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The recoil nature of electrostatic and gravitational forces
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Abstract. The paper explains the force induced by the electrostatic field on the electron as a recoil force. The starting point is the hypothesis

that in the dynamic equilibrium with the vacuum, the electron simultaneously absorbs and emitts energy. With no external electrostatic

field the radiation patterns of absorption and emission are assumed to be isotropic. The external electrostatic field induces anisotropy of the

emission resulting in a recoil force. The paper presents a theoretical description of this force using a model of the angular power density

pattern of the emission in the form of an ellipsoid. Calculations show that the total radiated power is extremely high. This radiation is

compared with the electromagnetic radiation of the electron on the Bohr orbit in the idealized hydrogen atom. An analogous problem for

gravitational forces is presented.

1. Introduction

This paper is a modified version of a similar paper written by

the author in 1976 [1]. We decided to write the modification

for two reasons: Firstly, the paper [1] was written in German

and printed in Kleinheubacher Berichte which has a limited

number of readers. Secondly, in recent years we observed a

better understanding of the nature of quantum vacuum as a

medium of extremely high energy density. Note, that the paper

[1] was based on ideas concerning the nature of the vacuum

presented by Vallée in [2].

2. Preleminaries

For convenience, the definitions and notations of all notions

used in this paper are presented in the Appendix 2 in Table 1.

Consider a uniform electrostatic field ~Ex = E0x̄, where x̄ is

a versor directed along the x – axis in the 3-D space R. Let

us assume that a single electron can be represented by a point

charge e. The external electrostatic field ~Ex induces a force

~Fx = e ~Ex. (1)

Let us assume that this equation holds for finite dimen-

sions of the electron. An analogous formula for a point mass

m and the gravitational field ~Gx = G0x̄ is

~Fx = m~Gx. (2)

The energy density of the electrostatic field is

EE = 0.5ε0E
2

0 (3)

where ε0 is the permittivity of the free space. The analogous

energy density of the gravitational field is

EG = −0.5γG2

0 (4)

where γ is the gravitational permittivity of the free space (see

Table 1). Note the minus sign which indicates that the ener-

gy level of the gravitational field is lower than the energy of

the zero-field vacuum. This fact has been described in [2].

A simple evidence is given is Appendix 2.

3. Energy density of the quantum vacuum

The energy density of the quantum vacuum can be derived

using the Planck’s formula

ρ (f, T ) =
8πf2

c3

[

hf

e
hf
kT − 1

+
hf

2

]

(5)

where h is the Planck constant, k – the Boltzmann constant,

T – the absolute temperature and f – the frequency of the

radiation. For T = 0 we get

ρ (f, T = 0)) =
4πhf3

c3
. (6)

The term hf/2 represents the zero-point fluctuations of

the quantum vacuum. The quantum vacuum is not empty

(void) but is a medium of extremely high energy density. The

total energy density in the frequency band from f1 to f2 is

ρ =

f2
∫

f1

ρ (f)df =
πh

c3
(

f4

2 − f4

1

)

. (7)

Examples.

1. Planck suggested that the highest frequency of the quantum

vacuum is defined by the formula

fmax = f2 =

√

c5

2hG
≃ 5.235 × 1042 [Hz]. (8)
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Table 1

Notations, definitions, values and dimensions (in SI) of selected physical quantities

Notation Name Definition Value SI Units

µ0 Permeability of free space Defined value 4π ×10−7 Hy/m

c Speed of light in free space c = 1/
√

ε0µ0 2.99792458×108 M/s

ε0 Permittivity of free space ε0 = 1/
(

µ0c2
)

