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Abstract. In a series of recent papers we have shown how the continuum mechanics can be extended to nano-scale by sup-
plementing the equations of elasticity for the bulk material with the generalised Young-Laplace equations of surface elasticity.
This review paper begins with the generalised Young-Laplace equations. It then generalises the classical Eshelby formalism
to nano-inhomogeneities; the Eshelby tensor now depends on the size of the inhomogeneity and the location of the material
point in it. The generalized Eshelby formalism for nano-inhomogeneities is then used to calculate the strain fields in quantum
dot (QD) structures. This is followed by generalisation of the micro-mechanical framework for determining the effective elastic
properties of heterogeneous solids containing nano-inhomogeneities. It is shown that the elastic constants of nanochannel-array
materials with a large surface area can be made to exceed those of the non-porous matrices through pore surface modification
or coating. Finally, the scaling laws governing the properties of nano-structured materials are given.
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1. Introduction

For nano-structured [1] and nanochannel-array materials
[2,3] with a large ratio of the surface/interface to the
bulk, the surface/interface stress effect can be substan-
tial. Thus, materials such as thin films, nanowires and
nanotubes may exhibit exceptional properties not noticed
at the macro-scale. As small devices and nanostructures
are all pervasive, and the elastic constants of materials
are a fundamental physical property, it is important to
understand and predict the size-effect in mechanical prop-
erties of materials at the nano-scale. Many attempts have
been made recently to reveal the influence of surface elas-
ticity on the elastic properties of nanobeams, nanowires,
nanoplates, and the results showed that the elastic moduli
of monolithic and heterogeneous materials vary with their
characteristic size due to the surface stress effect [4-9].

In this paper, we shall summarize the recent results
of the authors on the surface/interface stress effects on
the mechanics of nano-heterogeneous materials. These
results include the Eshelby formalism for spherical nano-
inhomogeneities and its application, the fundamental mi-
cromechanical framework for the prediction of the ef-
fective elastic moduli of heterogeneous materials, and
the novel effective elastic constants of nanochannel-array
materials obtained by manipulation of their surface prop-
erties. Moreover, the scaling laws governing the properties
of nano-structured materials are given.

*e-mail: karihaloob@cf.ac.uk

2. Eshelby formalism with surface/interface
stress effects

2.1. Basic equations. The basic equations for solving
boundary-value problems of elasticity consist of the fol-
lowing conventional equilibrium equations, constitutive
equations, and strain-displacement relations for the ma-
trix and the inhomogeneity:

V-ob=0, oF =CF.eF, eb = (V®Uk+uk®V)

(1)
where o%, u* and €* denote the stresses, displacements
and strains in Q; (inhomogeneity) and ,, (matrix), re-
spectively. CF are the elastic moduli of €; and €,,. In
what follows, as we will study both spherical inhomo-
geneities and cylindrical fibres, we will use the super- and
sub-script k = p for the former, k = f for the latter, with
k = m denoting the matrix. Equations (1) have to be sup-
plemented by the surface/interface elasticity equations to
complete the mathematical description of the problem.

DN —

k

Surface/interface stress can be defined in various ways,
for example, the surface/interface excess of bulk stress
[10]. An extra group of basic equations is needed in addi-
tion to those of classical elasticity. To derive these, con-
sider a system consisting of two solids ; and 2, with
different material properties. By considering the equilib-
rium of a general curved interface I' with unit normal
vector n between the two materials Q7 and €, (in subse-
quent Sections, 27 and €, will denote an inhomogeneity
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and matrix, respectively), the equilibrium equations of the
interface can be obtained [11,12]

