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Energy flow control system based on neural compensator
in the feedback path for autonomous energy source

L.M. GRZESIAK∗ and J. SOBOLEWSKI

Institute of Control and Industrial Electronics, Department of Electrical Engineering, Warsaw University of Technology,
75 Koszykowa St., 00-662 Warsaw, Poland

Abstract. In this paper an artificial neural network, which realizes a nonlinear adaptive control algorithm, has been applied in a control system
of variable speed generating system. The speed is adjusted automatically as a function of load power demand. The controller employs a
single layer neural network to estimate the unknown plant nonlinearities online. Optimization of the controller is difficult because the plant is
nonlinear and no stationary. Furthermore, it deals with the situation where the plant becomes uncontrollable without any restrictive assumptions.
In contrast to previous work [1] on the same subject, the number of neural networks has been reduced to only one network. The number of
the neurons in a network structure as well as choosing certain design parameters was specified a priori. The computer test results have been
presented to show performance of proposed neural controller.
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1. Introduction

Neural network technology has had an enormous influence in
development of new approaches to system modelling, estimat-
ing and control [2]. Beside fuzzy logic, extended Kalman fil-
ters and other competitive methods, it offers good solutions for
wide range of problems, where a considered process often in-
volves complicated nonlinear relationships for which classical
solutions are either ineffective or unavailable.

Artificial neural networks can be used as a representative
framework for modelling nonlinear dynamical systems. It is
also possible to incorporate them within nonlinear feedback
control structures [3].

Among all types of neural networks, multilayer feedfor-
ward networks have primarily been applied in process mod-
elling and control [4].

The ability of the multilayer NNs in mapping nonlinear re-
lationships comes from the nonlinearities within the nodes. It is
found that a three layer NN with the backpropagation learning
algorithm can model a wide range of nonlinear relationships to
a reasonable degree of accuracy [5].

There are typically two steps involved when using neu-
ral networks for control: system identification and control de-
sign. In the system identification stage, there is designed a NN
model of the controlled process. In the control design stage,
the model of object is used for training the controller [6]. The
performances of NN controller are highly dependant on the ac-
curacy of the object identification.

Our main contribution here is connected with the extension
of previous results [1,7–10]. The publication [7] presents an
attempt to replace classical PI controller with neural network
controller. System was created on the basis of direct modelling
where the emulator of the object was implemented as a recur-

sive neural network. Neural networks were trained offline us-
ing data acquired by simulation with the fixed object model.
That solution did not assure sufficiently good regulating pro-
prieties, especially in case of significant changes of the object.

In publication [1] was presented a similar arrangement to
[7] except that the controller was trained online. Those systems
all used a process model, which was fixed.

It is possible to develop a neurocontroller in which the em-
ulator of the object is not required at any stage. We propose a
regulation structure based on a single neural network which is
learning online without any additional neural object emulator.
In each of two control architectures described in this paper, the
system identification stage is omitted. The controller does not
need a process model to predict future performance. In situ-
ations where the required controller is less complex than the
system model, this type of model-free approach may be one of
the most profitable.

Presented solution can be applied to independent electrical
energy sources with combustion engine, hybrid electric vehi-
cles, wind turbine power control and other nonlinear systems.

In order to have a high degree of flexibility, the simula-
tion structure was implemented in the Matlab/Simulink soft-
ware environment.

2. System structure

Presented solution includes system, in which the reference sig-
nal is constant however process is deterministically disrupted
by load. Figure 1 depicts the load-adaptive variable-speed elec-
tricity generating system described in detail in [6]. The system
comprises a permanent magnet alternatorPMG driven by a
combustion engine. A rectifier converts the AC voltage to DC
to provide a variable DC voltage to the input of the converter

∗e-mail: lmg@isep.pw.edu.pl

335



L.M. Grzesiak and J. Sobolewski

DC/DC− 1, which conditions this voltage to form a DC-link
with an appropriately sized energy storage (capacitorCdc). The
second converterDC/DC − 2, supplied by the batteryB, is
used in case of transient changes of theUdc voltage caused by
step load.

Energy flow between the engine, capacitor, battery and
load is controlled by means of the converters. The control fea-
ture of DC/DC − 1 converter permits manipulation of the
torque acting on the engine, by controlling the current in the
alternator. In addition, the voltage in the alternator is allowed
to vary freely.

Internal control loop (Engine Control System) is used for
stabile operation of engine. The Main Voltage Controller ad-
justs the engine speed and hence the alternator voltage to main-
tain the DC link voltage at the reference voltage. The Voltage
and Current Controller control system regulates the decoupling
converter (DC/DC−1) current according to the reference cur-
rent. In a simple control strategy the reference current could be
set to constant. The use of the controllable decoupling con-
verter (DC/DC − 1) between the generator and the DC-link
provides the opportunity to control the load on the engine shaft
throughout the variable speed range.