8.85418781×10−12 F/m

h Planck’s constant 6.626176×10−34 Js

~ Modified Planck’s constant ~ = h/2π Js

e Elementary charge 1.6021892×10−19 C

me Rest mass of the electron 9.109514×10−31 kg

mp Rest mass of the proton 1.67262171×10−27 kg

Z0 Impedance of free space Z0 =
√

µ0/ε0 376.7303 Ω

RH Quantized Hall resistance RH = h/e2 25812.81 Ω

rB Bohr radius rB = [ε0/ (πme)] (h/e)2 5.2917721×10−11 m

α Fine structure constant α = Z0/(2RH) 7.2973506×10−3

α−1 Reciprocal of α 137.03604

λe Compton wavelength of the electron λe = h
mec

2.4263089×10−12 m

fe Compton frequency of the electron fe = c
λe

= mec2

h
1.235590×1020 Hz

fp Compton frequency of the proton fp = c
λp

=
mpc2

h
2.268676×1023 Hz

rclass. Classic radius of the electron rclass. = µ0e2

4πme
2.8179383×10−15 m

re Compton radius of the electron re = λe

4π
= h

4πmec
1.9300795×10−13 m

λp Compton wavelength of the proton λp = h
mpc

1.3214099×10−15 m

Emax The maximum possible value of the electric |Emax| = e
4πε0r2

e
3.8625×1016 V/m

fields defined by the cylindrical model of the electron = 4π
(

mec2
)

2
(

e/h2
)

µB Bohr magneton µB = eh/(4πmec) 9.274078×10−24 Am2 or JT−1

λ Gravitational permittivity of free space γ = 1

4πG
1.1927×109 kg s2/m3

G Gravitational constant Measured 6.6720×10−11 m3/kgs2

η Gravitational permeability of free space η = 16πG
c2

3.7315×10−26 m/kg

This value of f2 with f1 = 0 yields

ρmax =
πhf4

max

c3
≃ 5.8 × 10112 [J/m3]. (9)

We may assume, that this total energy density of the quantum

vacuum is infinite.

2. Consider the frequency band of visible light with f1 =
0.43 × 1015 [Hz] and f2 = 0.75 × 1015 [Hz]. We get

ρ = 22 [J/m3]

In the next two examples we calculate the value of the fre-

quency band located around the Compton frequency of the

particle which yields the energy density of the quantum vacu-

um equal to the energy density defined by the division of the

Einstein’s energy E = mc2 by the volume of the particle.

Fig. 1. The cylindrical model of the electron of reference after Ref. 2

3. The volume of the cylinder model of the electron is (see

Fig. 1) is

Ve = 2πr3e = 2π
h3

(4πmec)
3

= 2.0750× 10−39 [m3] (10)

This yields the energy density defined by the equation

ρe =
mec

2

Ve

=
32π2m4

ec
5

h3
= 1.81022× 1024 [J/m3]. (11)

In this example we insert in Eq.(7) f2 = afe and f1 = 0
getting the energy density (fe – see Table 1)

Ee =
πh

c3
a4f4

e =
πa4m4

ec
5

h3
. (12)

Equations (11) and (12) yield a4 = 4π, i.e., a ≈ 3.166. Con-

cluding, the Einstein’s energy of the electron corresponds to

the energy of the vacuum in a wide frequency band extend-

ing from zero to about 3.166×the Compton frequency of the

electron.

4. Let us present a similar calculation for the proton. We start

with a measured value of the radius of the proton rp =
0.8×10−15[m] and the mass mp = 1.6726485×10−27[kg].

Assuming a spherical model of the proton, the correspond-

ing volume is Vp = (4/3)πr3p = 2.1441×10−45 [m3]. This

yields the energy density

ρp =
mpc

2

Vp

= 7.01166× 1034 [J/m3] (13)
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In this example we insert in (7) f2 = fp(1 + a) and

f1 = fp(1 − a), where the Compton frequency of the pro-

ton is

fp =
mpc

2

h
=

c

λp

= 2.268687× 1023. (14)

We have f4
2 − f4

1 = f4
p

[

(1 + a)
4
− (1 − a)

4
]

=

8f4
p

(

a+ a3
)

. The insertion in (7) and equating with (13)

yields

8πh

c3
[

a+ a3
]

= 7.01166× 1034. (15)

We get (a+ a3) = 0.043 giving a ≈ 0.0429. We observe

that differently to the case of electron, the frequency band

around the Compton frequency of the proton yielding the Ein-

stein’s energy density is narrow and equals to ∆f = 0.0858fp.