[6] n=-Vg- T (2)

where [0] = 0! — 6™, o/ and o™ are the volume stress

tensors in ; and €,,, respectively, Vg - T denotes the in-
terface divergence of the interface stress tensor 7 at I' [11].
Equation (2) is the generalized Young-Laplace equation
for solids. It can be derived in various ways, for example,
by the principle of virtual work. For a curved interface '
with two orthogonal unit base vectors e; and e, in the
tangent plane and a unit vector n perpendicular to the
interface, Vg - T can be expressed as follows |7]:

hihy

ohq Ohy
Ty — —=T
Dy " e,

©2 {—8]“7'11 + Lhﬂm) + %7'21 + 8(h17-22)]
h1h2 (90[2 (90[1 60[1 80[2
3)
where o7 and as denote the two parameters defining the
interface such that a; = constant and as = constant give
two sets of mutually orthogonal curves on I', and h; and
ho are the corresponding metric coefficients. Ry and Rs
are the radii of the principal curvatures, and 711, 722 and
T12 are the components of the interface stress tensor 7.
As can be seen from equation (3), the first term on the
right hand side corresponds to the classical Young-Laplace
equation; the remaining terms signify that a non-uniform
distribution of the interface stress or a uniform interface
stress on a surface with varying curvature needs to be
balanced by a bulk shear stress in the abutting materials.
Besides the generalized Young-Laplace equation (2),
we need interface constitutive equation to solve a
boundary-value problem with the interface stress effect.
For an elastically isotropic surface/interface, these are [11]

T = 2u5€s + As(tres)1 (4)

where \s and p; are the surface/interface elastic moduli,
and 1 is the second-order unit tensor in a two-dimensional
space.

2.2. Eshelby formalism. The Eshelby tensors [13,14]
for inclusions/inhomogeneities are fundamental to the so-
lution of many problems in materials science, solid state
physics and mechanics of composites. Here, we present the
tensors for the spherical inhomogeneity problem with the
interface stress effect. If an inhomogeneous inclusion, i.e.
an inhomogeneity embedded in an alien infinite medium
is given a uniform eigenstrain, the Eshelby tensors S*(x)
(k = I,m) relate the total strains €*(x) in the inhomo-
geneity (k = I), denoted by Q7, and the matrix (k = m),
denoted by €2,,, to the prescribed uniform eigenstrain &*
in the inhomogeneity

ef(x)=S*x):e* (k=1I,m), Vxe€Q+Q, (5
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where x is the position vector. On the other hand, the
interior and exterior stress concentration tensors T*(x)
(k = I, m) relate the total stresses o (x) in the two phases
to the prescribed uniform remote stress o

of(x)=TFx): 0% (k=1I,m), Vxe€Qr+ Q. (6)

The Eshelby and stress concentration tensors in the two
phases are transversely isotropic with any of the radii be-
ing an axis of symmetry. However, it should be noted that
unlike the classical counterparts for an ellipsoidal inhomo-
geneity without the interface stress, the interior Eshelby
and stress concentration tensors with the interface stress
are generally position-dependent. In the Walpole notation
[15] for transversely isotropic tensors, the Eshelby tensor
S*(r) can be expressed as [7]

S5(r) = §*(r)E (7)

in which

S®(r) = [St(r) S5(r) S§(r) Si(r) SE(r) S§(r)] (8)
E=[E' E? E}® E' E° EY| 9)
where r(r = rn) is the position vector of the material
point at which the Eshelby tensor is being calculated.
n = n;e; is the unit vector along the radius passing
through this point, and r is the distance from this point
to the origin (the centre of the spherical inhomogeneity).
n; are the direction cosines of r and i = 1,2, 3 denote x—,
y— and z—directions, respectively. S’;(r) (¢=1,2,...,6) are
functions of r, and E” (p= 1,2,..., 6) are the six elemen-
tary tensors introduced by Walpole [15]. The stress con-
centration tensors for the spherical inhomogeneity with
the interface stress effect can be expressed as [7]
Th(r) = T(r) B

(k=1I,m) (10)

in which
Th(r) = [TH(r) THG) TE(r) THG) TE(r) TER)].
(11)

The detailed procedure for obtaining these formulas
and the expressions of S*(r) and T*(r) can be found in
the paper of Duan et al. [7].

