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General Active-RC filter model for computer-aided design

S. KOZIEŁ1,2 and S. SZCZEPÁNSKI2∗
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Abstract. In the paper, a general topology of continuous-time Active-RC filter is presented. The model includes all possible Active-RC filter
structures as particular cases and allows us to analyze them using a unified algebraic formalism. This makes it suitable for use in computer-
aided analysis and design of Active-RC filters. By its construction, the model takes into account the finite DC gain and the finite bandwidth
as well as non-zero output resistance of operational amplifiers. Filters with ideal OPAMPs can be treated as particular cases. Sensitivity and
noise analysis of Active-RC filters is also performed in the proposed general setting. The correctness of the model is verified by comparison
with SPICE simulation.
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1. Introduction
Continuous-time analog filters based on operational amplifiers
(OPAMPs) and RC elements (Active-RC filters) provide so-
lutions for various signal-processing tasks. Many synthesis
and design methods for different types and architectures of
this class of filters have been reported [1–3]. Performance de-
mands for continuous-time Active-RC filters have increased
significantly during the last several years to meet the needs
of rapidly developing applications, such as ADSL [4], VDSL
[5,6] WCDMA [7,8] RFIC receivers for PANs [9], GSM base-
band transmitters [10]; recently, Active-RC filter for frequen-
cies beyond 300 MHz has been successfully implemented [11].
This creates the need for developing new techniques, espe-
cially computer-aided design tools, concerning both transistor-
and system-level design and optimization. The key factor in
this development is creating good models of circuits and sys-
tems, in this case, Active-RC filters, that would be accurate,
general enough to include as many of particular cases as possi-
ble and easy to use in automated design/optimization systems.

In this paper, we consider a general Active-RC filter topol-
ogy suitable for computer-aided analysis, design and optimiza-
tion of Active-RC filters. The presented model includes all
possible structures of filters of this class. It utilizes matrix
formalism for circuit description that makes all the resulting
formulas easy to implement in computer software. Due to the
limited space, in this paper we can merely give an outline of the
model and carry out its verification using suitable filter exam-
ples. Applications for computer-aided design and optimization
will be covered in a separate work. In [12], interested readers
can find details concerning analogous approach to OTA-C fil-
ters.

The paper is organized as follows. In Section 2, we present
a general Active-RC filter topology and develop a matrix de-
scription of this structure. In its basic formulation, the model

takes into consideration finite gain and bandwidth as well as
non-zero output resistance of filter OPAMPs. Active-RC filters
with ideal OPAMPs are treated as special cases. In Section 3
we derive explicit formulas for sensitivity functions for arbi-
trary filter of the considered class. Section 4 deals with noise
analysis in general setting. In Section 5 we verify the proposed
model by comparing theoretical results with SPICE simulation
on transistor-level using chosen benchmark circuits. Section 6
concludes the paper.

2. Active-RC filter model

Figure 1 shows the general topology of Active-RC filter. The
structure containsn + 1 nodes denoted asxi, i = 0, ..., n,
passive network consisting of admittancesybi, i = 1, ..., n
and yij , i, j = 1, ..., n as well ask operational amplifiers
Oi, i = 1, ..., k. We denote the input node asx0 and the
output node asxn. We also denote the ground node asxg

for the convenience of further description. We will also use
symbolsxi to denote voltages at the respective nodes (voltage
corresponding toxg is 0 by definition). The input and out-
put nodes of OPAMPs are connected to internal nodes so that
Oi+, Oi− ∈ {x0, x1, ..., xn, xg} andOio ∈ {x1, x2, ..., xn}
(we exclude the situation when the output of the amplifier is
connected to the input or ground node for obvious reasons).
Some additional and obvious constraints apply, which exclude
impractical circuits, such asOi+ 6= Oi− (inputs of the OPAMP
cannot be short-connected) orOio 6= Ojo for i 6= j (the out-
puts of two different amplifiers cannot be connected to the
same node). We assume, without loss of generality, that any
admittance of the circuit may be, in general, a parallel connec-
tion of resistor and capacitor, as shown in Fig. 2. It is clear
that any conceivable Active-RC filter is a particular case of the
structure in Fig. 1.
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Fig. 1. General topology of Active-RC filter

Fig. 2. General form of admittance element of filter in Fig. 1 (here
for yij)

As a first step, we shall perform an analysis of the circuit in
Fig. 1 that aims at developing compact formulas for evaluating
filter transfer function. These formulas have to be general in
order to be applicable to any particular case of the filter struc-
ture in Fig. 1 assuming either ideal OPAMPs or OPAMPs with
finite gain and output resistance. In the sequel, additional non-
ideal effects will be considered such as electric noise generated
by filter resistors and OPAMPs. Since the presented model is
intended to use primarily in a computer-aided design and opti-
mization systems, we shall utilize algebraic description so that
resulting formulas are easily implemented in computer soft-
ware. For the purpose of the analysis we shall use the OPAMP
model shown in Fig. 3, whereA is an open-loop amplifier gain
andro is its output resistance. Because we use classical nodal
analysis, more convenient is equivalent model shown in Fig. 4,
wherego = 1/ro andgm = A/ro = Ago. In order to distin-
guish model parameters for different OPAMPs we use the sym-
bolsAi, goi andgmi to denote open loop gain, output conduc-
tance and transconductance of the amplifierOi, i = 1, ..., k.