3.1. The model of the electron used in [2] to calculate the

highest possible value of the electric field strength. The

author of [2] proposed a cylindrical model of the electron

shown in Fig. 1. The radius of the base equals to

re =
λe

4π
=

h

4πmec
= 1.938 × 10−13 [m], (16)

where λe is the Compton wave-length of the electron. The

height of the cylinder equals 2re. The author of [2] assumed,

that the elementary charge is uniformly distributed on the sur-

face S = 4πr2e of the side wall of the cylinder. We have the

relation

e = Sε0Emax (17)

where Emax is the field strength at the border of the side-wall

of the cylinder. We get

Emax =
e

ε0S
=

e

4πε0r2e
= 4πµ0f

2

e e = 3.8625× 1016[V/m].

(18)

If we apply instead of the cylinder a sphere of radius rs
and assume a uniform distribution of the charge on the surface

of this sphere, then

Emax =
e

4πε0r2s
(19)

and we get rs = re, i.e., the same as the radius of the cylin-

der. Since the energy density of the electrostatic field as a

function of the radius r of a sphere is ρE = 0.5ε0E
2 (r), the

total energy outside the sphere is

∞
∫

r0

4πr2ρ (r) dr =
e2

8πε0r0
. (20)

Let us compare this energy with kmec
2 (0 < k < 1). We get

r0 =
1

k

µ0e
2

8πme

. (21)

For k = 0.5 we get r0 = rc, where rc is the classical

radius of the electron. For a spherical model of the electron

with classic radius, the energy of the external field equals one

half of mec
2. It can be shown, that re = 1

2
α−1rc (α – fine

structure constant), i.e., the radius of the cylindrical model

proposed in [2] is about α−1/2 ≈ 68.5 times longer than the

classical radius. As well, the electric field strength at the bor-

der of the sphere of classical radius would be α−2/4 greater

with respect to Emax defined by (18). The insertion in (21)

of r0 = re yields

k = ke = α = 7.727...× 10−3. (22)

This calculation holds for the spherical model and with a

good approximation for the cylindrical model. For these mod-

els, the energy of the external electrostatic field is negligible

in comparison to the Einstein’s rest energy of the electron.

However, (16) is derived assuming, that the energy inside the

cylindrical model exactly equals mec
2.

4. The hypothesis about the recoil nature

of electrostatic forces

Let us present derivations describing the electrostatic force

(1) as a recoil force. The derivations are based on the hypoth-

esis that the electron is in a dynamic equilibrium with the

energetic medium of the quantum vacuum. It is assumed that

the electron continuously absorbs and emits radiation. In ab-

sence of any external electrostatic field, it is assumed that the

directional patterns of absorption and emission are isotrop-

ic (for the spherical model) or circularly symmetric (for the

cylindrical model). It is assumed that the external electrostatic

field induces anisotropy of the emission while the absorption

remains isotropic. In that case. the anisotropy of the emission

induces a recoil force given by the integral

∣

∣

∣

~F
∣

∣

∣
=

∣

∣

∣

∣

∣

∣

|~v|

c2

∫

4π

σΩ · ~n0dΩ

∣

∣

∣

∣

∣

∣

max

(23)

where σΩ [W/Ster] is the angular power density of the ra-

diation (power per unit solid angle), |~v| the velocity of the

radiation and ~n0 – a versor, which yields the maximum value

of the integral.