The Eshelby tensor in the inhomogeneous inclusion
(and in the matrix) is size-dependent through the two
non-dimensional parameters &}, = [,,/R and u} = [,/R,
R is the radius of the inhomogeneous inclusion, and
lp, = Ks/pm and [, = pis/pm are two intrinsic lengths
scales. It is found that the interior Eshelby tensor is, in
general, not uniform for an inhomogeneous inclusion with
the interface stress effect; it is a quadratic function of the
position coordinates. The solution without the interface
stress effect can be obtained by setting ks = 0 and s = 0,
or letting R — oo. The interior Eshelby tensor is con-
stant in this case. Under dilatational eigenstrain e*=¢°I,
the total strain in the inhomogeneous inclusion is given
by e/=e%ST:1. It can be verified that S’:I is a constant
tensor even in the presence of the interface stress effect
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and thus the stress field in the inhomogeneous inclusion
is uniform, confirming the result of Sharma et al. [16] for
a dilatational eigenstrain.

2.3. Application: strain distributions in quantum
dots. The behaviour of the electronic devices made of
alloyed quantum dots (QDs) or QDs with a multi-shell
structure (e.g., InyGaj_yAs, CdTe,Se;_x, ZnS/CdSe,
CdS/HgS/CdS/HgS/CdS) is strongly affected by their en-
riched but nonuniform composition. It has been demon-
strated that the assessment of the composition profiles
and strains is important to both the identification of the
dominant growth mechanisms and the modelling of the
confining potential of quantum dots [17-21]. In the fol-
lowing, by assuming that the lattice constants or the ther-
mal expansion coefficients of alloyed QDs obey Vegard’s
law [22], we will analyze the strain distribution in and
around the alloyed QDs. Moreover, the critical sizes of
dislocation-free QDs will be determined.

To reveal the profound effect of a nonuniform compo-
sition on the stress state of a QD, consider, for simplicity,
a spherical alloyed QD embedded in an infinite matrix.
The analytical method is equally applicable to QDs of
other shapes, sizes, and composition profiles. We assume
that the nonuniform composition of the QD is spherically
symmetric, i.e. it is a function of the radial coordinate r
only. Therefore, the misfit eigenstrains e*(r) induced by
the mismatch of the lattice constants or thermal expan-
sion coefficients can be expressed as [21]

e*(r) =¢er.(re, @e, +epp(r)(eg @ ep + e, ®e,) (12)

where e, eg and e, are the local unit base vectors in
the spherical coordinate system, and €,.(r) and €},(r) are
the misfit strains in the radial and tangential directions,
respectively. According to Vegard’s law [22], the misfit
strains induced by the mismatch in the lattice constants
and those by the mismatch in the thermal expansion coef-
ficients are [20], respectively, e.(r) = ¢, (r)ek,, €ho(r) =
¢o(r)Egs €5r(1) = Cr(F)eingn Sip(r) = Colr)elyg where
e 0(= (ain — ez)/aez) and €7,,0(= (in — Qex)AT) are
the misfit strains arising from the different lattice con-
stants and the thermal expansion coefficients between dif-
ferent uniform phases respectively, a;n, Ge; and oyn, ey
are the lattice constants and the thermal expansion coeffi-
cients of the interior and exterior phases, respectively, and
AT is the temperature difference. ¢, and cg are the frac-
tions of the ingredient at the location r in the radial and
tangential directions, respectively. If ¢, = 1 and ¢y = 1,
Eq. (12) reduces to that for a uniform composition.

We assume that the elastic constants of the alloyed
QD are uniform, and have the same values as the sur-
rounding isotropic matrix [23]. This is a reasonable as-
sumption because the alloyed semiconductor QDs usually
contain compounds (e.g., InAs/GaAs, CdTe/CdSe) with
nearly identical elastic constants, and it has been vali-
dated by comparing isotropic and anisotropic solutions
for semiconductor materials [23]. We begin with the eigen-
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displacement vector u* in the free-standing QD. Accord-
ing to the theory of infinitesimal elasticity, the governing
equation to obtain u* is

Cijrt (Ui 15— €r1j) =0 (13)

where the eigenstrains £};(x) are given in Eq. (12), and
Cijr1 is the elastic modulus tensor of QD. When the varia-
tions of ¢y(r) and ¢, (r) are known, the only non-vanishing
component of the displacement vector u*, viz. u}(r) can
be easily determined by Egs. (12) and (13).