Fig. 3. Operational amplifier model for analysis of the filter in Fig. 1

Fig. 4. Equivalent current-source operational amplifier model for
analysis of the filter in Fig. 1

The circuit in Fig. 1 can be described by the following
linear system

(Y + G) x = (B + G0)uin (1)

wherex is vector of node voltages (herexn = uout – output
voltage; these symbols will be used interchangeably)

x =
[
x1 x2 · · · xn

]T T

(2)

and

B =
[
yb1 yb2 · · · ybn

]T (3)

Y =




yb1 +
∑n

j=1 y1j −y12 · · · −y1n

−y12 yb2 +
∑n

j=1 y2j −y2n

...
. . .

...
−y1n −y2n · · · ybn +

∑n
j=1 ynj




(4)
G = [gij ]

n
i,j=0 ,

gij =





−gmq if Oqo = xi, Oq+ = xj for someq ∈ {1, ..., k}
gmq if Oqo = xi, Oq− = xj for someq ∈ {1, ..., k}
goq if Oqo = xi for someq ∈ {1, ..., k} andi = j
0 otherwise

(5)
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G0 =




g01

...
g0n


 ,

g0i =





gmq if Oqo = xi, Oq+ = x0 for someq ∈ {1, ..., k}
−gmq if Oqo = xi, Oq− = x0 for someq ∈ {1, ..., k}
0 otherwise

(6)
Using (1)–(6) one can easily calculate the vectorx of internal
node voltages of the circuit in Fig. 1:

x = [Y + G]−1 (B + G0) uin (7)

and its transfer functionHA,ro
(s)

HA,ro (s) =
uout

uin
= C [Y + G]−1 (B + G0) (8)

whereC is 1× n matrix defined as

C =
[
0 · · · 0 1

]
. (9)

In practice, Active-RC filters are mostly implemented in
fully differential structures. Due to this we may assume that
element values (e.g.Rij , Cij) can take both positive and neg-
ative values, which can be accomplished by cross-coupling of
corresponding physical elements. More specifically, if the el-
ement, sayRij , is cross-coupled (i.e. put between positive
(negative) output of an amplifier and positive [negative] in-
put of another one, see e.g. resistorR1 in Fig. 5), this re-
flects in Eq. (1) so that the appropriate term has the form
gij(xi− (−xj)) = gijxi− (−gij)xj , i.e. the original ‘–’ from
node voltage is moved into filter element, heregij = 1/Rij ,
but only while considering non-diagonal elements of matrix
Y . Obviously, the value of physical element remains positive.
Negative value of the corresponding matrix entry is equiva-
lent to cross-coupling. In case of single-ended implementation,
negative elements can be realized using inverters.

Fig. 5. Fully differential second-order Active-RC filter

Note that Eq. (8) gives the filter transfer function assuming
finite gain and non-zero output resistance of its operational am-
plifiers. In order to determine the transfer function assuming
ideal amplifiers, we have to perform some additional opera-
tions. As a first step we consider the case when output resis-
tances of filter operational amplifiers are neglected. From the
point of view of the OPAMP model in Fig. 4 it is equivalent
to gm andgo going to infinity. As a result, if the output of one

of the filter OPAMPs, sayOq, is connected to some internal
node, sayxi, then it is seen, after dividing the corresponding
(i-th) equation of the system (1) bygoq, that all the factors
containing the admittancesyib andyij , j = 1, ..., n, become
negligible, and the whole equation becomes just the relation
between differential input voltage of the OPAMP and its out-
put voltage. In terms of algebraic description of the filter in
Fig. 1 it is expressed by the following matrix operations

Y → PY Y , B → PY B, G → PGG, G0 → PGG0 (10)

where

PY =




pY 1 · · · 0
...

. . .
...

0 · · · pY n


 ,

pY i =
{

0 Ooq = xi for someq ∈ {1, ..., k}
1 otherwise

(11)

PG =




pG1 · · · 0
...

. . .
...

0 · · · pGn


 ,

pGi =
{

1/goq Ooq = xi for someq ∈ {1, ..., k}
0 otherwise

. (12)

The modified equations for the filter in Fig. 1 with zero output
resistance of OPAMPs take the following form

(PY Y + PGG) x = (PY B + PGG0) uin (13)

and the modified transfer function formula is

HA (s) = C [PY Y + PGG]−1 (PY B + PGG0) . (14)

As the next step we consider the case when filter OPAMPs
is ideal, that is not only output resistance is zero but also open-
loop gainA is infinite. In this case the differential input volt-
age of the amplifier becomes zero, which means that some of
the node voltages have to be identified with each other (those
corresponding to positive and negative input of the same am-
plifier) and some set to zero (those corresponding to either pos-
itive or negative input of the amplifier whose second input is
connected to ground). This means that the number of equa-
tions in (1) as well as the number of unknown voltages has to
be reduced by the numberk of operational amplifiers in the
filter. In terms of algebraic description of the filter structure in
Fig. 1 it is accomplished by the following matrix operations

PY Y → LP Y Y R, PY B → PY B −LP Y Y RB ,

PGG → 0, PGG0 → 0,
(15)

where
L = [lij ]i=1,...,n−k; j=1,...,n (16)

with lij = 1 if xj is thei-th (counting fromx1) node with no
OPAMP output connected to it and 0 otherwise,

R = [rij ]i=1,...,n; j=1,...,n−k (17)

which is constructed fromn × n identity matrixIn in such
a way that: (i) ifOq+ = xi andOq− = xg (or Oq+ = xg

andOq− = xi), i.e. nodexi is connected to the input of some
OPAMP and the other input of the same OPAMP is connected
to ground or input node then thei-th column ofIn is removed;
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(ii) if Oq+ = xi andOq− = xj (or Oq+ = xj andOq− = xi),
i.e. two nodesxi andxj are connected to two inputs of the
same OPAMP theni-th andj-th column ofIn are concate-
nated. The columns ofR are arranged in such a way that
rij = 0 for j > i, i, j = 0, ..., n − k. Finally, matrixRB

is defined as
RB =

[
rb.1 · · · rb.n

]T (18)

whererb.i = 1 if Oq+ = xi andOq− = x0 (or Oq+ = x0 and
Oq− = xi), i.e. input node (x0) is connected to the input of
some OPAMP so that the other input is connected toxi, and
rb.i = 0 otherwise.