Let us investigate the case for the power density diagram given

by the ellipsoid (see Fig.2)

σΩ = σmax

1 − ε2

1 + ε cos (ϕ)
(24)

where ε is the eccentricity of the ellipsoid. If ε ≪ 1, the

derivation presented in the Appendix 1 yields

∣

∣

∣

~F
∣

∣

∣
=

|~v|

3c2
Pε, (25)

where P is the total radiated power The force (25) should be

equal to the electrostatic force e
∣

∣

∣

~E
∣

∣

∣
. This yields the following

expression for the power P
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e

∣

∣

∣

∣

⇀

E

∣

∣

∣

∣

=

∣

∣

∣

⇀
v
∣

∣

∣
Pε

3c2
→ P =

3e
∣

∣

∣

~E
∣

∣

∣
c2

|~v| ε
. (26)

Fig. 2. The rotation of the ellipse around the major x – axis defines the

ellipsoid

In the derivation in the Appendix 1 we suggested that the

eccentricity ε ≈
|~E|

|~Emax|
. Therefore, assuming [~v) = c, we get

P = 3e

∣

∣

∣

∣

⇀

Emax

∣

∣

∣

∣

c = 12πe2f2

eZ0 = 2, 2.7859×106 [W]. (27)

With no compensation of the emission by the absorption,

the electron should decay in a time

t =
mec

2

P
= 2.961× 10−20 [s]. (28)

We have shown, that the power simultaneously absorbed

and emitted in the dynamic equilibrium with the quantum

vacuum is extremely high. Note that in the presence of an

electrostatic field, the external energy density is different at

the two sides of the electron . The electron radiates more en-

ergy towards the lower energy density region w.r.t. the other

region with higher energy density. This explains the nature of

the recoil force.

5. The hypothesis about the recoil nature

of gravitational forces

Let us investigate, whether the above described nature of the

electrostatic force as a recoil force applies also for gravitation-

al forces. The attraction of two point masses corresponds the

repel of two point charges of the same sign. This difference is

caused by the fact, that the energy level of the vacuum in pres-

ence of the electrostatic field is higher than the energy level of

the zero-field vacuum, while the gravitational field lowers the

energy level of the vacuum. (see Appendix 3). However, the

application of the ellipsoid model for the directivity pattern of

the emission in the gravitational case requires the knowledge

of the eccentricity of the ellipsoid. In the electrostatic case it

was assumed that the eccentricity is ε ≈ | ~E|/| ~Emax|, where

Emax is the maximum possible value of the electrostatic field

strength postulated in [2]. The external field is always lower

than Emax, and usually ε ≪ 1. Differently, the magnitude of

eigen gravitational field at the border of the electron or any

other elementary particle is very small and may be negligible

in comparison to the magnitude of the external gravitational

field. The maximum value of the electrostatic field is defined

microscopicaaly as a field at the border of a charged particle.

Differently, the eventual maximum value of the gravitational

field is defined macroscopically, for example at the border of

a neutron star or inside a black hole. Let us have an exam-

ple with the neutron star PSR B1913 +16 (a member of a

twin star). It has the mass mPSR = 1.441× the mass of the

sun ≈ 1.97 × 1030 [kg] and a radius 20000 [m]. This yields

the immense mass density g = 8.469 × 1016 [kg/m3]. The

corresponding magnitude of the gravitational field at the sur-

face of the star is

∣

∣

∣

∣

⇀

GPSR

∣

∣

∣

∣

= 2gRP SR

3γ
= 9.49 × 1011 [m/s2].

