is exponentially stable so it is concluded that the yaw tracking error eψ
will ultimately exponentially converge to zero. �

5.2. Controller for heave dynamics

The vertical velocity tracking error eψ is defined as

ew = w−wr . (79)

Then the ST-SMC law is designed as

ucol = −1/Zcol

(
− ẇr + Zww+ kw1 |ew |1/2 sgn (ew)+ kw2

∫
sgn(sw)d sw

)
. (80)

Theorem 4 System (70) under the proposed control law (80) is finite time stable
if the following condition holds

kw2 > µ81 , (81)

where µ81 is positive bounded constant such that ḋt8 < µ81.

Proof. Differentiating (79) and substituting (80) gives

ėw = −kw1 |ew |1/2 sgn (ew)− kw2

∫
sgn(sw)d sw + ḋt8 . (82)

Dynamics of (82) is similar to a usual super twisting algorithm and from [29] it
is known that (82) is finite time stable and the tracking error ew and its derivative
ėw will converge to zero in finite time. �
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6. Simulation results

In this section performance of the proposed EDOB-SMC (45) is evaluated.
Two numerical simulations are presented, the first simulation is performed in
absence of external disturbance while the second simulation is performed in
presence of external disturbances. To show the effectiveness of the proposed
EDOB-SMC (45), an integral sliding mode controller (ISMC) is used in these
simulations for performance comparison. The sliding surface of the ISMC method
is designed as

σ = (ÿ1− ÿr )+C3 (ẏ1− ẏr )+C2
(
y1−yr

)
+C1 ∫ (

y1−yr

)

− (C3+K1) dtr1−K2dtr2− ḋtr1 .
(83)

Substituting ẏ1 and ÿ1 in (47) the disturbance terms (−(C3 +K1)dtr1 −K2dtr2

−ḋtr1) get cancelled. So its a typical sliding surface for I-SMC. Then the I-SMC
is designed as

uc1 = (−K2K3)−1 (
hi + βi sgn (σ)

)
, (84)

where

hi = C1 (y1−yr )+C2

(
K1

[
u v

]T
+K2

[
θ φ

]T − ẏr

)

+ C3

(
K2

1

[
u v

]T
+K1K2

[
θ φ

]T
+K2

[
q p

]T − ÿr

)

+ K3
1

[
u v

]T − ...
y r +K1K2

[
q p

]T

+ K2K4
[
u v q p

]T
+K2

1 K2
[
θ φ

]T
,

(85)

βi sgn(σ) = diag
(
β3 sgn (σ1) , β4 sgn (σ2)

)
(86)

and

β3 > max
t>0

���[1 0]
(
−(C3 +K1)dtr1−K2dtr2− ḋtr1

) ���, (87)

β4 > max
t>0

���[0 1]
(
−(C3 +K1)dtr1−K2dtr2− ḋtr1

) ��� . (88)

Raptor 90 SE radio controlled helicopter is used in these simulation. The Simulink
model is established using the nonlinear model of the helicopter defined in (1)
and then the proposed EDOB-SMC (45), ST-SMC (74), (80) and the I-SMC
(84), ST-SMC (74), (80) based on the reduced order linearized model (17) are
applied on it for performance evaluation. Parameters of the nonlinear model of
the helicopter are given in Table 1 and parameters of the reduced order linearized
model are given in Table 2.
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Table 1: Parameters of Raptor 90SE RC helicopter [30]

Nonlinear model parameters

m = 7.495 kg Ω = 172.788 rad/s R = 0.785 m

bm = 2 cm = 0.060 m ρ = 1.290 kg/m3

g = 9.81 m/s2 Cm
lα

= 4.0734 ka = 9.4248

kcol = 0.3813 kβ = 167.6592 N.m/rad hmr = 0.275 m

Ixx = 0.1895 kgm2 Iyy = 0.4515 kg m2 Izz = 0.3408 kg m2

Nv = 2.982 Np = 0 Nw = −0.7076

Nr = −10.71 Nped = 26.90 Ncol = 3.749

t f = 0.03256 sec Ab = 0.7713 Ba = 0.6168

Alon = 4.059 Alat = −0.01610 Blon = −0.01017

Blat = 4.085

Table 2: Parameters of the linearized model [11]

Parameters of A11, A21 and A22

Xu = −0.03996 Yv = −0.05989 1/t f = 30.71

Mu = 0.2542 Mv = −0.06013 Zw = −2.055

Lu = −0.0244 Lv = −0.1173 Nv = 2.982

Ma = 307.571 Lb = 1172.4817 Nr = −10.71

Ab = 0.7713 Ba = 0.6168 Nw = −0.7076

Parameters of B11 and B22

Alon = 4.059 Alat = −0.01610 Blat = 4.085

Blon = −0.01017 Zcol = −13.11 Ncol = 3.749

Nped = 26.90

Parameters of Ar and Br

Mq = 10.0153 Mp = 0.2515 Lp = 38.1792

Lq = 0.7667 Mlon = 40.6609 Mlat = 0.8662

Llon = 2.7238 Llat = 155.9401
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The reference velocity vector vB
r = [ur vr wr ]

T in the body frame is ob-
tained as

vB
r = RTvI

r , (89)

where RT is the rotation matrix representing the orientation of the inertial frame
in body fixed frame of the helicopter. The reference velocity trajectories vI

r for the
whole flight are produced by a low pass filter 1/(s+2)3 with input VI

r given as

VI
r = Vmax



[
0 0 0

]T for t < 0.5,



0

0

−2sin
(
π

7
(t −0.5)

)


for 0.5¬ t < 7,

[
0 0 0

]T for 7.5¬ t < 12.5,



10sin
(
π

32
(t −12.5)

)

3sin
(
π

32
(t −12.5)

)

0


for 12.5¬ t < 28.5,

[
10 3 0

]T for 28.5¬ t < 40,



10cos
(
π

40
(t −40)

)

3cos
(
π

40
(t −40)

)

0


for 40 ¬ t < 60,

[
0 0 0

]T for t ­ 60,

(90)

where Vmax = diag (vmax1, vmax2, vmax3) is tuning gain matrix to ensure
max(ur ) = 10, max(vr ) = 3 and max(wr ) = 2. Throughout all the flight the refer-
ence heading angle is constant with a value of ψr = 0.