Note also that above operations lead to identification of
some node voltages and removing others from the equations.
As a result we have a new vectorx̄ = [x̄1 x̄2 ... x̄n−k]T of
unknown voltages, which is in the following relation with the
original vectorx

x̄ = R̄x (19)

where the matrixR̄ is constructed from the matrixRT so that
each row ofR̄ contains exactly one 1 (if there were two or
more 1-s in the corresponding column ofR then the one with
higher row index is removed). In other words, the vectorx̄
refers to those nodes which either have no OPAMP input con-
nected to them or, if the node has the input of some OPAMP
connected to it, the second input of the same OPAMP is con-
nected to another (but not ground) node of the filter. The last
component, i.e.xn−k corresponds to the output voltagevout

of the filter. The modified equations for the filter in Fig. 1 with
ideal OPAMPs take the following form

Ȳ x̄ = B̄uin (20)

where

Ȳ = LP Y Y R, B̄ = LP Y B −LP Y Y RB . (21)

In order to calculate transfer function of the filter in Fig.
1 we have to solve the modified system (1) with respect tox̄.
The modified transfer function formula is

H (s) = C̄Ȳ −1B̄ (22)

whereC̄ is 1× n− k matrix defined as

C̄ =
[
0 · · · 0 1

]
. (23)

An immediate consequence of Eq. (27) is that the maxi-
mum transfer function order of the filter withn nodes andk
OPAMPs isn− k, since this is the size of the matrix̃C.

Formulas (8), (14) and (22) allow us to calculate transfer
function of any particular case of the filter in Fig. 1 assuming
either non-ideal or ideal OPAMPs. OPAMP gains implicitly
present in matricesG andG0 (Eqs (5) and (6)) may be fre-
quency dependent.

It is important to note that the matricesY, G andB, de-
scribing the filter can be written down by circuit diagram in-
spection. MatricesP Y , P G, L andR are in one-to-one re-
lation with matrix G and can be easily constructed from it.
On the other hand, there is exactly one Active-RC filter cor-
responding to the given set of matricesY, G andB of the
form (3)–(6). This allows us move the problem of Active-RC

filter analysis, design and optimization into algebraic domain,
which can be easily handled by computer.

Note that if no filter OPAMP has its inputs connected to the
input node then the matricesG0 andRB are zero and most of
the previous formulas take simpler form.

For the sake of illustration consider some examples of
Active-RC filters. Let us start with a second-order low-pass
filter shown in Fig. 5 (actually, the figure shows its fully dif-
ferential version).

The matricesY , G, B andC corresponding to this filter
are (we assume both OPAMPs to be identical):

Y =




R−1
b + R−1

1 + sC1 −sC1 0 R−1
1

−sC1 R−1
2 + sC1 −R−1

2 0

0 −R−1
2 R−1

2 + R−1
3 + sC2 −R−1

3 − sC2

R−1
1 0 −R−1

3 − sC2 R−1
1 + R−1

3 + sC2




G =




0 0 0 0
Ago go 0 0
0 0 0 0
0 0 Ago go


 , B =




R−1
b

0
0
0




T

, C =
[
0 0 0 1

]
.

(24)
Remaining matrices are:

PY = diag{1, 0, 1, 0},
PG = diag{0, 1/go, 0, 1/go}, C̄ =

[
0 1

]

L =
[

1 0 0 0
0 0 1 0

]
, R =

[
0 1 0 0
0 0 0 1

]T

(25)

Evaluation of formulas (22) and (14) (we putRb = R1 =
R2 = R3 = R for simplicity) gives:

H (s) =
1

R2C1C2

s2 + s
RC2

+ 1
R2C1C2

(26)

HA (s) =
1

R2C1C2(1+A−1)2

s2 + s
(

(1+2A−1)
RC2(1+A−1) + 1

RC1(1+A)

)
+

1+3/(1+A)2

R2C1C2

(27)
We omittedHA,ro (s) (formula (8)) because it is quite long

and does not give additional insight at this point. If we as-
sume now thatA = A(s) = A0/(1 + s/ω0), whereω0 is
3dB bandwidth of open-loop OPAMP, we can easily calculate
filter transfer function distortion due to finite OPAMP gain-
bandwidth product. The above results are given just for illus-
trative purposes in practice they are obtained and processed by
computer software implementing the presented filter model.

As a second example consider a well-known Sallen-Key
biquad [2] shown in Fig. 6. The matricesY , G, B andC
corresponding to this filter are:

Y =




R−1
1 + R−1

2 + sC1 −R−1
2 0 −sC1

−R−1
2 R−1

2 + sC2 0 0

0 0 R−1
a + R−1

b −R−1
b

−sC1 0 −R−1
b R−1

b + sC1



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G =




0 0 0 0
0 0 0 0
0 0 0 0
0 −Ago Ago go


 , B =




R−1
1

0
0
0




T

, C =
[
0 0 0 1

]

(28)
Remaining matrices are:

PY = diag{1, 1, 1, 0},
PG = diag{0, 0, 0, 1/go}, C̄ =

[
0 0 1

]

L =




1 0 0 0
0 1 0 0
0 0 1 0


 , R =




1 0 0 0
0 1 1 0
0 0 0 1




T

(29)

Evaluation of formulas (22) and (14) (we putR1 = R2 = R,
C1 = C2 = C andK = 1 + Rb/Ra for simplicity) gives:

H (s) =
K

R2C2

s2 + s 3−K
RC + 1

R2C2

(30)

HA (s) =
K

R2C2

s2
(
1 + K

A

)
+ s 3−K+3K/A

RC + 1+K/A
R2C1C2

. (31)

As before we omittedHA,ro (s).