3. Object identification system
To assure a fast response and high performance of control, the
configuration of the system is based on a typical control sys-
tem with compensator in the feedback path [11,12]. Figure 2
presents a simplified block diagram of the model-free control
design concept.

NN compensator is constructed as a multilayer feedfor-
ward network. The output signal produced by the NN con-
troller Ψ, is subtracted from the reference model’s output sig-
nal r̃. The resulting signal is used as a compensated reference
signalu for the object. This signal should then be adjusted in
order to produce a ripple-free output signaly. The subsystem
Reference Model is usually a linear filter, which can be de-
signed to introduce desirable robustness and tracking response
to the closed-loop system.

Figure 3 shows scheme of the neural network model struc-
ture and Fig. 4 shows block diagram for the object identifica-
tion.

Object is represented by the nonlinear I/O model:

y(k + 1) = F (y(k), . . . , y(k − n + 1),
u(k), . . . , u(k −m))

(1)

Fig. 1. Scheme of independent electrical energy source with the neural network voltage controller
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Fig. 2. The model-free control design concept

Fig. 3. Neural network model structure

Fig. 4. Block diagram for the object identification

and the math representation of the neural adaptive controller is
as follows:

ψ(k + 1) = NN(ε(k), W (k),
y(k), . . . , y(k − n + 1))

(2)

u (k) = r̃ (k + 1)−ψ (k + 1) (3)

where:y(k) – denotes the output of the object at time index
k, u(k) – the input of the object,ε(k) – the error function,
W (k) – computed weight vector,Ψ(k), r̃(k) – the output of

the network and the reference signal, respectively. Substitut-
ing (3) to (1) and taking̃r(k) = const. into consideration, the
closed loop dynamics yields:

y(k + 1) = g(y(k), . . . , y(k − n + 1), r̃(k),
NN(k), . . . , NN(k −m)).

(4)

As the object responds, a feedback control uses these mea-
surements to modify the effect of the control. The difference
between the object outputy(k) and signalỹ(k) is then used
for learning purposes:

ỹ (k) = ψ (k) + u (k − 1) (5)

ε (k) = y (k)− ỹ (k) = y (k)− ψ (k)− u (k − 1) (6)

where:ỹ(k) – denotes the reference signal of the optimization
system.

Structure of the control system based on compensator in
the feedback path is shown in Fig. 5.

Fig. 5. Structure of the control system based on compensator in the
feedback path

The idea is to find a set of weights for the network that
maximize the fit to the training data, modified by some sort
of weight penalty to prevent overfitting. To increase the stabil-
ity of the controller we enclosed an integrated error function
to the learning vector. In this connection, new output signal of
the network could be defined as follows:

ψ(k + 1) = NN(ε(k), W (k), y(k), . . .

..., y(k − n + 1),
∫
{r(k)− y(k)} dk).

(7)

The goal of the optimization is to find a specific control ac-
tion u(k) to minimize the desired criterion. We use the squared
error cost function, so at any point in time,k, the output error
function is:

E (k) =
1
2
ε (k)2 . (8)

It should be noted that system uncertainties of the structure
F (∆) are compensated by adapting the synaptic connection
weightsW (k) to minimize the desired control performance
[13]. Weights are updated according to the formula:

W
(k+1)
ij = W

(k)
ij + ∆W

(k)
ij (9)
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Fig. 6. The NN controller structure

where:Wij(k +1) – new value of the weight from neuronj to
i, Wij(k) – previous value of the weight,∆Wij(k) – update
of the weight.

The functionE(k) defined above is used to train the net-
work in the backward path. The error is propagated back
through the layers and used to compute the required changes
(‘deltas’) in the weights structure in order to reduce the error
level.

4. Optimization algorithm
As a universal function approximator, neural network has a re-
markable feature in providing gradient information. Informa-
tion of its outputs with respect to its weights as well as its in-
puts can be easily calculated. A major reason for this is the
existence of a mathematical framework for selecting the NN
weights using proofs based on the notion of energy function,
or of algorithms that effectively tune the weights online [14].
Gradient algorithms have played a crucial role in this case, and
they are also a popular choice in neuro-control design.

However, it should be kept in mind that these algorithms
are useful only when gradients are available, and when cost
function is convex [4].

Gradient of the multivariable function gives the direction of
the steepest changes therefore even little step in this direction
causes a sharp increase of this function. However the same step
in the opposite direction causes a sharp decrease of gradient.

The backpropagation algorithm (BP) and its variations of-
fer an effective approach to the computation of the gradient.
One such variation, resilient back propagation (RPROP), is one
of the best in terms of speed of convergence [15–17]. The two
major differences between BP and RPROP are that RPROP

modifies the size of the weight step taken adaptively, and the
mechanism for adaptation in RPROP does not take into ac-
count the magnitude of the gradient, but only the sign of the
gradient [2]. This method appears to scale up much better than
standard BP as the size and complexity of the learning task
grows.

In publication [1] we described other reasons for using
RPROP instead of classical backpropagation algorithm in our
system. Finally, we used one of few RPROP algorithm version,
i.e. RPROP− [15,18].

