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Abstract. In this paper an artificial neural network, which realizes a nonlinear adaptive control algorithm, has been applied in a control system
of variable speed generating system. The speed is adjusted automatically as a function of load power demand. The controller employs
single layer neural network to estimate the unknown plant nonlinearities online. Optimization of the controller is difficult because the plant is
nonlinear and no stationary. Furthermore, it deals with the situation where the plant becomes uncontrollable without any restrictive assumption:
In contrast to previous work [1] on the same subject, the number of neural networks has been reduced to only one network. The number c
the neurons in a network structure as well as choosing certain design parameters was specified a priori. The computer test results have be
presented to show performance of proposed neural controller.
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1. Introduction sive neural network. Neural networks were trained offline us-

| K technol has h i ing data acquired by simulation with the fixed object model.
Neural network technology has had an enormous influence {5+ so|ution did not assure sufficiently good regulating pro-

development of new approaches to system modelling, estimf;aties especially in case of significant changes of the object.

ing and control [2]. Beside fuzzy logic, extended Kalman fil- In publication [1] was presented a similar arrangement to

te.rs and other competitive methods, it qffers good solutions f ] except that the controller was trained online. Those systems
wide range of problems, where a considered process often iy

. . . . . . all used a process model, which was fixed.
volves complicated nonlinear relationships for which classical . ) . .
! . . . . It is possible to develop a neurocontroller in which the em-
solutions are either ineffective or unavailable.

. _ulator of the object is not required at any stage. We propose a
Artificial neural ne_tworks can be used asa represemat_“fggulation structure based on a single neural network which is
framework for mgdelllng nonlinear d.yn.amlcallsystems. It I?earning online without any additional neural object emulator.
also possible to incorporate them within nonlinear feedbagl each of two control architectures described in this paper, the
control structures [3]. ) system identification stage is omitted. The controller does not
Among all types of neural networks, multilayer feedforneeq a process model to predict future performance. In situ-
ward networks have primarily been applied in process modgions where the required controller is less complex than the

elling and control [4]. system model, this type of model-free approach may be one of
The ability of the multilayer NNs in mapping nonlinear re-the most profitable.

lationships comes from the nonlinearities within the nodes. Itis  presented solution can be applied to independent electrical

found that a three layer NN with the backpropagation learningnergy sources with combustion engine, hybrid electric vehi-

algorithm can model a wide range of nonlinear relationships {Qes, wind turbine power control and other nonlinear systems.

areasonable degree of accuracy [5]. In order to have a high degree of flexibility, the simula-

There are typically two steps involved when using neuion structure was implemented in the Matlab/Simulink soft-
ral networks for control: system identification and control degare environment.

sign. In the system identification stage, there is designed a NN
model of the controlled process. In the control design stage,
the model of object is used for training the controller [6]. Th&™ System structure
performances of NN controller are highly dependant on the apresented solution includes system, in which the reference sig-
curacy of the object identification. nal is constant however process is deterministically disrupted
Our main contribution here is connected with the extensioby load. Figure 1 depicts the load-adaptive variable-speed elec-
of previous results [1,7-10]. The publication [7] presents atricity generating system described in detail in [6]. The system
attempt to replace classical PI controller with neural networkomprises a permanent magnet alternd®dd G driven by a
controller. System was created on the basis of direct modellimpmbustion engine. A rectifier converts the AC voltage to DC
where the emulator of the object was implemented as a rectio-provide a variable DC voltage to the input of the converter
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DC/DC — 1, which conditions this voltage to form a DC-link 3. Object identification system

with an appropriately sized energy st.orage (capacitoy. The To assure a fast response and high performance of control, the
second converteDC/DC — 2, supplied by the batters, is  ¢onfiguration of the system is based on a typical control sys-
used in case of transient changes ofie voltage caused by o yith compensator in the feedback path [11,12]. Figure 2

step load. _ _ presents a simplified block diagram of the model-free control
Energy flow between the engine, capacitor, battery ar}f’esign concept.