Fig. 6. Circuit diagram of the Salley-Key low-pass biquad

3. Sensitivity analysis
Using the general Active-RC filter model described in the pre-
vious section, it is possible to easily calculate sensitivity func-
tions of any filter of this class. In this section we focus on
first-order sensitivity [1] of filter transfer function. By defini-
tion, sensitivity function with respect to any filter element z is
calculated from the following formula:

SH(s)
z =

z

H (s)
∂H (s)

∂z
=

z

H (s)
lim
h→0

H (s, z + h)−H (s, z)
h

(32)
where in the last term of (32) there is explicitly written func-
tional dependence ofH on z. Matrix description of the filter
in Fig. 1 makes calculation of sensitivity functions extremely
easy and convenient. For the sake of example let us show how
to calculate sensitivity functions of the filter in Fig. 1 assum-
ing ideal OPAMPs. Suppose that we want to calculate first-
order sensitivity ofH(s) with respect to grounded admittance
yii, i = 1, ..., n, i.e.

SH(s)
yii

=
yii

H (s)
∂H (s)
∂yii

=
yii

H (s)
lim
h→0

H (s, yii + h)−H (s, yii)
h

(33)

Now, we have

H (s, yii + h) = C̄ [LP Y (Y + hEii)R]−1
LP Y B (34)

whereEii is n × n elementary matrix (all zeros except 1 in
position ii). Simple calculations yield:

SH(s)
yii

= − yii

H (s)
SLEiiSR (35)

whereSL = C̄Ȳ −1LPY is 1 × n row vector, andSR =
RȲ −1B̄ is n×1 column vector, withȲ , B̄ andC̄ defined by
(21) and (23), respectively. Corresponding results for floating
(yij , i, j = 1, ..., n, i¬j) and input (ybi, i = 1, ..., n) admit-
tances are:

SH(s)
yij

=
yii

H (s)
SL (Eij + Eji −Eii −Eij)SR (36)

SH(s)
ybi

= − ybi

H (s)
SL [EiiSR − ei] (37)

whereei is n × 1 elementary vector (all 0 except 1 in posi-
tion i). Note that in formulas (35)–(37) we have three common
terms: H(s), SL, andSR. All these components have to be
calculated only once in order to get all sensitivity functions of
the filter.

Having sensitivity functions with respect toyij andybi one
can easily calculate sensitivity with respect to individual filter
elements (Rij , Cij , Rbi, Cbi):

S
H(s)
Rij

=
Rij

H (s)
∂H (s)
∂Rij

=
Rij

yij

yij

H (s)
∂H (s)
∂yij

∂yij

∂Rij

= − 1
Rijyij

SH(s)
yij

(38)

S
H(s)
Cij

=
Cij

H (s)
∂H (s)
∂Cij

=
Cij

yij

yij

H (s)
∂H (s)
∂yij

∂yij

∂Cij

=
sCij

yij
SH(s)

yij

(39)

S
H(s)
Rbi

=
Rbi

H (s)
∂H (s)
∂Rbi

=
Rbi

ybi

ybi

H (s)
∂H (s)
∂ybi

∂ybi

∂Rbi

= − 1
Rbiybi

SH(s)
ybi

(40)

S
H(s)
Cbi

=
Cbi

H (s)
∂H (s)
∂Cbi

=
Cbi

ybi

ybi

H (s)
∂H (s)
∂ybi

∂ybi

∂Cbi

=
sCbi

ybi
SH(s)

ybi
.

(41)

For the sake of illustration let us calculate sensitivity func-
tions for the second-order filter in Fig. 5 assumingRb = R1 =
R2 = R3 = R. Transfer function of this filter is given by (46)
and we will denote its denominator as D(s). MatricesSL and
SR in this case are:

SL =
1

RC1C2D (s)
[
1 0 −sRC1 0

]
(42)
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SR =
1

R2C1C2D (s)
[
0 −1− sRC2 0 1

]T
. (43)

Using (62) and (63) we can calculate sensitivity functions with
respect to all filter elements:

S
H(s)
Rb

= 1
D̄(s)

, S
H(s)
R1

= − 1
D̄(s)

,

S
H(s)
R2

= sRC1(1+sRC2)
D̄(s)

, S
H(s)
R3

= − sRC1
D̄(s)

,

S
H(s)
C1

= 1+sRC2
D̄(s)

, S
H(s)
C2

= sRC1
D̄(s)

(44)

whereD̄ (s) = R2C1C2D (s).

4. Noise analysis
Noise performance is one of the very important characteristics
of Active-RC filters. A number of papers have been published
dealing with noise in Active-RC filters, mostly some particu-
lar topologies such as single amplifier filters, state-space filters
(eg. [13–15]) but also in general setting [16]. In this section,
we present a procedure for evaluating noise in Active-RC fil-
ters, which is based on the matrix description of the general
Active-RC filter model presented in Section 2.

We shall carry out the noise analysis of the filter structure
in Fig. 1. The output noise of any Active-RC filter is a com-
bination of the noise contribution of its all operational ampli-
fiers and resistors (we treat filter capacitors as noiseless). The
noise of operational amplifier can be described by the equiva-
lent input referred noise voltage source vn as shown in Fig. 7.
Spectral densitySn(f) of the noise source can be modelled as:

Sn (f) = St +
Sf

f
(45)

where bothSt (thermal noise component) andSf (flicker noise
component) depend on amplifier topology, however, in general
we do not need to restrict ourselves to this model. Noise of the
resistor of valueR will be represented by the corresponding
spectral density 4kTR, wherek is Boltzmann’s constant, and
T is absolute temperature. We shall assume that noise sources
associated to different OPAMPs and resistors are statistically
independent.

