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Abstract. The paper presents some problems of heat conduction in a semi-infinite periodically stratified layer. The layer is subjected to acting
a constant temperature on the part of boundary, normal to the layering. The free heat exchange with surroundings is assumed on the remaini
part of the boundary. The composite layer is supposed to be composgetabdically repeated two-component lamina. The problem is solved

in two ways: (°) directly as a heat conduction probler2®) by using model with microlocal parameters [1,2]. The main aim of the paper is a
comparison of the obtained results and to conclude possibilities of applications of the homogenized model with microlocal parameters.
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1. Introduction non-deformable layers. The perfect thermal contact between

oo ) ) the layers is supposed. The part of boundary being a cross sec-
Periodically layered composite materials can be made by Mgg, of the laminated composite is kept at a constant temper-

(laminated composites) or can be found in nature (varvegre On the remaining parts of boundary the free exchange
clays, sandstone-slates, sandstone-shales, thin-layered limgfl;gition with surroundings is assumed. The above problem
stones). The knowledge of temperature, heat flux distributions s \eq by using the classical heat conduction description as
in laminated composites is very important in some problemge| o5 by an application of the homogenized model with mi-
of civil engineering, mechanical engineering and geophysiCgrgocal parameters [1,2]. The main aim is to compare the
Heat conduction problems of periodically layered compositegyained results within the framework of both approaches.

can be solved by using “classical” descr|pt|on§. However, in 1o paper stands for a continuation of our previous study
the case of large number of repeated layers being componeﬂtﬁlls] connected with the comparisons of the solutions to heat

?f comlpozne the con?_phange oftt):lontlanuty((j:_ondmonsl on u:ter(-: nduction problems in laminated composites obtained in the
aces leads to complicated problems for direct analytical angy, apove discussed ways. The paper [14] deals with the

numerical approaches. For these reasons applications of s Gblem of temperature distribution in the semi-infinite lami-

homogenized models seem to be useful. One of them is t Sted layer heated by a constant heat flux on the part of bound-

homogenized model with mfcrolocal parameters [1.2]. ary normal to the layering. In the paper [15] some heat con-
The model has been derived by using the nonstandard ang{iction problem in a laminated half-space is solved.
ysis combined with some a priori postulated assumptions. An

application of the homogenization procedure leads to equg- . .
tigrr:s given in terms of u?}known mal?:rotemperature and tﬂe?—' Formulations and solutions of the problem
mal microlocal parameters. The microlocal parameters are @onsider a rigid, semi-infinite layer composedroperiodi-
evaluate not only mean but also local values of heat fluxes #ally repeated lamina (Fig. 1). L&t, [, denote the thicknesses
every material component of the composite. The homogenizefithe subsequent layers be the thickness of the fundamen-
model with microlocal parameters has been applied in mangl layer. Leté; = Ii/a, 62 = lz/a, be the dimensionless
problems of periodically layered composites (see, for exampthicknesses of the subsequent layers &nd [/a be the di-
for crack problems [3-6], inclusion problems [7—9]). The homensionless thickness of the lamina. Let {;, z) be dimen-
mogenization procedure with microlocal parameters was apionless coordinates related to the thicknes§hus, the pe-
plied to the modelling of periodically layered inelastic comiodically laminated body occupies the regibn< z < 1,
posites [10,11]. The applications of the homogenized models > 0, —co < 2z < co. Let K, K, denote the coefficients
are partially summarized in [12,13]. However, there are onlgf heat conductivities of the subsequent layers of composite.
few comparative results obtained within the framework of th&he part of boundary being its cross-sectipa= 0 is kept at
homogenized model (approximated solutions) and an exact ape constant temperature with the intendity On the surfaces
proach (exact solution). 2 = 0 andxz = 1 we consider the conditions of free exchange
This paper deals with the heat conduction problem for af heat with surroundings.
semi-infinite periodically laminated layer. The repeated lam- We will solve the determined above problem using two fol-
ina is assumed to be composed of two isotropic homogenedosving approaches.
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Ty The solution can be written in the form:
x
~ 2 _
8y = b/a Ty (2,5) = \/;Tos '
+ Cyi—3(s)sinh(s((i = 1)d + 61 —x))  (6)
61 _ ll/(l, +C41 Q(S)COSI’(S(( 1)6+51 —QC)),
=1,2,.

6=1/a ~ 2
TQ(;-S)(:E, s) =1/ =Tos !
™

+ Cyi1(s)sinh(s(id — z))
| + Cyi(s)cosh(s(id — x)), i =1,2,..,n

where the function§’; (s) , ¢« = 1,2, ..., 4n satisfy the follow-
ing system ofin linear algebraic equations:

C1(s)(scosh(sdy) + Biysinh(sdy)) + Ca(s)(ssinh(sdy)

('""""'""""""""""f"'"T"""""""'

y| @ QOO @ @ 5
| | L + Bijcosh(sdy)) = —4/ ;T()Bils*1
Fig. 1. The cross-section of scheme of the composite layer Cai—2(8) — Cyi—1(s)sinh(d2s)

— Cyi(s)coshdas) =0, i=1,2,...,n
Approach 1. Formulation within the framework of

equations of heat conduction. Introduce the numbering —104i,3(s) — Cyi—1(s)coshd2s)
1, ..., 2n of the subsequent layers starting from the left side of Ko _ ‘ (7)
the layer (fromz = 0 to = = 1) (Fig. 1.). LetT},i =1, ...,2n — Cyi(s)sinh(dzs) =0, i=1,2,...,n

denote the temperature in thi¢h layer. The equation of heat ¢, (s) — Cy;, 1 (s)sinh(5;s)
conduction in the-th layer for the stationary case has the form Ciiro(s)cOSHOLS) =0, i=1,2,...n—1
— L4442 1 — Y, — Ly Ly ey 10T