load is controlled by means of the converters. The control fea- compensator is constructed as a multilayer feedfor-

ture of DC/DC — 1 converter permits manipulation of the . 4 network. The output signal produced by the NN con-
torque acting on the engine, by controlling the current in thg o1 ¢ is subtracted from the reference model's output sig-
alternator. In addition, the voltage in the alternator is alloweﬂal 7. The resulting signal is used as a compensated reference
to vary freely. _ _ signalu for the object. This signal should then be adjusted in
Internal control loop (Engine Control System) is used fof ey 1o produce a ripple-free output signalThe subsystem
stabile operation of engine. The Main Voltage Controller adReference Model is usually a linear filter, which can be de-

justs the engine speed and hence the alternator voltage to maigsaeq to introduce desirable robustness and tracking response
tain the DC link voltage at the reference voltage. The Voltagg i,o closed-loop system

and Current Controller control system regulates the decoupling Figure 3 shows scheme of the neural network model struc-

converter OC/DC—1) current according to the reference cur+, .o anq Fig. 4 shows block diagram for the object identifica-
rent. In a simple control strategy the reference current could lﬁ%n

set to constant. The use of the controllable decoupling CON-" Opiect is represented by the nonlinear 1/0 model:
verter (OC/DC — 1) between the generator and the DC-link

provides the opportunity to control the load on the engine shaft y(k+1) = F(y(k),...,y(k —n+1), )
throughout the variable speed range. u(k),...,u(k —m)) @)
————— Object -——— — — — — — — — — —
/ DC/DC-1 A
ref max
Ig_» Voltage |) Uac |
| and |
1, Current U,
| Controller | 1 |
| PMG  AC/DC |
[ combustion|] 79 —|>{— .
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| T l:
| |
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Control in |
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Fig. 1. Scheme of independent electrical energy source with the neural network voltage controller
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the network and the reference signal, respectively. Substitut-
Compensator ing (3) to (1) and taking'(k) = const. into consideration, the
closed loop dynamics yields:

ylk+1)=g(yk),...,y(k —n+1),7(k), 7
NN(k),..., NN(k — m)).

. y As the object responds, a feedback control uses these mea-
Object surements to modify the effect of the control. The difference

L ) between the object outpuyt k) and signalj(k) is then used

for learning purposes:

gk) =¢ (k) +ulk-1) ()
e(k)=yk) =g k) =y (k) —¢ (k) —u(k—1)  (6)

where:g (k) — denotes the reference signal of the optimization
system.

Structure of the control system based on compensator in
the feedback path is shown in Fig. 5.

4

\ v

v (k+1)

Fig. 3. Neural network model structure

Neural
/4 Network

Fig. 5. Structure of the control system based on compensator in the
feedback path

The idea is to find a set of weights for the network that
maximize the fit to the training data, modified by some sort
of weight penalty to prevent overfitting. To increase the stabil-
ity of the controller we enclosed an integrated error function
to the learning vector. In this connection, new output signal of
the network could be defined as follows:

Object Wk +1) = NN(e(k), W(k),y(k),...
u y ...,y(k—n+1),/{r(k) — y(k)} dk).

Fig. 4. Block diagram for the object identification The goal of the optimization is to find a specific control ac-
tion u(k) to minimize the desired criterion. We use the squared
and the math representation of the neural adaptive controllerdgor cost function, so at any point in tinve, the output error

(7)

as follows: function is: )
Wk +1) = NN (e(k), W(k), o) B (k) = 5= (k)" (8)
y(k),.. . y(k —n+1)) It should be noted that system uncertainties of the structure
u(k) =7(k+1)—(k+1) (3) F(A) are compensated by adapting the synaptic connection

) .. weightsW (k) to minimize the desired control performance
where:y(k) — denotes the output of the object at time |nde>fl3]_ Weights are updated according to the formula:
k,u(k) — the input of the objects(k) — the error function,

. - (k+1) _ i7(F) (k)
W (k) — computed weight vecto (k), #(k) — the output of Wi =W’ + AW (9)
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Fig. 6. The NN controller structure

where:W;; (k + 1) — new value of the weight from neurgrto  modifies the size of the weight step taken adaptively, and the

i, W;;(k) — previous value of the weight\W7ij(k) — update mechanism for adaptation in RPROP does not take into ac-

of the weight. count the magnitude of the gradient, but only the sign of the
The functionE (k) defined above is used to train the netgradient [2]. This method appears to scale up much better than

work in the backward path. The error is propagated backtandard BP as the size and complexity of the learning task

through the layers and used to compute the required changgsws.