6.1. Trajectory tracking in absence of external disturbances

In first case performance comparison of the two controllers EDOB-SMC (45),
ST-SMC (74), (80) and the I-SMC (84), ST-SMC (74), (80) is done in absence
of external disturbances. The reference fight path to be tracked is given in (89).
All initial states of the helicopter system (1) are set as zero except ψ = 0.001 rad.
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Parameters of the EDOB-SMC are C1 = diag(10, 10); C2 = diag(25, 25);
β1 = 2.5; β2 = 2.5; l1 = 18; l2 = 108; l3 = 216 while parameters of the I-SMC are
C1 = diag(125, 125); C2 = diag(75, 75); C3 = diag(15, 15); β1 = 2.5; β2 = 2.5. Pa-
rameters of uped and ucol are cψ = 5; kψ1 = 2; kψ2 = 3; kw1 = 1.3; kw2 = 5.5. These
parameters are tuned to get the best results. The switching gains of EDOB-SMC
are tuned by gradually increasing it from zero until no significant improvement
is observed in tracking performance and the same gains are used for ISMC.
The simulation results in case 1 are given in Figs. 2–7. Fig. 2 shows the re-
sults of velocity tracking and Fig. 3 shows the response curves of Euler angles.
The velocity and yaw tracking error are given in Fig. 4. The disturbances in
the log-lat subsystem, estimated by EDOB are given in Fig. 5, as no external
disturbances were applied so its a measure of the total model mismatch present
in log-lat subsystem during the flight. It is clear that EDOB-SMC has higher
accuracy and better tracking performance. In case of ISMC, the closed loop
system is stable but the tracking error is very high compared to EDOB-SMC.
Figs. 6 and 7 show the control inputs and the chattering are within reason-
able range.

Figure 2: Velocity tracking responses expressed in body coordinate system
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Figure 3: Response curves of orientation angles

Figure 4: Response curves of tracking error
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Figure 5: Disturbances approximated by EDOB

Figure 6: Control inputs of EDOB-SMC
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Figure 7: Control inputs of ISMC

6.2. Trajectory tracking in presence of external disturbances

In the second case performance comparison of the two controllers EDOB-
SMC (45), ST-SMC (74), (80) and the I-SMC (84), ST-SMC (74), (80) is
done in presence of external wind disturbances. The external wind disturbances(
DB
w
= [dw1 dw2 dw3]T

)
acting on the helicopter are given as

DB
w =



[
0; 0; 0

]T for t < 13,



−0.3sin
(
π

2
(t −1)

)

−0.2sin
(
π

2
(t −1)

)

0


for 13 ¬ t < 33,

[
0; 0; 0.2sin

(
π

2
(t −1)

)]T

for 33 ¬ t < 45,

[
0; 0; 0

]T for t ­ 45.

(91)

The reference fight path to be tracked, all initial states of the helicopter system
(1) and parameters of the controllers are same as in case1. The simulation results
in case 2 are given in Figs. 8–13. Fig. 8 shows results of the velocity tracking and



SLIDING MODE TRACKING CONTROL FOR UNMANNED HELICOPTER
USING EXTENDED DISTURBANCE OBSERVER 193

Figure 8: Velocity tracking responses expressed in body coordinate system

Figure 9: Response curves of orientation angles
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Figure 10: Response curves of tracking error

Figure 11: Disturbances approximated by EDOB
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Figure 12: Control inputs of EDOB-SMC

Figure 13: Control inputs of ISMC
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Fig. 9 shows response curves of the Euler angles. The velocity and yaw tracking
error are given in Fig. 10. The disturbances estimated by EDOB are given in
Fig. 11 and it is a measure of the total model mismatch and external disturbances
acting on log-lat subsystem during the flight. It is clear that EDOB-SMC has better
capabilities to handle model mismatch and external disturbances and EDOB-SMC
has higher accuracy and better tracking performance than ISMC. Figs. 12 and 13
shows the control inputs chattering are within reasonable range.

7. Conclusion

This paper presents a robust control technique for small-scale unmanned
helicopters to track predefined velocities and heading trajectories in the presence
of bounded external disturbances by taking advantage of the decoupled dynamics
(longitudinal-lateral and heading-heave) of the helicopter. Separate controllers
are designed for the longitudinal-lateral and heading-heave subsystem of the
helicopter. The external disturbances and model mismatch in the longitudinal-
lateral subsystem are estimated as lumped disturbances using EDOB. EDOB-
SMC is designed for the longitudinal-lateral subsystem to counter the effect of
these disturbances while a Second order sliding mode controller is designed for
the heading-heave subsystem. The closed-loop asymptotic stability of the system
is proved using the Lyapunov stability analysis and finally, the effectiveness of
the proposed controller is shown by simulation results.
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