The RPROP− – algorithm omits the weight-backtracking
process that relies on holding previous weights values in mem-
ory.

It should be emphasized that adaptation of the weights is
relatively difficult in practice. If the controller parameters are
poor, then the resulting control system may fail, because sets of
the controller (i.e. number of neurons, unit delays, sample time
as well as parameters of the algorithm) are strongly dependent
on a dynamics, complexity and nonlinearity of the process.

5. Control system design and simulation results

The system of electrical energy source with combustion engine
was applied in the simulation studies of the neural adaptive
controller. The scheme of the neural network used in electrical
energy source is shown in Fig. 6.

The output signal of a one-hidden-layer neural network
with one output neuron and the sigmoidal node architecture
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is defined as follows:

Ψ(k + 1) =

tanh


∑

j

Wj · tanh

(∑

i

Wij · yi(k) + Wj0

)
+ W0




(10)
where:i, j, 0 – the indexation of neurons in the network struc-
ture.

Fig. 7. Output voltage ofDC/DC − 1 Udc, reference speedΩref ,
integrated error and load currentIob during adaptation process

Fig. 8. Reference speedΩref and dc-link voltageUdc during adapta-
tion of controller (every 5th run in the midst of 20 runs)

The optimization algorithm is being executed every sam-
pling time and its parameters are updated online. Hidden layer
consists ofnC2 = 4 sigmoidal neurons and an output layer
containsnC3 = 1 sigmoidal neuron. The input layer consists
of 6 units, however the input vector consists of 2 next sam-
ples of voltageUdc, 1 delayed sample of integrated error func-
tion, 1 delayed sample of speedΩ and 1 sample of load cur-
rentIob (see theNN controller structure in Fig. 6). There are

useds = 4 unit delays, however sample time of the system is
amounted toTS = 0.05 s.

Number of neurons in the network structure, number of
unit delays as well as the sample time was selected experimen-
tally. As a teaching method, we used modified backpropagation
method on the basis of RPROP− optimization.

The control of the process starts from random initial values
of weights. At the beginning, not trained network generates
incorrect values of signal for object that cause the existence
of significant output error. During this time, weights of the
controller were automatically adapted to the process, and after
about 8 seconds controller achieved proper level of precision.
To ensure the correct control of the process, weights were ad-
justed individually. Output voltageUdc, reference speedΩref

as well as load currentIob during the adaptation process are
shown in Fig. 7.

The process was being disturbed by sudden changes of the
load current Iob that caused transitory changes of the output
voltageUdc. They were continuously and aperiodically bridged
by the controller.

To have a representative picture of the system dynamic re-
sponses, it is required to simulate the system with at least 20
runs over a 200-second period for various levels of load. Fig-
ure 8 shows reference speedΩref and output voltageUdc dur-
ing the adaptation of the controller. Obviously the higher the
load level, the more significant the uncertainty of the controlled
plant.

Parameter variations of the real electrical energy source are
caused by changing in time: fuel quality, fuel/air mixture com-
position or incorrect control of a fuel injection system. There
are possible changes of DC-link as a result of ageing capaci-
tors.

Reference speed curvesΩref for changed parameters:α
(fuel/air mixture coefficient),β (torque coefficient) andCdc

(capacity of dc-link) are shown in Fig. 9. Despite changes
in the controlled process, neural voltage controller achieved
proper dynamics and stability.

Fig. 9. Reference speed curvesΩref for changed parameters:α
(fuel/air mixture coefficient),β (torque coefficient) andCdc (capacity

of dc-link)
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6. Conclusions and future work
In this paper, we considered the control problem of a nonlinear
load adaptive autonomous energy source system. Optimization
of the controller is difficult because the object is nonlinear and
no stationary. The presence of a neural network interface made
possible to change speed of the generator and hold simulta-
neously fixed voltage on the output of the system aside from
changes of the process.

In creating a control system for the electrical energy source
with combustion engine, our aim was for the object to be able
to achieve and maintain a goal state regardless of the complex-
ities of its own dynamics or the disturbances it experiences.
Configuration of the system is based on control system with
compensator in the feedback path.

The main advantage of the system (in comparison with the
indirect control system proposed earlier in [1]) is that presented
solution does not include a neural network emulator of the ob-
ject, which emphasizes through the lack of a two-stage control
procedure. The lack of an object emulator makes the system
adaptable and reduces reliance on knowledge of the object to
be controlled.

The resulting performance of presented controller is
promising. The system provides an uninterruptible high qual-
ity output voltage under the most adverse load conditions: large
step/impact loads and nonlinear loads. The ability to learn or at
least refine the controller online in real time has been demon-
strated. It was shown the ability to cope with changing system
parameters too.

The most important task for the immediate future is to ap-
ply the new algorithms, perhaps with some additional modifi-
cations, to the real-world applications. If the speedup and scal-
ing results hold up in these tests, then we will have achieved
something of a breakthrough.
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