For the considered alloyed spherical QD, the only non-
vanishing equation of compatibility of misfit eigenstrains
e, and ej, represented in Eq. (12) reduces to an equa-
tion relating the radial and tangential alloy composition
profiles

Oco(T)
or

Eq. (14) is identically satisfied when the composition is
uniform, but it imposes restrictions on ¢, and ¢y when
the composition is nonuniform. The strain fields induced
by nonuniform composition profiles that meet Eq. (14) are
vastly different from those induced by profiles that violate
this condition, howsoever slightly. Thus, the compatibil-
ity condition (Eq. (14)) provides a theoretical basis for
designing the composition profile of an alloyed QD and
for estimating its lattice deformation.

Without loss of generality, we consider following two
cases of linear composition: Case I: compatible composi-
tion profile satisfying Eq. (14), e.g., co(r) = ko + k17 /7 co,
cr(r) = ko + 2k17/rco, where kg and k1 are two constants
and 7., is the radius of the QD; Case II: composition pro-
file not satisfying Eq. (14), co(r) = ¢ (r) = ko + k17 /7co.
The expressions of the elastic strain in the alloyed QD
and the uniform matrix due to the misfit eigenstrains for
Cases I and II can be found in the papers of Duan et al.
[20,21]. Tt is found that, the strain field in the alloyed QD
is uniform irrespective of the composition profile provided
the nonuniform misfit eigenstrains satisfy the compatibil-
ity equation, but not otherwise.

In the following, we will calculate the critical radius of
the spherical alloyed QD at which the nucleation of a mis-
fit prismatic dislocation (MD) loop becomes energetically
favourable. We will again study the effect of the compati-
bility of misfit strains. The condition for the nucleation of
an MD loop is Ep, + Wy, < 0 [21], where E, is the elastic
energy of the prismatic dislocation loop and Wiy, is the
interaction energy between it and the QD. According to
the condition for the nucleation of an MD loop just men-
tioned, the critical radii R.; (for Case A) and R.;; ( for
Case B) are

r +co(r) = e (r), (14)

RcO RCO
(ko + k1)’ (ko + 0.75k1)

where R,y is the critical radius of a spherical QD un-
der uniform hydrostatic eigenstrain ¢}, [21,24]. It can be
seen from Eq. (15) that Re;/Rerr =1 —0.25k1/ (ko + k1).
It is evident that, kg > 0, kg + k1 > 0. Generally, for

R = Rerr = (15)
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the “self-capping" alloyed QD (e.g., InyGaj_xAs on GaAs
substrate), the core is enriched in In whereas the out-
ermost layer becomes progressively depleted in In [25].
Therefore, in the composition profile chosen here, k1 < 0.
The numerical results show that dislocation nucleation is
more difficult in a compositionally nonuniform QD than in
a uniform one (cf., R../Rco > 1 in both situations). How-
ever, it is even more difficult when the compatibility equa-
tion is satisfied than when it is not (R.;/Reo > Rerr/Reo
for k1 < 0) [21].

3. Micromechanical framework with
surface/interface stress effects

3.1. Micromechanical framework. Consider a repre-
sentative volume element (RVE) consisting of a two-phase
medium occupying a volume V with external boundary
S, and let V; and V,, denote the volumes of the two
phases ; and €Q,,. The interface stress effect is taken
into account at the interface I with outward unit nor-
mal n between Q; and €,,. The composite is assumed
to be statistically homogeneous with the inhomogeneity
moduli C' (compliance tensor D’ ) and matrix moduli
C™(compliance tensor D). f and 1 — f denote the vol-
ume fractions of the inhomogeneity and matrix, respec-
tively.

