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Abstract. The paper deals with circuits, composed of bipolar transistors, diodes, resistors and independent voltage sources, having
multiple DC solutions. An algorithm for tracing temperature characteristics, expressing the output signal in terms of the chip tempe-
rature, is developed. It is based on the efficient method for finding all the DC solutions sketched in this paper. The algorithm gives
complete characteristics which are multivalued and usually composed of disconnected branches. On the other hand the characteristics
provided by SPICE are fragmentary, lose some branches or exhibit apparent hysteresis.
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1. Introduction

Many nonlinear dynamic circuits, driven by DC sources,
have multiple equilibrium points, which can be reached at
different initial states. To determine the equilibrium points
we short circuit all the inductors and open circuit all the
capacitors, obtaining a resistive circuit. The equilibrium
points are the DC solutions (operating points) of this circuit.
Finding efficiently all the solutions is a difficult and still
open question. In the past two decades numerous results
have been derived, mainly based on piecewise-linear
approximation, e.g. [1]-[6]. Unfortunately, only a few
methods can be applied to circuits described by original
nonlinear equations, e.g. [7]-[11]. They are able to analyze
rather small-scale circuits.

This paper offers a method for finding all the DC
solutions of diode-transistor circuits, without any piecewise-
linear approximation. It improves some earlier ideas and
employs new procedures. The method has a key role in the
proposed algorithm for computing characteristics which
express an output signal y (voltage or current) in terms of
temperature T, y = F(T). The characteristics of diode-
transistor circuits having multiple DC solutions are
multivalued and usually composed of disconnected branches.
Using the approach developed in this paper the complete
characteristics are computed under the assumption that all
elements of the chip are at the same temperature, which
varies in a prescribed range [T-, T+]. On the other hand the
characteristics provided by PSPICE are fragmentary, lose
some branches or exhibit apparent hysteresis.

Let us consider a chip containing linear resistors, diodes
and bipolar transistors, driven by DC voltage sources. The
transistors are represented by the Ebers-Moll model with
the parameters depending on temperature T. Also small
resistors RE, RC, RB are included in the model.

At any fixed temperature TÎ[T-,T+] the circuit can be
described by the Sandberg-Willson equation [12]

       G (T) f (v, T) + G (T) v � h (T)=0, (1)

where        is a vector of BE and BC voltages
of the transistors and voltages across the individual diodes;

        , where f
j
(v

j 
,T), are the

currents flowing through all the BE and BC diodes included
in the Ebers-Moll model and the individual diodes. The
currents are specified by the equations [13]:
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( )= SCBC TIi                         ,
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In the above equations

[ ]T
1 nvv ⋅⋅⋅=v

( ) ( ) ( )[ ]T
11 T,vfT,vfT, nn⋅⋅⋅=vf
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In the above equations 0T  is the nominal temperature
(300 K), 0I  is the saturation current at the nominal
temperature, η  is the emission coefficient, q is the electron
charge, gE  is the energy gap, iT  is the saturation current
temperature exponent,
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where βT  is the user-supplied model parameter, 0Fβ is the
ideal maximum forward beta at 0T , 0Rβ is the ideal

maximum reverse beta at 0T .

( )TÃ  is a block-diagonal matrix composed of the blocks
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corresponding to the transistors and the unit submatrix

corresponding to the individual diodes, ( ) ( )[ ]
nn

TGT ij ×
=G

is the admittance matrix and ( ) ( ) ( )[ ]T
1 ThThT nK=h is the

source vector of a linear n-port created after extracting
from the circuit all the transistors and diodes. The elements
of matrix G(T) depend on the linear resistors, whereas the
components of vector h(T) depend on the linear resistors
and voltage sources. The resistances of the linear resistors
inside the chip are temperature varying according to the
equation

( ) ( ) ( )( )2
000 21

1 TTTTTTRTR CC −+−+=

where Ro is the resistance at To, Tc1 (Tc2) is the first order
(second order) temperature coefficient.