A black hole having the mass equal to the earth-mass, should

have a mass density 2× 1030 [kg/m3] and the Schwartzschild

radius rS ≈ 9 × 10−3 [m]. This yields the gravitational field

on the surface

∣

∣

∣

∣

⇀

G

∣

∣

∣

∣

= 2grS

3γ
= 1.08 × 1019 [m/s2]. We may

assume that the eventual maximum possible value

∣

∣

∣

∣

⇀

Gmax

∣

∣

∣

∣

has

the same order. The gravitational form of the Eq.(26) takes

the form

m

∣

∣

∣

∣

⇀

G

∣

∣

∣

∣

=

∣

∣

∣

⇀
v
∣

∣

∣
Pε

3c2
→ Pε =

3m

∣

∣

∣

∣

⇀

G

∣

∣

∣

∣

c2

|~v|
. (29)

The calculation of the value of the power P would be

possible if the eccentricity ε could be calculated. Actual-

ly we have not found a method enabling the determination

of the value of ε. For a mass m = 1 [kG] located at the

earth surface we get, using

∣

∣

∣

∣

⇀

G

∣

∣

∣

∣

= 9.81 [m/s2] and

∣

∣

∣

⇀
v
∣

∣

∣
= c,

Pε ≈ 8.83×109 [W]. Of course, the power P is several order

of larger, since certainly ε ≪ 1. Note, that the power per a

single particle is 6.025× 1023 lower.

6. The radiation of the electron on the Bohr

orbit

Last time the author found in reference [3–5] a short infor-

mation, that the electron in the Bohr model of the hydrogen

atom radiates electromagnetic energy and that this energy is

simultaneously compensated by the vacuum. However, the au-

thor of [3–5] has not presented any evidence or calculations.

As well he gave not a reference to the paper [1]. Let us quote

a statement from the internet part of reference [3–5].

“There it is shown that the electron can be seen as con-

tinually radiating away its energy as predicted by classical

theory, but simultaneously absorbing a compensating amount

of energy from the ever-present sea of zero-point energy in

which the atom is immersed, and an assumed equilibrium be-

tween these two processes leads to the correct values for the
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parameters known to define the ground-state orbit”. End of

citation.

Infact, thereading of the reference [3–5] supported our de-

cision to write this paper. For completeness let us calculate the

power of the electromagnetic radiation of the electron moving

with a constant velocity ac (α – fine structure constant) on

the circular orbit of the Bohr model of the hydrogen atom.

In this example, there is no need to introduce corrections due

to the finite mass of the proton and relativistic mass of the

electron. With these assumptions the Bohr radius is given by

the formula

rB =
ε0
πme

(

h

e

)2

. (30)

The angular velocity of the electron is

ω =
πmee

4

2ε2
0
h3

. (31)

This yields the period of a single revolution

T =
4ε20h

3

mee4
. (32)

The instantaneous power radiated by a charge e moving along

a path s(t) with the acceleration s̈ (t) is derived in [6]

P (t) =
e2

6πε0c3
(s̈ (t))

2
. (33)

On the circular Bohr orbit we have a centrifugal time inde-

pendent acceleration

s̈ = rBω
2 =

πmee
6

4ε3
0
h4

. (34)

The insertion of (33) in (32) yields the following power radi-

ated by the electron circulating on the Bohr orbit

P =
πm2

ee
14

96ε7
0
c3h8

=
4π

3

m2
ec

4

h
α7 = 4.66936× 10−8 [W], (35)

and the energy radiated during a single revolution is

ET = PT =
4π

3
mec

2α5. (36)

We observe, that the power of the electromagnetic radia-

tion of the electron in the Bohr model of the hydrogen atom

is very small but finite. It is negligible w.r.t. the power due

to the dynamic equilibrium of the electron with the quantum

vacuum. Let us say, that we are aware that the Bohr mod-

el may be far from physical reality. For example, the author

of [7] presented another model believing it is closer to the

physical reality.

Appendix 1.