(‘deltas’) in the weights structure in order to reduce the error

level In publication [1] we described other reasons for using

RPROP instead of classical backpropagation algorithm in our
. . system. Finally, we used one of few RPROP algorithm version,
4. Optimization algorithm i.e. RPROP [15,18].
As a universal fungtion app.roximato.r, ne_ural net\_/vork hasare- 1o RPROP — algorithm omits the weight-backtracking
r_narkat_>le feature n providing grqdlent _mformanon. 'nfo,rm_a'process that relies on holding previous weights values in mem-
tion of its outputs with respect to its weights as well as its in-
puts can be easily calculated. A major reason for this is the™
existence of a mathematical framework for selecting the NN It should be emphasized that adaptation of the weights is
weights using proofs based on the notion of energy functiofelatively difficult in practice. If the controller parameters are
or of algorithms that effectively tune the weights online [14]P00r, then the resulting control system may fail, because sets of
Gradient algorithms have played a crucial role in this case, atige controller (i.e. number of neurons, unit delays, sample time
they are also a popular choice in neuro-control design. as well as parameters of the algorithm) are strongly dependent
However, it should be kept in mind that these algorithm&n & dynamics, complexity and nonlinearity of the process.
are useful only when gradients are available, and when cost
function is convex [4].
Gradient of the multivariable function gives the direction o, Control system design and simulation results
the steepest changes therefore even little step in this direction

causes a sharp increase of this function. However the same stﬂa  electrical ith busti .
in the opposite direction causes a sharp decrease of gradient. e system of electrical energy source with combustion engine

The backpropagation algorithm (BP) and its variations ofvas applied in the simulation studies of the neural adaptive
fer an effective approach to the computation of the gradien‘fontm”er' The scheme of the neural network used in electrical
One such variation, resilient back propagation (RPROP), is offg€r9y source is shown in Fig. 6.
of the best in terms of speed of convergence [15-17]. The two The output signal of a one-hidden-layer neural network
major differences between BP and RPROP are that RPR®@#h one output neuron and the sigmoidal node architecture
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is defined as follows: useds = 4 unit delays, however sample time of the system is
Uk+1)= amounted td’s = 0.05 s.
Number of neurons in the network structure, number of
unit delays as well as the sample time was selected experimen-
tanh Z W; - tanh (Z Wij - wi(k) + Wfo) +Wo tally. As a teaching method, we used modified backpropagation
I ! method on the basis of RPROMptimization.
where:i, j.0 — the indexation of neurons in the networ(k122ruc- Th_e control of the process starts frpm random initial values
ture b pf weights. At the bggmmng, nqt trained network gen_erates
' incorrect values of signal for object that cause the existence
550U V] . 7 of significant output error. During this time, weights of the
500 ,\ o AN controller were automatically adapted to the process, and after
\V4 A% about 8 seconds controller achieved proper level of precision.
B b & & o 1w 1o e 1o e  Toensure the correct control of the process, weights were ad-
a0l Q 1y [radis] justed individually. Output voltag¥,., reference speeq,.
,__.J \ [¥ as well as load current,, during the adaptation process are
%00 — — N shown in Fig. 7.
030 a0 60 80 100 120 140 160 180 200 The process was being disturbed by sudden changes of the
50 A~ load current lob that caused transitory changes of the output
N l\/\ /\ voltageU,.. They were continuously and aperiodically bridged
I [ “Ugdat \/'\/-\_,-/ | \~ by the controller.
0 20 40 60 80 100 120 140 160 180 200 To have a representative picture of the system dynamic re-

sponses, it is required to simulate the system with at least 20
260 1 [A] ] runs over a 200-second period for various levels of load. Fig-
oo 2P ,—' . - ure 8 shows reference spe@g. ; and output voltagé/,. dur-

0 20 40 60 80 100 120 140 160 180 t[zt;o] ing the adaptation of. th(.a.controller. Obviqusly the higher the

load level, the more significant the uncertainty of the controlled
Fig. 7. Output voltage oDC/DC — 1 Ug., reference speeft,.;, plant.

integrated error and load currehy during adaptation process Parameter variations of the real electrical energy source are
caused by changing in time: fuel quality, fuel/air mixture com-
position or incorrect control of a fuel injection system. There
are possible changes of DC-link as a result of ageing capaci-
tors.

Reference speed curvés..; for changed parametersa:
(fuel/air mixture coefficient)s (torque coefficient) and’y.
(capacity of dc-link) are shown in Fig. 9. Despite changes
in the controlled process, neural voltage controller achieved
50 60 70 80 90 100 110 120 130 140 150 proper dynamiCS and Stablllty

Q ref [rad/s]
450 o= 80% 0“ /\ﬁ_ !
350 \ Il
250

1 1
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Fig. 8. Reference speéd..; and dc-link voltagd/,. during adapta- ‘ : ‘ ‘ ‘
tion of controller (every 5th run in the midst of 20 runs) © 20 40 60 80 100 120 140 160 180 200