Since ( )TÃ  is nonsingular matrix, Eq. (1) can be

rearranged as follows

( ) ( ) ( ) 0=−+ TTT, bvAvf (2)

where ( ) ( )[ ] ( )TTT GÃA 1−= , ( ) ( )[ ] ( )TTT hÃb 1−= .

To trace temperature characteristic ( )TFy =  for

[ ]+−∈ T,TT , where y is an output signal (a voltage or

current), we write equation expressing the output signal

in terms of voltages  nv,,v K1  and the voltage sources acting

in the circuit
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and apply the algorithm sketched in Section 2. Since we
analyze circuits having multiple DC solutions, the

temperature characteristics are multivalued and usually
composed of disconnected branches.

2. Tracing temperature characteristics

A crucial point of the algorithm for tracing temperature
characteristics proposed in this section is based on a method
for finding all the DC solutions at a fixed temperature.

The method is used for computing all the solutions at T=T–

They enable us to find the initial points of the characteristic
branches using (3). Next we compute the subsequent points
of each of the branches increasing the temperature by a
small increment DT and solving equation (1) applying the
Newton-Raphson algorithm. An appropriate procedure has
been developed to overcome the turning-point problem. To
guarantee finding all the branches we compute additionally
all the solutions at T=T+ and, if it is necessary trace some
branches of the characteristic starting with these solutions
and decreasing temperature.

Thus, a key point of the algorithm is a method for
finding all the DC solutions at a fixed temperature. In such
a case equation (2), describing the circuit, reduces to

( ) 0=−+ bAvvf (4)

where [ ]T
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n,,i ⋅⋅⋅=1 , are the currents flowing through all the diodes.

Since Ki is a very small number, typically A10 14−=iK ,

function ( )ii vf  is approximately equal to zero for iv  smaller

than some positive threshold voltage .w  If we choose
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A method for finding all the solutions to Eq. (4) is
sketched underneath.

We wish to find all the solutions to Eq. (4) which satisfy

the constraints: EvE i ≤≤− , ,Ii ii ≤≤0  ,n,,i L1=
where E is the sum of all voltage sources acting in the

circuit, whereas iI  is the forward burnout current of i-th

diode. Hence, taking into account Eq. (5) we obtain
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To find all the solutions we apply the idea of successive
contraction, division, and elimination [4].

The crucial point of this approach is a contraction
method described in detail in [4]. The main idea of this
method is as follows.

Let us consider an arbitrary region

[ ] [ ] [ ]nn u,lu,l ××= L11ul, , .uvl iii ≤≤

We frame each characteristic ( )ii vf  for [ ]iii u,lv ∈

n,,i L1= , using two parallel straight lines, as it is
illustrated in Fig. 1. Having determined all the slopes

ns,,s L1  and all the offsets ++−−
nn c,,c,c,,c LL 11 , we form the

matrix

( )ns,,s L1diag=M (6)

and vectors [ ]T1
−−− = ncc Lc , [ ]T1

+++ = ncc Lc .

Let v*be an arbitrary solution of equation (4) belonging

to the region [ ]ul, . Any component *
iv of *v  be considered

as a point which lies on the straight line iiii cvsy += ,

where

+− ≤≤ iii ccc . Hence, the linear equation

0=−++ bAvcMv ** (7)

arises, where components  ic  ( )n,,i L1=  of vector c

are unknown, but the bounds +−
ii c,c  on them are given.

Solving equation (7) for v* we find
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contraction is continued, leading to regions

[ ] [ ] L,, 3322 ulul ,, .

If at any stage of the contraction process the lower
bound overlaps the upper bound, for at least one

component, i.e. µµ
kk ul >  for some µ and k, then we conclude

that the region [ ]ul,  contains no solution. In such a case

this region is discarded.
To improve this method we take into account matrix

equation (4), consisting of n scalar equations having the
form
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Consider a region [ ] [ ] [ ]nn u,lu,l ××= L11ul, ,
( )n,,i,uvl iii L1=≤≤  and select a subset  X– of the set of
equations (9) for which wui ≤  (or wvi ≤ ). Without any
loss of generality we assume that X– consists of the first m
equations of set (9). Consequently, the equations