8T, /0 + 0*T; /0y* =0, i=1,2,....2n. (1) K2

C i — Cy cosh(é
The boundary conditions are taken as follows -1(9) i+1(s)cosH(0;5)

Ti=Tpy, for 0<az<1,y=0,i=1,..2n, — Cliya(s)sinh(d1s) = 0,
i=1,2,..,n—1
8T1/8:c — Bi/T1 = 0, for x = 0, y >0,
) 2 -
Ty, /0 + BigTy, =0, for z =1, y >0, 2) $Can—1(8) — BigCup (s) = \/;TOBZQS !
Toi—1 = To;, K10T5;—1/0x = Ko0Ts;—1/0x, The system of equations (7) is solved numerically.

Approach 2. Formulation within the framework of the
homogenized model with microlocal parameters. If the
To; = Toiq1, Ko0Ts;/0x = K10To;11/0x numbern of repeated lamine is sufficiently large it seems to
be suitable to use the homogenized models. One of them is the
model with microlocal parameters given in [1,2]. The model in

fora=(G—-1)0+d,i=1,...,n

forx=4,i=1,...n—1,

where the stationary two-dimensional case of heat conduction prob-
Biy = aa/K,, Biy=aa/K> (3) lemis described by the following equation [3]:

anda is the coefficient of heat exchange. Moreover, the regu- K~'K*9%0/02% + 90/0y* = 0 (8)

larity conditions in infinity whered is an unknown function interpreted as the macrotem-

(4) perature and

T, — 0, for y —00,i=1,...,2n -
K:’UK1+(1*T])K2, [K] :ﬁ(Klng),

is considered.

. . . 2 K
T.he p_resented abovz_a problem w_|II be solved by using K =K, + Ui Ko, K* = Ky(1— u)
Fourier sine transformation denoted in the case of function 1-
f(z,y)as KK, 01

o (1—7’])K1 —‘r’l]KQ’ = ?
For small values of the following approximation for the tem-
(5) peraturel’ and its gradient can be written [3]:
f x,y) sin (sy) dy.
T~0, 0T/0y =~ 00/0y,

fs(z,8) = y)y—>8]
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Fig. 2. The dimensionless temperatlt¢l, as functions of: on two depths: (ay = 4§, (b)y = 106
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Fig. 3. The dimensionless heat flux compongnt/ (K *To) as functions of: on three depths: (g) = 0, (b)y = 4, (c)y = 104
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Fig. 4. The dimensionless heat flux componegnt/ (K *Ty) as func-
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Fig. 5. The dimensionless temperature and heat fluxes

(00/0x) (K*/K,) for the layers ofl — st kind
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The heat flux vector in a layer of theth kind, i = 1,2, is
given by

¢ (z,y) = (~K*90/0z, —K;00/9y, 0), i=1,2. (11)

The considered problem of semi-infinite composite layer is de-
scribed by equation (8), and the boundary conditions:

=Ty for0<z <1, y=0,

00/0x — Bi# =0, for x =0, y > 0; (12)
00/0x + Bif =0, for x =1, y >0,
the condition in infinity
6 — 0, for y — oc. (13)
where
Bi = aa/K*. (14)
The solution of the problem takes the form:
9~s (z,8) = g E
m™ S
x {1+ Bi(A(S)sinh(Sz) — B (S) cosh(Sx))}
(15)
where
A(S) = Ssinh(S) + Bicosh(S) — Bi
(82 + Bi?)sinh(S) + 2BiScosh(S)
B(S) = Scosh(S) + Bisinh(S) + S
~ (8% + Bi?)sinh(S) + 2BiScosh(S)”  (16)

| K
S=s T

The inverse Fourier transform of the functiéngiven in (15)
will be calculated numerically and results will be shown in the
form of graphs.

3. Numerical results

From the derived calculations there is seen that the finding
of solution within the framework of the homogenized model
with microlocal parameters is simpler than within the frame-
work of the classical description (the continuity conditions on
the interfaces are directly satisfied in the homogenized model).
However, the homogenized model with microlocal parameters
stands for some approximation of the classical approach.

So, the main aim is to compare the temperature and heat
flux distributions given within the framework of the both ap-
proaches and to conclude about the applicability of the homog-
enized model. Moreover, the important question is how the re-
sults obtained within the homogenized model approximate the
solutions given by classical formulation (Approach 1) together
with decreasing of the lamina thickneggor with increasing
of the numbem of fundamental layers being the components
of the body).

The dimensionless temperatd¢T; on the planes normal
to the layeringy = ¢; y = 104 for two values of ratios of
heat conductivitied<; /K> = 4, K1 /K, = 8, andn = 0.5,

Bi = 0.5, n = 20, is shown in Fig. 2.

The waved curves present the solution given within the

framework of classical description (Approach 1), the grey
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curves are given by the homogenized model (Approach 2). Tipeevious papers [14,15], that the homogenized model with mi-
presented curves in Fig. 2 show a well fitting of the approxierolocal parameters can be applied for stationary problems of
mated solutions with the obtained by the Approach 1. heat conduction in periodically laminated composites.

The dimensionless heat fluxega/(K*T;) directed par-
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