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Abstract. The paper deals with a composite element in which the matrix is reinforced with two families of parallel continuous fibres inclined
to thex1 axis at the anglesϑ1 andϑ2. The stress and strain states were determined in an element subjected to normal and tangential loads. The
problem of two-criteria optimization is considered. Minimum strain energy and minimum cost of composite element were chosen as criteria.
The strain energy is determined with respect to the system of principal axes of stress. Three independent variables: the angle directing the
first family of fibres, the angle between two families and volume fraction of fibres are selected as the design variables. Examining particular
load cases in composites made with epoxy resin reinforced with carbon fibres elements and in high performance fibre reinforced cementitious
composite elements, optimum solutions have been determined in the sense of assumed criteria.
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1. Introduction

The optimization of fibre reinforcement was considered since
many years for advanced composites. Many of the papers deal
with the composite materials reinforced by one or orthogo-
nal families of fibres. The fibre direction was often selected
as a design variable and the optimum fibre direction was deter-
mined from various mechanical criteria. Many papers deal with
the problem of finding the optimal orientation of orthotropic
axes for an elastic body in order to maximize or minimize the
stiffness of the body (the elastic energy is assumed as a mean-
ingful measure of the global stiffness) Banichuk [1], Pedersen
[2–4], Sacchi Landriani and Rovati [5]. One of the earlier re-
sults on optimal orientation of material symmetry axes can be
found in the work [1], where necessary conditions for optimal
distribution of material properties in orthotropic bodies sub-
jected to plane state of stress are given. The same optimality
conditions for an orthotropic material was independently ob-
tained by Pedersen [2,3] and Sacchi, Rovati [5]. They showed,
that for orthotropic materials the principal strain and stress di-
rections are aligned when the criterion for optimal orientation
is satisfied. In most cases it was obtained alignment between
principal stress directions, principal strain directions and prin-
cipal material directions too. However, optimal orientations ex-
ist for which the principal axes of material differ from those
of the principal strains. Pedersen [2,3] performed a systematic
study of the optimal solutions in the plane stress problem for
the case of a material that had low shear stiffness and for a
material that had high shear stiffness. The more general prob-
lem to maximize or minimize stiffness was studied by Pedersen
and Bendsoe [6], Pedersen and Cheng [7]. The optimal orienta-
tion of fibres was determined by means of the above-mentioned
material parameter – shear stiffness, which appears in the ex-
pression for the strain energy density, and of another, corre-

sponding parameter which describes the strain energy density
in terms of stress.

The description of a composite element presented by
Marks [8–10] is a continuous description taking into account
the physical properties of the matrix and fibres and taking into
account the assumption of strain compatibility between fibres
and matrix. A similar model of a fibre composite body was pre-
sented byŚwitka [11]. The aforementioned paper concerned
elastic plates made of fibrous composite and loaded in bend-
ing. The expression for the tensor of internal forces in the cen-
tral plane of the plate has a form similar to the expression for
the mean stress in the composite element, [8]. This expression
differs in the number of fibre families and in the term for de-
termination of density ofr-th family of fibres.

The papers by Marks [9,10] differ basically from those
that concern problems of optimization of the orientation of
fibres in orthotropic bodies, presented in the papers speci-
fied above. The papers [9,10] deal with the optimization of a
composite element made of matrix reinforced with two non-
orthogonal families of continuous fibres. The minimum strain
energy is chosen as the optimization criterion similar to those
in other papers on orthotropic materials. The necessary condi-
tions for the minimum of strain energy described in the system
of principal stress directions are determined on the basis of
the Kuhn-Tucker theorem. From analytical solution of the op-
timization problem for two fibre families, three solutions have
been found, in which a global minimum of the strain energy
can be searched for. The solutions are: two family of fibres
are aligned and placed along the direction of principal stress
corresponding to its greater absolute value, two fibre families
placed along the principal directions and two non-orthogonal
fibre families satisfying the certain set of equations. The opti-
mal solution depends on the material constants of the matrix
and fibres, on the magnitude of the load, and on the volumetric
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content of fibres. In the cases of two kinds of composites of
basically different properties of fibres and matrix identified are
the ranges of principal stresses ratio at which the global mini-
mum of the strain energy corresponds either to the first, to the
second or to the third solution [12].

The present work is a development of the aforementioned
papers. Two-criteria optimization of a disc element formed of
the matrix reinforced with continuous, non-orthogonal fibres
belonging to two families is considered. Minimum strain en-
ergy and minimum cost of composite element were assumed
as the criteria of optimization. The fibre directions of two fam-
ilies and volume fraction of fibres are selected as the design
variables. The necessary conditions of minimum strain energy
were determined from Kuhn-Tucker theorem. The strain en-
ergy is determined with respect to the system of principal axes
of stress.