( ) ( ) 0011 == mm vf,,vf L  hold. In such a case equation (4)
can be rearranged to give
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are submatrices of A, [ ]T
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By pivoting in succession on the diagonal elements of
matrix A1 we rearrange equations (10) to

1221 bvAv ˆˆ =+ , (11)

( ) 22422 bvAvf ˆˆ =+ (12)

and apply the contraction method, described above.
The form of equations (11)-(12) enables us to frame only

the scalar functions of the vector representation ( )22 vf

and consequently reduce the size of matrices which are
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Fig. 1. Illustration of the contraction method
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inverted in the contraction process. Furthermore,
inverting the matrices can be efficiently carried out
using some matrix formulas.  In this  way the
contraction method is considerably improved.

The contraction procedure, after appropriate
modification, also can be applied to equation Avbi −= ,

where ( )vfi = , considering n-dimensional rectangular

regions relating to the current vector.
Some regions containing no solution can be

straight-forwardly discarded using algorithms based
on investigation of some selected scalar equations of
the representation (4) and showing that any point of
the considered region violates at least one of these
equations. Two algorithms employing this idea, called
direct algorithms, have been proposed.

The direct and contraction algorithms sketched
above have been employed in the method for finding
all the DC solutions, proposed in this paper. To find
all the solutions in a given region we use the idea of
successive contraction, division, and elimination. When
the computation process is carried out many n-
dimensional rectangular regions are considered. To
each of them we first apply the direct algorithms. If
the algorithms do not discard the region we use the
improved contraction algorithms.

The algorithm developed in this paper is an
important mathematical tool applied in the process of
tracing the temperature characteristic. It enables us
to find all values of the signal at any temperature
belonging to the prescribed range. Each branch of the
characteristic determines one of the values.

The proposed algorithm has been implemented in
Delphi and tested on several electronic circuits using
PC Pentium 4, 3 GHz.

Example 1

Figure 2 shows a circuit composed of two Schmitt’s
triggers [14]. The transistors are characterized by the
Ebers-Moll model with resistors Ù3=BR ,

Ù10== CE RR . The parameters are as follows:
fA9973260 .I = , 1

0
=Rβ v, 99

0
=Fβ , 3=iT , 51.T =β ,

eV111.Eg = . The temperature coefficients of the resistors
are: K1102 3

1

−⋅=CT , 0
2

=CT . We wish to trace the
temperature characteristic ( )TFvout =  for

[ ]C60C10 °°∈ ,T .
Using the algorithm developed in this paper, with

C10 °= .T∆  we compute the characteristic shown in Fig. 3.
It is composed of four disconnected branches, with two of
them located very close one to another, hence, they cannot
be distinguished in the figure.

The time consumed by the algorithm, is 1.2s. Using
PSPICE simulator we obtain a fragmentary characteristic,
containing only one branch, as shown in Fig. 4.

Example 2

Figure 5 shows a transistor circuit being a part of line
receiver SN 75122. The transistors are characterized by

the Ebers-Moll model with resistors Ù3=BR ,

Ù10== CE RR . The parameters are as follows:
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Fig. 2. Circuit composed of two Schmitt’s triggers
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Fig. 3. Temperature characteristic ( )TFvout =
 obtained using the proposed algorithm
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Fig. 4. Temperature characteristic vout=F(T)

 provided by SPICE
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fA04970 .I = , 6112
0

.R =β , 5375
0

.F =β , 3=iT , 51.T =β ,

eV111.Eg = , 1=η . The temperature coefficients of the

chip resistors are K1102 3
1

−⋅=CT , 0
2

=CT . We wish to

find the temperature characteristic ( )TFvout =  for

[ ]C50C20 °°∈ ,T in two cases: V51.vin = and V051.vin = .

We use the algorithm developed in this paper, with
C10 °= .T∆ .

Figure 6 shows the obtained characteristic for

V51.vin = . The time consumed by the algorithm is 11.5s.

The characteristic provided by SPICE is incomplete, it
contains only one branch, as it is shown in Fig. 7. The
characteristic obtained by the proposed algorithm and

SPICE, at V051.vin = , are shown in Figs. 8 and 9,

respectively. A comparison of the characteristics manifests
that SPICE gives a fragmentary characteristic. The time
consumed by the proposed algorithm is 15.3s.