Our immediate goal is to obtain the explicit formula for
output (and/or input) noise spectrum of the general Active-RC
filter in Fig. 1. In order to do this, one has to consider what
is the contribution of the noise of each individual operational
amplifier and resistor to the output noise spectrum of the filter.

We start from the noise contribution of filter OPAMPs
Oq, q = 1, ..., k. Let vOi denote the input referred noise volt-
age of the amplifierOq, whose spectral density isSOq(f).
We assume thatvOq includes the noise of output resistance of
the amplifier. Figure 8 shows the model of OPAMP including
noise source. Suppose that we haveOq+ = xi, Oq− = xj , and
Oqo = xk (recall that in generalOq+ or Oq− may be equal to
x0 or xg as well). Thek-th equation of system (1) contains the
factor(xj − xi)gmq, which, in presence of noise source has to
be replaced by the following:(xj − xi − vOq)gmq. As a next
step, we move the factor−vOqgmq into the right-hand side of
the equation and solve the whole system in order to find the
output voltage of the filter due tovOq.

Fig. 7. Equivalent input voltage noise source representation of noise
in OPAMP

Fig. 8. Operational amplifier model with input noise voltage source

Let us denote byHcv the1× n vector defined as follows

Hcv (s) =
[
H1 (s) · · · Hn (s)

]
= C (Y + G)−1

. (46)

Note that componentHi of the vectorHcv can be interpreted
as current-to-voltage transfer function fromi-th node of the fil-
ter to its output. Now, we can calculate output noiseUOq of the
filter due to amplifierOq as follows

UOq = HOqogmqvOq. (47)

Corresponding spectral densitySo.Oq(f) is given by the for-
mula:

So.Oq (f) = SOq (f) |HOqo (j2πf) |2g2
mq (48)

The total output noise voltage spectrumSO(f) of the filter
in Fig. 1 due to its operational amplifiers can be now calcu-
lated using (48) and the assumption of statistical independence
of noise sources as

SO (f) =
k∑

q=1

SOq (f) |HOqo (j2πf) |2g2
mq. (49)

As a next step, we shall calculate the output noise of the filter
in Fig. 1 due to its resistors. First, we consider input resistors.
Denote byvbi the noise voltage of resistorRbi (corresponding
spectral density is 4kTRbi). Recall thatRbi is the part of in-
put admittanceybi as shown in Fig. 2. Output noise voltage
Ubi due to this resistor can be calculated from the following
equation

Ubi = Higbivbi (50)

which is becausevbi acts in this case as an input voltage of the
filter. Equation (50) can be rewritten in matrix form as follows:

Ubi = Hcveigbivbi (51)

whereei is usualn×1 elementary vector. Corresponding spec-
tral densitySbi(f) is given by the formula:

Sbi (f) = 4kTRbi|Hi (2πf) |2g2
bi = 4kT |gbi| · |Hi (2πf) |2

(52)
or, in matrix form

Sbi (f) = 4kT |gbi| · |Hcv (2πf) ei|2. (53)
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The noise due to feedback resistorsRij , i, j = 1, ..., n
can be calculated in a similar way (recall thatRij is part of
admittanceyij). Denote byvkl the noise voltage of resistor
Rij (corresponding spectral density is 4kTRij). We consider
two cases. Ifi = j, i.e. Rij is grounded resistor, then thei-
th equation of system (1) contains the factorxigii, which, in
presence of noise source has to be replaced by the following:
(xi − vi)gii. As a next step, we move the factor−viigii into
the right-hand side of the equation and solve the whole system
in order to find the output voltage of the filter due tovii. Out-
put noise voltageUii due to resistorRii can be then calculated
from the following equation

Uii = Higiivii (54)

Corresponding spectral densitySii(f) is given by the formula:

Sii (f) = 4kTRii|Hi (2πf) |2g2
ii = 4kT |gii| · |Hi (2πf) |2.

(55)
We can also rewrite (54) and (55) in matrix form, which gives

Uii = Hcveigiivii (56)

Sii (f) = 4kT |gii| · |Hcv (2πf) ei|2. (57)

The second case refers to floating resistors, i.e. wheni 6= j. In
this case we have to modify bothi-th andj-th equation of the
system (1): ini-th equation the term (xi − xj)gij is replaced
by (xi − xj − vij)gij and the term−vijgij is moved into the
right-hand side of the system; similarly inj-th equation the
term (xi−xj)gij is replaced by (xj−xi +vij)gij and the term
vijgij is moved into the right-hand side of the system. As a
result, we can calculate noise voltageUij due to resistorRij as

Uij = (Hi −Hj)gijvij . (58)

Corresponding spectral densitySij(f) is given by the formula:

Sij (f) = 4kTRij |Hi (2πf)−Hj (2πf) |2g2
ij

= 4kT |gij | · |Hi (2πf)−Hj (2πf) |2. (59)

We can also rewrite (58) and (59) in matrix form, which gives

Uij = Hcv (ei − ej) gijvij (60)

Sij (f) = 4kT |gii| · |Hcv (2πf) (ei − ej)|2. (61)

Using (53), (57) and (61) one can easily calculate the total out-
put noise voltage spectrumSR(f) of the filter in Fig. 1 due to
its resistors

SR (f) =
n∑

i=1

[
Sbi (f) +

∑i

j=1
Sij (f)

]
(62)

that is

SR (f) = 4kT

n∑

i=1

[
(|gbi|+ |gii|) |Hcv (j2πf) ei|2

+
n∑

j=i+1

|gij | · |Hcv (2πf) (ei − ej) |2
]
.