The obtained solutions are applied to design of elements of
building structures. The optimum directions of the fibre fam-
ilies and volume fraction of the fibre reinforcement are deter-
mined in the composite of epoxy matrix reinforced with carbon
fibres and in the high performance cementitious composite re-
inforced by steel fibres. These structural elements are subjected
to various normal and tangential loads.

2. Basic assumptions and constitutive equations
Let us consider the composite element in the shape of a disc, in
which the matrix is reinforced by two families of parallel fibres
inclined at anglesϑ1 andϑ2 tox1 axis, see Fig. 1. Every family
is constituted of continuous, thin fibres placed in parallel rela-
tively to each other in the plane parallel to the middle plane of
the disc element. The fibres of a given family have a common
constant direction and are densely distributed. The composite
element is in the plane state of stress which can be described
by three stress components of a generalized plane stress state
σαβ α, β = 1, 2. The stress componentsσαβ correspond to
certain mean values over the thickness of the plate. Follow-
ing assumptions were taken regarding the materials: the ma-
trix is isotropic, matrix as well as thin fibres are linear elastic
and homogeneous, strain compatibility is ensured between the
fibres and the matrix. Taking advantage of generalized stress
state and the assumptions concerning the materials, physical
relationships were obtained defining stress components in the
composite in the following form [8]

σαβ =
E(m)

1 + ν

(
εαβ +

ν

1− ν
δαβεδδ

)
hm

h

+ E(s) ha

h
εγδaγaδaαaβ

+ E(s) hb

h
εγδbγbδbαbβ

(1)

whereE(m) – Young’s modulus of matrix,E(s) – Young’s
modulus of fibres,ν – Poisson’s ratio of the matrix,hm - thick-
ness of matrix,ha andhb - thicknesses of fibre layers having
direction vectorsa andb (h = hm + ha + hb). Physical re-
lations (1) have the form of relationships describing homoge-
neous and anisotropic material. Taking into account the form

of vectors tangent to the first and the second fibre family, the
stress components in the composite can be presented as fol-
lows:

Fig. 1. Composite element reinforced by two families of fibres

σ11 = C11ε11 + C12ε22 + C13 (2ε12) ,

σ22 = C12ε11 + C22ε22 + C23 (2ε12) ,

σ12 = C13ε11 + C22ε23 + C33 (2ε12) ,

(2)

where:

C11 =
E(m)

(1 + ν) (1− ν)
hm

h

+ E(s)

(
ha

h
cos4 ϑ1 +

hb

h
cos4 ϑ2

)
,

C12 =
νE(m)

(1 + ν) (1− ν)
hm

h

+ E(s)

(
ha

h
sin2 ϑ1 cos2 ϑ1 +

hb

h
sin2 ϑ2 cos2 ϑ2

)
,

C13 = E(s)

(
ha

h
sin ϑ1 cos3 ϑ1 +

hb

h
sin ϑ2 cos3 ϑ2

)
,

C22 =
E(m)

(1 + ν) (1− ν)
hm

h

+ E(s)

(
ha

h
sin4 ϑ1 +

hb

h
sin4 ϑ2

)
,

C23 = E(s)

(
ha

h
sin3 ϑ1 cos ϑ1 +

hb

h
sin3 ϑ2 cos ϑ2

)
,

C33 =
E(m)

2 (1 + ν)
hm

h

+ E(s)

(
ha

h
sin2 ϑ1 cos2 ϑ1 +

hb

h
sin2 ϑ2 cos2 ϑ2

)
.

From Eq. (2) the strain components are determined; they take
the following form:

ε11 = S11σ11 + S12σ22 + S13σ12,

ε22 = S12σ11 + S22σ22 + S23σ12,

2ε12 = S13σ11 + S23σ22 + S33σ12.
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Assuming equal distribution of fibres in two directions, that is
ha

h = hb

h = 1
2η, whereη = h−hm

h defines the volume fraction
of fibres; denoting in addition the angle between fibre families
by α, the components of matrixSij are given in the following
form:

S11 =
1
D

{ (
E(m)

)2

(1 + ν)2 (1− ν)
(1− η)2 +

E(m)E(s)

4 (1 + ν) (1− ν)

× (1− η) η +
3E(m)E(s)

8 (1 + ν)
(1− η) η

− E(m)E(s)