3. Temperature characteristics of circuits
containing thermistors

Consider a transistor circuit, as defined in Section 2,
including additionally a thermistor. The thermistor is
considered as a resistor, connected to the chip, depending

on temperature, described by equation ( )îTRv̂ h= . Assume

that the temperature of the chip is constant, whereas the

temperature of the thermistor varies in interval [ ]+− T,T .

To describe the circuit we modify the Sandberg-Willson
equation by introducing a term depending on the
thermistor voltage

( ) 0=−++ dGvGvÃf v̂1211 , (13)

where 11G  is (nxn) matrix as in Egs. (1), 12G  is an

(nx1) matrix. Furthermore, we formulate additional
equation expressing the thermistor current in terms of v̂,
v , and independent sources acting in the circuit

v̂Gd̂î 2221 −−= vG , (14)
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Fig. 5. Diode-transistor circuit for Example 2
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Fig. 6. Temperature characteristic of the circuit shown in Fig. 5,

at V51.vin = , obtained using the proposed algorithm
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Fig. 7. Temperature characteristic of the circuit shown in Fig. 5,

at V51.vin = , provided by SPICE
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Fig. 8. Temperature characteristic of the circuit shown in Fig. 5,

at V051.vin = , obtained using the proposed algorithm
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where 21G  is a  (1xn) matrix. On the other hand
( )v̂TRî h

1−= . (15)
Rearranging equations (13)-(15), yields

( ) ( ) ( ) 0=−+ TTˆ cvAvf , (16)
where

( ) ( )( ) 




 +−=

−−−
21

1

22
1

1211
1 GGGÃA GTRTˆ

h ,

( ) ( )( ) 




 +−=

−−− d̂GTRT h

1

22
1

12
1 GdÃc .

The algorithm developed in Section 2 applied to

equation (16) enables us to find characteristic ( )TF̂y = ,

where T is the temperature of the thermistor.

Example 3

Let us consider the circuit shown in Fig. 10, including NTC
thermistor ( )TRh  [14]. The transistors are characterized
by the Ebers-Moll model with resistors: Ù3=BR ,

Ù1== CE RR , and parameters: fA04970 .I = , 1
0

=Rβ ,

99
0

=Fβ .

The chip is at fixed temperature T=270C, hence, its
parameters are constant. We wish to trace the characteristic

( )TF̂vout = , where the thermistor temperature T belongs

to the interval [100C, 1000C]. Using the algorithm developed
in Section 3, we obtain the characteristic shown in Fig. 11.
The time consumed by the algorithm is 1.6s. The
characteristic given by SPICE (ICAP 4 or PSPICE) is
presented in Fig. 12. The latter exhibits apparent
hysteresis. The method developed in this paper guarantees
finding all the DC solutions at any temperature. Figure 11

shows that for [ ]T,TT ′′′∈ there are three solutions. The

characteristic depicted in Fig. 12 gives, in this range, only
two of them.
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Fig. 9. Temperature characteristic of the circuit shown in Fig. 5,

at V051.vin = , provided by SPICE
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Fig. 10. A circuit containing thermistor ( )TRh
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Fig. 11. The characteristic ( )TF̂vout =  obtained using the

proposed algorithm
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Fig. 12. The characteristic ( )TF̂vout =  provided by SPICE
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4. Conclusions

The algorithm for tracing the temperature characteristics
of diode-transistor circuits having multiple DC solutions
is efficient. It gives complete characteristics, which are
multivalued and usually composed of disconnected
branches. The characteristics are necessary in the analysis
of the circuits, considering thermal behavior of the chip
[15]. On the other hand, the characteristics provided by
SPICE are fragmentary, lose some branches or exhibit
apparent hysteresis.

The proposed approach also can be directly applied to
circuits containing MOS transistors, characterized by the
Shichman-Hodges model. Application to short-channel
MOSFET circuits requires modification of the method for
finding all the DC solutions in circuits with constant
parameters.
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