Under homogeneous displacement boundary condition
u(S) = €° - x, define a strain concentration tensor R in
the inhomogeneity and a strain concentration tensor T at
the interface such that [26]

el=R:e&

1
— [ (o] m)®@xdl' =C™: T : &
Vi Jr

(16)

Then the effective stiffness tensor C of the composite
is given by

C=C"+f[C'-C"]:R+fC™: T. (17)

Under the homogeneous traction boundary condition
3(S) = oY - N, define two stress concentration tensors
U (in the inhomogeneity) and W (at the interface) by
the relations [26]

6!'=U:0"
1
/ (o] -m)®@xdl = W : a".
Vi Jr
Then the effective compliance tensor D of the composite
is given by

D=D"+f[D'-D"]:U- fD": W. (19)

Equations (16) and (19) can be used to calculate the
effective moduli of composites by using the dilute con-
centration approximation and generalized self-consistent
method (GSCM) [27], once R, T, U and W have been
obtained. Duan et al. [26] have also given formulas to be
used together with the Mori-Tanaka method (MTM) [28]
to calculate the effective moduli. These are not repro-
duced here.

(18)
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Fig. 2. Effective shear modulus as a function of void radius
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Using the above schemes and the composite spheres
assemblage model (CSA) [29], Duan et al.[26] gave de-
tailed expressions for effective bulk and shear moduli of
composites containing spherical inhomogeneities with the
interface stress effect. They found that, like the classical
case without the interface stress effect, the CSA , MTM
and GSCM give the same prediction of the effective bulk
modulus for a given composite, but unlike the classical re-
sults, these effective moduli depend on the size of the in-
homogeneities. Like the Eshelby and the stress concentra-
tions tensors in the preceding section, the effective moduli
are functions of the two intrinsic length scales l,, = K/ pim
and [, = ps/pm. Duan et al. [26] calculated the effective
moduli of aluminium containing spherical nano-voids us-
ing the free-surface properties obtained by molecular dy-
namic simulations [4]. Two sets of surface moduli are used,
namely, A: ks = —5.457 N/m , pus = —6.2178 N/m for
surface [1 0 0]; B: k5 = 12.932 N/m, ps = —0.3755 N/m
for surface [1 1 1]. The normalized bulk modulus &/, for
different surface properties as a function of the void radius
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R is plotted in Fig. 1, and the variation of ji/u. (calcu-
lated by generalized self-consistent method (GSCM)) is
plotted in Fig. 2, where “A” and “B” denote the two sets
of surface properties, respectively, and “C” the classical
result. k. and p. represent the classical results without
the surface effect. It is found that the surface stress ef-
fect has a significant effect on the effective bulk and shear
moduli, especially when nano-voids are less than 10 nm in
radius. The surface stress effect becomes negligible when
the radius is larger than 50 nm.

3.2. Elastic moduli of nanochannel-array materi-
als. Nanochannel-array materials have been extensively
used in nanotechnology. They can be used as filters and
in catalytic convertors, as well as templates for nanosized
magnetic, electronic, and optoelectronic devices [2,3,30].
As these materials possess a large surface area, pore sur-
faces can be modified to create nanoporous materials that
are very stiff and light and have very low thermal con-
ductivity. One important immediate application of these
materials is as cores in sandwich construction.

Duan et al. [31] have calculated the effective elastic
constants of nanochannel-array materials containing ran-
domly or hexagonally distributed but aligned cylindrical
pores. Here, we only discuss the effective transverse in-
plane modulus k. and longitudinal shear modulus ..

If the matrix and the surface of the cylindrical pores
are both isotropic, k. is given by [31]

(1= 2vm) 20 = f) + (L + f = 2fvim) Al
20+ f—2vp)+ (1= f)(1 —2v,,)A

where A=(\s+2us)/(potim) is a mixed parameter related
to the surface elastic properties and the radius pg of the
pores, f is the porosity, and k., t;, and vy, are the plane-
strain bulk modulus, shear modulus and Poisson ratio of
the matrix. A becomes vanishingly small when the sur-
face stress effect is negligible, e.g. when the pore radius
po becomes large. Eq. (20) then gives the effective bulk
modulus of a conventional cellular material that is always
smaller than k,,. However, it is clear from Eq. (20) that
if A exceeds a critical value A.,, the elastic modulus of a
nano-cellular material will exceed that of the matrix mate-
rial! This critical value A, is independent of the porosity
and is simply

ke =k

(20)

2

Aer = (1—2vy)

(21)
If the Poisson ratio of the non-porous material is say
Uy —=0.3, then the critical value A, is 5, so that the com-
bined surface elastic constant Ag+2us=3pgtm. The vari-
ation in the effective transverse bulk modulus in Eq. (20)
with the porosity f and the mixed surface parameter A is
shown in Fig. 3. The light shaded area represents the re-
gion where k./k < 1 and the dark shaded area the region
where k./k > 1.