Derivation of the recoil force for an ellipsoidal

power radiation pattern

We assume, that the angular power radiation pattern (power

density per unit solid angle) is given by the rotation around

the major axis of the ellipse

σΩ = σmax

1 − ε2

1 + ε cos (ϕ)
[W/Ster] (A1)

where ε is the eccentricity of the ellipse. This formula uses

the polar coordinates centred in the focus of the ellipsoid. The

recoil force is given by the integral

∣

∣

∣

∣

⇀

F

∣

∣

∣

∣

=

∣

∣

∣

⇀
v
∣

∣

∣

c

∫

4π

σΩ ·
⇀
n0dΩ (A2)

where
⇀
v is the velocity of radiation and

⇀
n0 a unit vector di-

rected along the major axis of the ellipse. The insertion of

(A1) and using the projection of the radius centred in the

focus on the major axis (cos(ϕ)) yields

∣

∣

∣

∣

⇀

F

∣

∣

∣

∣

=

∣

∣

∣

⇀
v
∣

∣

∣

c

∫

4π

(

1 − ε2
)

cos (ϕ)

1 + ε cos (ϕ)
dΩ. (A3)

We get

∣

∣

∣

∣

⇀

F

∣

∣

∣

∣

=
σmax

c

2π
∫

0

π
∫

0

(

1 − ε2
)

cos (ϕ) sin (ϕ)

1 + ε cos (ϕ)
dϕdψ. (A4)

The evaluation of the integral yields

∣

∣

∣

∣

⇀

F

∣

∣

∣

∣

=
σmax

c
f1 (ε) , (A5)

where

f1 (ε)=

[

1 − ε2

ε
log

(

1 − ε2
)

+
(

1 − ε2
)

∞
∑

n=1

ε2n−1

n (2n− 1)

]

2π.

(A6)

However, σmax should be normalized to keep the total power

P independent on ε. The power gain of the ellipsoid is given

by the formula

G =
4π

B
(A7)

where B is the equivalent solid angle

B =

2π
∫

0

π
∫

0

1 − ε2

1 + ε cos (ϕ)
sin (ϕ) dϕdψ = f2 (ε) (A8)

with

f2 (ε) =

[

(

1 − ε2
)

log

(

1 + ε

1 − ε

)]

2π. (A9)

Since σmax = PG we get

σmax =
P

f2 (ε)
. (A10)
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The insertion of (A10) in (A5) yields

∣

∣

∣

∣

⇀

F

∣

∣

∣

∣

=
P

c

f1 (ε)

f2 (ε)
. (A11)

If ε << 1, the ratio f1(ε)/f2(ε) ≈ ε/3. The versor
⇀
n0

is in the direction of the x – axis. The angular directional

pattern is defined w.r.t. the right focus. The recoil force has

the direction opposite to the x axis.

Appendix 2.

The negative sign of the energy density of the

gravitational field

In the frame of the analogies between electromagnetic and

gravitation which apply for linearized Einstein’s equations,

the energy density of the gravitational field is given by the

equation EG = −0.5γ

∣

∣

∣

∣

⇀

G

∣

∣

∣

∣

2

[J/m3], where ~G [m/s2] is the

gravitational field and γ = 1.1927 × 109 [kg s2/m3] is the

gravitational permittivity of free space [8]. Let us derive why

the gravitational field lowers the energy density of the vacu-

um.

Consider two parallel infinite planes each covered by a

mass density ρm [kg/m2] (Fig. A1). The gravitational field

inside the planes equals zero and its magnitude outside the

plates is

∣

∣

∣

~G
∣

∣

∣
= ρm/γ. The energy density outside the planes

is EG = −0.5γ

∣

∣

∣

∣

⇀

G

∣

∣

∣

∣

2

= −ρ2
m/2γ [kg/ms2]. Imagine that the

distance between the planes is enlarged by ∆z. The gravita-

tional field in the volume defined by ∆z is cancelled. Note

that energy density and pressure have the same dimensions.

Since the planes attract, the enlargement is a shift against the

pressure and corresponds to the input of a positive energy.

Therefore, the cancellation of the gravitational field requires

a positive energy. In consequence, the energy of the gravita-

tional field is negative. If we accept the hypothesis that energy

is a positive defined quantity, the above negative energy cor-

responds to a lowering of the positive energy of the vacuum.

Fig. A1. Two parallel planes covered by a mass density ρm
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