(63)

Finally, the total output noise voltage spectrumSno(f) of the
filter in Fig. 1 can be calculated as a sum ofSO(f) andSR(f):

Sno (f) = SO (f) + SR (f)

=
k∑

q=1

SOq (f) |HOqo (j2πf) |2g2
mq

+ 4kT

n∑

i=1

[
(|gbi|+ |gii|) |Hcv (j2πf) ei|2

+
n∑

j=i+1

|gij | · |Hcv (2πf) (ei − ej) |2
]
.

(64)

Equivalent input referred noise voltage spectrumSni(f)
can be calculated by dividingSno(f) by |HA,ro

(j2πf) |2 –
the square of modulus of filter’s transfer function given by (8).

Note that in Eqs. (52)–(64) absolute values were taken
where necessary to include the case when some of the matrix
elements take negative values (see discussion after Eq. (9)).
Note also that if formula (64) is to be applied to fully differen-
tial filter structure, noise spectrum of the filter resistors have to
be counted twice, i.e. we have

Sno (f) = SO (f) + SR (f)

=
k∑

q=1

SOq (f) |HOqo (j2πf) |2g2
mq

+ 8kT

n∑

i=1

[
(|gbi|+ |gii|) |Hcv (j2πf) ei|2

+
n∑

j=i+1

|gij | · |Hcv (2πf) (ei − ej) |2
]
.

(65)

Although formula (64) is quite complex, it can be easily
evaluated numerically and can be used as a basis for automated
noise analysis and optimization software.

In case of neglecting output resistance of filter amplifiers,
we have to modify our equations. The vectorHcv now takes
the form

Hcv (s) = C (PY Y + PGG)−1 (66)

while the output noiseUOq of the filter due to amplifierOq is
calculated as

UOq = HOqoAqvOq (67)

(recall thatAq is gain of Oq). Spectral densitySo.Oq(f) is
given by the formula:

So.Oq (f) = SOq (f) |HOqo (j2πf) |2|Aq (f) |2. (68)

The total output noise voltage spectrumSO(f) of the filter
in Fig. 1 due to its operational amplifiers can be now calculated
as

SO (f) =
k∑

q=1

SOq (f) |HOqo (j2πf) |2|Aq (f) |2. (69)

In order to calculate the output noise of the filter in Fig.
1 due to resistors we use the same methodology as before.
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In particular, the output noise voltageUbi due to resistorRbi,
i = 1, ..., n, can be calculated from the equation

Ubi =
{

Higbivbi if Oqo 6=xi, q = 1, ..., k
0 otherwise

(70)

wherevbi is the noise voltage ofRbi (corresponding spectral
density is 4kTRbi) andHi is i-th component of the vectorHcv

defined by (66). Note thatUbi is 0 whenever the output node
of one of the filter OPAMPs is connected to the nodexi, since
if we neglect output resistance of the OPAMP, thenxi is con-
nected to the output of ideal voltage-controlled voltage source.
Equation (70) can be rewritten in matrix form as follows:

Ubi = HcvPY eigbivbi (71)

whereei is usualn×1 elementary vector. Corresponding spec-
tral densitySbi(f) is given by:

Sbi (f) =
{

4kT |gbi| · |Hi (2πf) |2 if Oqo 6=xi, q = 1, ..., k
0 otherwise

(72)
or, in matrix form

Sbi (f) = 4kT |gbi| · |Hcv (2πf)PY ei|2. (73)

Output noise voltageUii due to grounded resistorsRii, i =
1, ..., n, can be calculated as

Uii =
{

Higiivii if Oqo 6=xi, q = 1, ..., k
0 otherwise

(74)

wherevii is the noise voltage ofRii (corresponding spectral
density is 4kTRii) and Hi is i-th component of the vector
Hcv defined by (66). Corresponding spectral densitySii(f)
is given by the formula:

Sii (f) =
{

4kT |gii| · |Hi (2πf) |2 if Oqo 6=xi, q = 1, ..., k
0 otherwise

.

(75)
We can also rewrite (64) and (65) in matrix form, which gives

Uii = HcvPY eigiivii (76)

Sii (f) = 4kT |gii| · |Hcv (2πf)PY ei|2. (77)

Using similar reasoning as the one leading to (60), we can ob-
tain the output noise voltageUij due to floating resistorsRij ,
i, j = 1, ..., n, i < j:

Uij =





(Hi −Hj) gijvij if (Oqo 6=xi, q = 1, ..., k)
Higijvij if (Oqo 6=xi, q = 1, ..., k)

∧ Oqo = xj for some q = 1, ..., k
−Hjgijvij if (Oqo 6=xj , q = 1, ..., k)

∧ Oqo = xi for some q = 1, ..., k
0 otherwise

(78)
wherevij is the noise voltage ofRij (corresponding spectral
density is 4kTRij) while Hi andHj are i-th andj-th com-
ponents of the vectorHcv defined by (66). Corresponding
spectral densitySij(f) is given by the formula:

Sij (f) =





4kT |gij | · |Hi (2πf)−Hj (2πf) |2
if (Oqo 6=xi, q = 1, ..., k)

4kT |gij | · |Hi (2πf) |2
if (Oqo 6=xi, q = 1, ..., k)
∧ Oqo = xj for some q = 1, ..., k

4kT |gij | · |Hj (2πf) |2
if (Oqo 6=xj , q = 1, ..., k)
∧ Oqo = xi for some q = 1, ..., k

0 otherwise.
(79)

We can also rewrite (78) and (79) in matrix form, which gives

Uij = HcvPY (ei − ej) gijvij (80)

Sij (f) = 4kT |gii| · |Hcv (2πf)PY (ei − ej)|2. (81)

Using (73), (77) and (81) one can calculate the total output
noise voltage spectrumSR(f) of the filter in Fig. 1 due to its
resistors

SR (f) = 4kT

n∑

i=1


 (|gbi|+ |gii|) |Hcv (j2πf)PY ei|2

+
n∑

j=i+1

|gij | · |Hcv (2πf)PY (ei − ej) |2

 .