0 ¢ '=60%C \ ‘ ‘ .
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380
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The optimization algorithm is being executed every sam- g _J

pling time and its parameters are updated online. Hidden Iayer350 T - l \/_
consists ofnge = 4 sigmoidal neurons and an output layer 250
containsncg = 1 sigmoidal neuron. The input layer consists 0 20 40 60 80 100 120 140 160 180 200

of 6 units, however the input vector consists of 2 next sam- t[s]
ples of voltagel,., 1 delayed sample of integrated error funcig. 9. Reference speed curvés.; for changed parameters
tion, 1 delayed sample of spe€dand 1 sample of load cur- (fuel/air mixture coefficient)3 (torque coefficient) and'y. (capacity
rent/,, (see theNV N controller structure in Fig. 6). There are of dc-link)
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6. Conclusions and future work [4] D. Rumelhart, G. Hinton, and R. Williams, “Learning internal

In thi .y nsidered th ntrol problem of a nonlinear represel_wtations by error propagation”,F?araIlel Distributed
this paper, we considered the control problem of a nonlinea Processingpp. 318-362, Cambridge: MIT Press, 1986.

load adaptive au_tonpr_nous energy source_syst_em. OptlmlzatIO[%] P.P. Kanjilal, “Adaptive prediction and predictive control”,
of the qontroller is difficult because the object is ponlmear and” " \EEE control Engineering Series2, 278—282 (1995).
no stationary. The presence of a neural network interface madgs; 3. korbicz, A. Obuchowicz, and D. Utski, Artificial neural
possible to change speed of the generator and hold simulta- " networks, the basics and applicationarsaw, 1994, (in Pol-
neously fixed voltage on the output of the system aside from ish).
changes of the process. [7] L.M. Grzesiak and J. Sobolewski, “Converter based electrical
In creating a control system for the electrical energy source  energy source with combustion engine, controlled by using the
with combustion engine, our aim was for the object to be able  neural voltage regulatorElectrotechnical Review, 245-251
to achieve and maintain a goal state regardless of the complex-  (2004), (in Polish). ) _
ities of its own dynamics or the disturbances it experiencesl8l L-M. Grzesiak, W. Koczara, and M. Da Ponte, “Load-adaptive
Configuration of the system is based on control system with vanable-spee_d”electrlcny generating system - behaviour anal-
. yse of dynamic”8th European Conference on Power Electron-
compensator in the feedback path. . o )
. . . . ics and Applications, EPE’'99 ausanne, 1-8 (1999).
. _The main advantage of the system (|_n companson with thjg] J. Al-Tayie, R. Seliga, N. Al-Khayat, and W. Koczara, “Steady
indirect control system proposed earlier in [1]) is that presented  state and transient performances of new variable speed generat-
Solution doeS not include a neural network emulator Of the Ob' |ng set”, 10th European Conference on Power Electronics and
ject, which emphasizes through the lack of a two-stage control  Applications EPE'03Toulouse, (2003).
procedure. The lack of an object emulator makes the systeft0] L.M. Grzesiak, W. Koczara, and M.Da Ponte, “Novel hy-
adaptable and reduces reliance on knowledge of the object to brid load-adaptive variable-speed generating systémceed-
be controlled. ings IEEE International Symposium on Industrial Electronics
The resulting performance of presented controller is  ISIE'98, Pretoria, South Africa, 271-276 (1998).
promising. The system provides an uninterruptible high qualt1l L-A. Gould, W.R. Markey, K.K. Roberge, and D.L. Trumper,
ity output voltage under the most adverse load conditions: lar Control Systems Theargambridge, 1997.
. . . iiZ] D. Wyszomierski, On-Line Trained Neural-Network-Based
step/impact loads and nonlinear loads. The ability to learn or

| fi h I line i i has b d Speed Controller for AC Motor DrivePh.D. Dissertation,
east refine the controller online in real time has been demon- WPW, 2003, (in Polish).

strated. It was shown the ability to cope with changing systefy3) . Lu, Y. Sun, and S. MeiNonlinear Control Systems and

parameters too. _ ' ' Power System Dynamidsulwer Academic Publishers, 2001.
The most important task for the immediate future is to apf14] O. Omidvar and D. ElliottNeural Systems for ContrdBoston,
ply the new algorithms, perhaps with some additional modifi- ~ 1997.

cations, to the real-world applications. If the speedup and scel5] M. Riedmiller and H. Braun, *A direct adaptive method for
ing results hold up in these tests, then we will have achieved faster backpropagation learning: The Rprop algorithPi-

something of a breakthrough. ceedings of the IEEE International Conference on Neural Net-
works 586-591 (1993).
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