The effective longitudinal shear modulus ur. of the
nano-cellular material, which determines its resistance to
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shearing along the direction of the pores, is given by [31]
e = L= S A+ DB

1+ f+(1-f)B]

The mixed surface parameter is B=pus/(popim ). It is easy
to see that there also exists a critical value B..=1 and
when B > By, pire of the cellular material will exceed
that of the non-porous counterpart. A cellular core with

high shear modulus has a great potential in lightweight
aerospace construction.

(22)

>,

L7
2
77

(L77

o, v,

LLFALTFAALTT

L I TAIT SIS

e
I

Fig. 3. The normalized effective transverse bulk modulus of a
nano-cellular material versus the porosity f and the surface
property A

An alternative route to achieving the stiffening of a
transversely isotropic nano-cellular material is by coating
the cylindrical pore surfaces. Following the procedure in
the recent work of Wang et al. [32], it can be proved that
the effect of the surface elasticity is equivalent to that of
a thin surface layer on the pore surface, i.e.,

2/1] 1/15
(L—vr)’
Here, v; and py are the Poisson ratio and the shear mod-

ulus of the surface coating layer, respectively, and 0 is its
thickness.

As = fs = prd. (23)

Therefore, by a proper choice of the properties and
thickness of a coating layer, materials with cylindrical
nanopores can be designed to be stiffer than their non-
porous counterparts. For coated cylindrical pores, the ef-
fective elastic constants are still given by Eqs. (20) and
(22) but with different expressions for the parameters A
and B obtained from Eq. (23)

2 owm g _dm
(I=vr)po p’ po

The critical value A.,. for surface stiffening is still given
by Eq. (21), and B, is still equal to 1. If we let v; = 0.3,

A= (24)
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0 = 1 nm and pp=10 nm, then when the shear modulus
ratio py/p exceeds 17.5, k. > k; when uy/p exceeds 10,
re > p. From the theoretical analysis mentioned above,
it can be seen that the stiffening effect can be easily ob-
tained by surface coating.

The above procedures to increase the stiffness of the
nanoporous materials can find applications in many areas
of industry. For example, sandwich panels used in many
industrial applications contain cellular cores, e.g., honey-
combs, with pores aligned perpendicular to the facets [33].
The shear rigidity of such panels and therefore their resis-
tance to shape change are determined by the effective lon-
gitudinal shear modulus in Eq. (22) of the cellular cores.
Thus, a cellular core with a high shear modulus has great
potential in the fabrication of lightweight sandwich struc-
tures which are vital for aerospace engineering and other
transport industries. Although the microstructures of the
nanoporous materials are not exactly the same as those of
the conventional honeycombs, the analysis reported above
can be regarded as a first step towards increasing the stiff-
ness of porous materials by surface modification.

4. Scaling laws for properties
of nano-structured materials

The study of the variation of the properties of materi-
als with their geometrical feature size has a long history
because of its importance in many fields [34,35]. Sur-
face/interface stress has a profound effect on the proper-
ties of nano-structured and heterogeneous materials due
to the large ratio of surface/interface atoms to the bulk.
The properties of the nano-structured materials are af-
fected by the energy competition between the surface and
bulk, and a common feature of many physical properties
is that when the characteristic size of the object is very
large, the physical property under consideration tends to
that of the bulk material.