(82)
Finally, the total output noise voltage spectrumSno(f) of the
filter in Fig. 1 can be calculated as a sum ofSO(f) andSR(f):

Sno (f) = SO (f) + SR (f)

=
k∑

q=1

SOq (f) |HOqo (j2πf) |2|Aq (f) |2

+ 4kT

n∑

i=1


 (|gbi|+ |gii|) |Hcv (j2πf) PY ei|2

+
n∑

j=i+1

|gij | · |Hcv (2πf)PY (ei − ej) |2

 .

(83)
Equivalent input referred noise voltage spectrumSni(f)

can be calculated by dividingSno(f) by |HA (j2πf) |2 – the
square of modulus of filter’s transfer function given by (14).
Note also that if formula (83) is to be applied to fully differen-
tial filter structure, noise spectrum of the filter resistors have to
be counted twice, i.e. we have to put 8kT instead of 4kT .

Finally, if we assume infinite open-loop gain of filter am-
plifiers we have to consider usual identification of node volt-
ages and reduction of equation number. Define the vectorH̄cv

H̄cv =
[
H̄1 · · · H̄n−k

]
= C̄Ȳ −1 (84)

whereȲ andC̄ are given by (21) and (23), respectively. It can
be shown that the output noiseUoq of the filter due to amplifier
Oq can be calculated as follows

UOq = H̄cvB̄qvOq (85)
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whereB̄q is the min{Oq+, Oq−}-th column of matrixLPY Y
(if one of Oq+, Oq− is equal toxg or x0 then the other one is
taken as a column number). Spectral densitySo.Oq(f) is given
by the formula:

So.Oq (f) = SOq (f) |H̄cv (j2πf) B̄q|2. (86)

The total output noise voltage spectrumSO(f) of the filter
due to operational amplifiers can be now calculated as

SO (f) =
k∑

q=1

SOq (f) |H̄cv (j2πf) B̄q|2. (87)

Now we calculate the output noise of the filter in Fig. 1 due
to resistors. In particular, the output noise voltageUbi due to
resistorRbi, i = 1, ..., n, can be calculated from the equation

Ubi = H̄cvLPY eigbivbi (88)

wherevbi is the noise voltage ofRbi (corresponding spectral
density is 4kTRbi). Note thatUbi is 0 whenever the output
node of one of the filter OPAMPs is connected to the nodexi,
since if we neglect output resistance of the OPAMP, thenxi

is connected to the output of ideal voltage-controlled voltage
source. Corresponding spectral densitySbi(f) is given by:

Sbi (f) = 4kT |gbi| · |H̄cv (2πf) LP Y ei|2. (89)

Output noise voltageUii due to grounded resistorsRii, i =
1, ..., n, can be calculated as

Uii = H̄cvLP Y eigiivii (90)

wherevii is the noise voltage ofRii (corresponding spectral
density is 4kTRii). Corresponding spectral densitySii(f) is
given by the formula:

Sii (f) = 4kT |gii| · |H̄cv (2πf)LP Y ei|2. (91)

The output noise voltageUij due to floating resistorsRij ,
i, j = 1, ..., n, i < j is given by

Uij = H̄cvLP Y (ei − ej) gijvij (92)

wherevij is the noise voltage ofRij (corresponding spectral
density is 4kTRij). Corresponding spectral densitySij(f) is
given by the formula:

Sij (f) = 4kT |gii| · |H̄cv (2πf)LP Y (ei − ej)|2. (93)

Using (89), (91) and (93) one can calculate the total output
noise voltage spectrumSR(f) of the filter in Fig. 1 due to its
resistors

SR (f) = 4kT

n∑

i=1


 (|gbi|+ |gii|) |H̄cv (j2πf)LP Y ei|2

+
n∑

j=i+1

|gij | · |H̄cv (2πf)LP Y (ei − ej) |2

 .

(94)

Finally, the total output noise voltage spectrumSno(f) of the
filter in Fig. 1 can be calculated as a sum ofSO(f) andSR(f):

Sno (f) = SO (f) + SR (f) =
k∑

q=1

SOq (f) |H̄cv (j2πf) B̄q|2

+ 4kT

n∑

i=1


 (|gbi|+ |gii|) |H̄cv (j2πf)LPY ei|2

+
n∑

j=i+1

|gij | · |H̄cv (2πf) LPY (ei − ej) |2

 .

(95)
Equivalent input referred noise voltage spectrumSni(f)

can be calculated by dividingSno(f) by |H (j2πf) |2 – the
square of modulus of filter’s transfer function given by (22).
Note also that if formula (95) is to be applied to fully differen-
tial filter structure, noise spectrum of the filter resistors have to
be counted twice, i.e. we have to put 8kT instead of 4kT .

For the sake of illustration consider evaluation of noise for-
mula (95) for the second-order filter in Fig. 5. We omit for-
mulas (65) and (83) which allow to evaluate filter noise while
taking into consideration finite OPAMP gain and non-zero out-
put resistance because they lead to really long formulas even
in this simple case. In practice, of course, these formulas are
evaluated by appropriate computer software.