For the nano-structured materials, the elasticity of an
isotropic surface is characterized by two surface elastic
constants As and ps [16,36], giving rise to two intrinsic
length scales [x=\s/E and [,=ps/E [7,26]. It has been
shown that the size-dependence of non-dimensional me-
chanical properties associated with the deformation prob-
lems of heterogeneous nano-solids can be expected to fol-
low a scaling law with an intrinsic length scale which is a
linear combination of these two scales [37]:

H(L)

1
=14+ *(O&,Ql)\ + ,Bulu).

o) 17T (25)

Here, a,, and (3, are two non-dimensional parameters,
H(L) is the property corresponding to a characteristic
size L at nano-scale, and H(oo) denotes the same prop-
erty when L— oo or, equivalently, when the surface stress
effect is vanishingly small. The scaling law (25) is appli-
cable to a wide variety of properties, e.g., the maximum
stress concentration factor at the boundary of a circular
nano-pore in a plate under uniaxial tension, the effective
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elastic moduli of the nanochannel-array material, and the
Eshelby tensor of a spherical inhomogeneity [37]. For ex-
ample, the scaling law of the maximum stress concentra-
tion factor k(p) at the boundary of a circular nano-pore
of radius p in a plate under uniaxial tension is

Ko) _ | Tlx+2)

k(co) 3p
where k(oco) =3 is the classical elasticity result. We com-
pare the exact results with the scaling law in Eq. (26),
and the results are shown in Fig. 4, where “A" and “B"
denote the two sets of surface property parameters given
in Section 3.1, and the material of the plate is aluminium.
It is seen that the scaling law is very accurate.

: (26)

—— A, exact

A, scaling law

~~~~~~~~~~~ B, exact
T - - - B, scaling law
=
~
=
~ _"_"_"_"_"_":"____'_':"__;':"__;'__—"—_—-"—_;:45'—5
7
n
08 L 1 L 1 L 1 L 1 L 1 L
1 5 10 15 20 25 30

p

Fig. 4. Comparison of the scaling law and the exact result

of the maximum stress concentration factor k(p)/k(oo) at the

boundary of a circular nano-pore of radius p in a plate (alu-
minium) under uniaxial tension

As mentioned above, the surface/interface stress has
a great effect on the elastic property of nano-structured
materials, and this effect can be characterized by the in-
terface stress model (ISM) (Egs. (2) and (4)), i.e., the
displacement is continuous, but the stress is discontinu-
ous across the interface. Apart from the interface stress
model, linear spring model (LSM) has been extensively
used in simulating the interface property of the heteroge-
neous materials. In the LSM, it is assumed that the nor-
mal and tangential interface displacement discontinuities
are each proportional to their associated traction com-
ponents [37,38,39,40] gave a simple scaling law governing
the effective elastic moduli of a two-phase heterogeneous
material containing spherical particles or cylindrical fibres
with LSM interfaces,

Ty =1 a4 )
where [, and [y are two intrinsic lengths, and «,. and Gy
are two non-dimensional parameters.

For the thermal conductivity of the heterogeneous
materials, there are two extensively used interface mod-
els, namely, high conducting (HC) interface model and

(27)
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low conducting (LC) interface model [41]. It has been
demonstrated that the effective thermal conductivity of
a two-phase heterogeneous material with HC-type inter-
face can be accurately expressed by a scaling law similar
to Eq. (25), and that with LC-type interface by a scaling
law similar to Eq. (27) It is interesting to point out that
as the interface properties simulated by the two types of
interface model (ISM/HC and LSM/LC) have opposite
physical interpretations, the corresponding scaling laws,
Egs. (25) and (27) also depict a formal mathematical reci-
procity.

5. Conclusions

This paper summarizes the recent results of some funda-
mental problems in mechanics of heterogeneous materials
where the surface/interface stress is taken into account,
thus extending the continuum mechanics to the nano-
scale. These include the Eshelby tensors, stress concen-
tration tensors and their applications, the micromechani-
cal framework, the novel properties of nanochannel-array
materials, and the generalized Levin’s formula and Hill’s
connections. These results show that the surface/interface
stress has an important effect on the mechanical prop-
erties of materials at the nano-scale. When the sur-
face/interface elasticity is taken into account, some length
scales emerge automatically. Thus, unlike their classical
counterparts, the mechanical properties at the nano-scale
become, as expected, size-dependent. The scaling laws
governing the properties of nano-structured materials are
given.
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