In order to evaluate formula (95) we need to know vector
H̄cv = C̄Ȳ −1 as well as vectors̄Bq, q = 1, 2. Using (21),
(23)–(25) and (84) we obtain:

H̄cv =
1

D (s)
[
R−1

2 −sC1

]
(96)

B̄1 =
[

R−1
b + R−1

1 + sC1

0

]
, B̄2 =

[
0

R−1
2 + R−1

3 + sC2

]

(97)
whereD(s) = C1C2s

2+C1R
−1
3 s+R−1

1 R−1
2 . We also assume

that input referred noise spectrum of both filter OPAMPs is the
same, independent of frequency, and equal toSn. The output
noise spectrum of the filter in Fig. 5 can be then calculated as

Sno(f) =
Sn

|D (j2πf) |2
[|R−1

b + R−1
1 + j2πfC1|2

×R−2
2 + |R−1

2 + R−1
3 + j2πfC2|2|j2πfC1|2

]

+
8kT

|D (j2πf) |2
[(

R−1
b + R−1

1

)
R−2

2

+
(
R−1

2 + R−1
3

) |j2πfC1|2
]

(98)
and the corresponding input referred noise spectrum

Sni(f) = SnR2
bR

2
2

⌊|R−1
b + R−1

1 + j2πfC1|2
×R−2

2 + |R−1
2 + R−1

3 + j2πfC2|2|j2πfC1|2
⌋

+ 8kTR2
bR

2
2

[(
R−1

b + R−1
1

)
R−2

2

+
(
R−1

2 + R−1
3

) |j2πfC1|2
]
.

(99)
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If we assume that all filter resistors are the same and equal
R, the above formulas take the form:

Sno(f) =
Sn

|D (j2πf) |2
[|2R−1 + j2πfC1|2

×R−2 + |2R−1 + j2πfC2|2|j2πfC1|2
]

+
8kT

|D (j2πf) |2
[
2R−3 + 2R−1|j2πfC1|2

]
(100)

Sni(f) = Sn

⌊|2 + j2πfC1R|2
+ |2 + j2πfC2R|2|j2πfC1R|2

⌋

+ 8kTR
⌊
2 + R2|j2πfC1|2

⌋
.

(101)

5. Verification

For the sake of verification we have compared theoretical re-
sults with SPICE simulation using two example filters: a 3rd

order low-pass Chebyshev filter in leap-frog structure with
3 dB frequency equal to 12 MHz (specifications typical for
VDSL filters [5]) shown in Fig. 9, and a 5th order low-pass
Butterworth filter in leap-frog structure with 3 dB frequency
equal to 5 MHz shown in Fig. 10. The filters are realized
using simple two-stage class AB OPAMP with Miller com-
pensation shown in Fig. 11. The circuit is implemented in
standard 0.35µm CMOS process. Simulated OPAMP param-
eters are: DC gain – 71 dB, open-loop 3 dB frequency – 430
kHz, phase margin 45◦, input referred noise spectrum 14.5
nV/Hz1/2 (only thermal noise is considered), output resistance
ro = 15 kΩ. Filter elements areC1 = 2.28 pF, C2 = 2.01
pF, C3 = 1.53 pF, Ri = R = 10 kΩ, i = 1, ..., 6 (Cheby-
shev filter), andC1 = 5.10 pF,C2 = 5.59 pF,C3 = 4.56 pF,
C4 = 2.95 pF,C5 = 1.02 pF,Ri = R = 10 kΩ, i = 1, ..., 10
(Butterworth filter). Figures 12 and 13 show theoretical and
simulated frequency responses of the filters in Figs. 9 and
10, respectively. We can observe nominal (ideal) response as
well as actual response that is distorted due to the finite gain-
bandwidth product (GBW) and non-zero output resistance of
OPAMPs. The agreement between theoretical and simulated
data is very good. Figures 14–17 show theoretical and simu-
lated input/output referred noise spectrum of the filters in Figs.
9 and 10, respectively. Also in this case, the agreement be-
tween both sets of data is excellent.

Fig. 9. Fully differential 3rd order leap-frog Active-RC filter

Fig. 10. Fully differential 5th order leap-frog Active-RC filter

Fig. 11. Simple class AB fully-differential OPAMP

Fig. 12. Frequency response of 3rd order 1dB Chebyshev filter in Fig.
9: nominal and actual response; theory (solid line), and simulation

(points)

Fig. 13. Frequency response of 5th order Butterworth filter in Fig.
10: nominal and actual response; theory (solid line), and simulation

(points)

Fig. 14. Input referred noise spectrum of the filter in Fig. 9; theory
(solid line), and simulation (points)
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Fig. 15. Output referred noise spectrum of the filter in Fig. 9; theory
(solid line), and simulation (points)

Fig. 16. Input referred noise spectrum of the filter in Fig. 10; theory
(solid line), and simulation (points)

Fig. 17. Output referred noise spectrum of the filter in Fig. 10; theory
(solid line), and simulation (points)

6. Conclusions
A general topology of continuous-time Active-RC filter that
includes all possible structures of filters of this class (both
single-ended and fully-differential) is presented. The model
is analyzed using a unified algebraic formalism, which makes
it suitable for use in computer-aided analysis and design of
Active-RC filters. The model takes into account finite DC gain
and finite bandwidth as well as non-zero output resistance of
operational amplifiers. It is further used to evaluate filter noise,
and sensitivity. The accuracy of the model is verified by com-
paring theoretical results to SPICE simulations. The goal of
the future work is to develop - within the presented approach -
tools for investigating nonlinear effects in Active-RC filters as
well as to use the model for computer-aided design and opti-
mization of filters of this class.
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