8 (1− ν)
(1− η) η cos 2 (2ϑ1 + α) cos 2α

− E(m)E(s)

2 (1 + ν)
(1− η) η cos (2ϑ1 + α) cos α

+
1
8

(
E(s)

)2

(η)2 [cos α− cos (2ϑ1 + α)]2 sin2 α

}
,

S12 = − 1
D

{
ν

(
E(m)

)2

(1 + ν)2 (1− ν)
(1− η)2 +

E(m)E(s)

8 (1− ν)

× (1− η) η [1− cos 2 (2ϑ1 + α) cos 2α]

−
(
E(s)

)2

16
η2 [cos 2α− cos 2 (2ϑ1 + α)] sin2 α

}
,

S13 =
1
D

{
−E(m)E(s)

2 (1 + ν)
(1− η) η sin (2ϑ1 + α) cos α

− E(m)E(s)

4 (1− ν)
(1− η) η sin 2 (2ϑ1 + α) cos 2α

−
(
E(s)

)2

4
η2 [cos α− cos (2ϑ1 + α)]

× sin (2ϑ1 + α) sin2 α
}

,

S22 =
1
D

{ (
E(m)

)2

(1 + ν)2 (1− ν)
(1− η)2 +

E(m)E(s)

4 (1 + ν) (1− ν)

× (1− η) η +
3E(m)E(s)

8 (1 + ν)
(1− η) η

− E(m)E(s)

8 (1− ν)
(1− η) η cos 2 (2ϑ1 + α) cos 2α

+
E(m)E(s)

2 (1 + ν)
(1− η) η cos (2ϑ1 + α) cos α

+
1
8

(
E(s)

)2

(η)2 [cos α + cos (2ϑ1 + α)]2 sin2 α

}
,

(3)

S23 = − 1
D

{
E(m)E(s)

2 (1 + ν)
(1− η) η sin (2ϑ1 + α) cos α

− E(m)E(s)

4 (1− ν)
(1− η) η sin 2 (2ϑ1 + α) cos 2α

+

(
E(s)

)2

4
η2 [cos α + cos (2ϑ1 + α)]

× sin (2ϑ1 + α) sin2 α
}

,

S33 =
2
D

{ (
E(m)

)2

(1 + ν) (1− ν)
(1− η)2 +

E(m)E(s)

(1 + ν) (1− ν)

× (1− η) η − E(m)E(s)

4 (1− ν)
(1− η) η

× [1− cos 2(2ϑ1 + α) cos 2α] +
1
4

(
E(s)

)(2)

× η2 sin2 (2ϑ1 + α) sin2 α
}

and

D =
E(m) (1− η)

(1 + ν) (1− ν)

×
[(

E(m)
)2

(1− η)2

(1 + ν)
+

E(m)E(s)η (1− η)
(1 + ν)

+

(
E(s)

)2
η2

4
(
1− cos4 α− ν sin4 α

)
]

.

The strain energy of composite element may be expressed by
the relation from [8]

U =
1
2

y

V

σijεijdV = h
x

Ω

WdΩ, (4)

where the integrand is

W =
1
2
σαβεαβ =

1
2

{
S11 (σ11)

2 + 2S12σ11σ22 + S22 (σ22)
2

+ 2S13σ11σ12 + 2S23σ22σ12 + S33 (σ12)
2
}

.

In order to simplify the expression of function W, a new
coordinate system (y1, y2) is introduced, inclined at angleβ
to coordinate (x1, x2) , which is coincident with principal axes
of stress and denote the stress tensor components byσI , σII

(σI = σy1y1 , σII = σy2y2 , σy1y2 = 0). The both coordinate
system are Cartesian and orthogonal. In the new coordinate
system the strain energyW is:

W =
1
2

(
S11σ

2
I + 2S12σIσII + S22σ

2
II

)
,

whereSγδ(γ, β = 1, 2) are functions defined by Eqs. (3) de-
pending on variables(ϑ1 + β), α. After substituting expres-
sionsS11, S12, S22 the strain energy in the system of principal
axes of stress is expressed in the following form [6]:

W =
1

2D

{
−(σII − σI)2

[[
E(m)E(s)

8(1− ν)
η(1− η) cos 2α

−
(
E(s)

)2

16
η2 sin2 α

]
cos 2 [(2ϑ1 + α)− 2β]

−
(
E(s)

)2

16
η2 sin2 α

]
+ (σII + σI)

2

(
E(s)

)2

8
η2 sin2 α cos2 α

+
(
σ2

II − σ2
I

)
[

E(m)E(s)

2 (1 + ν)
η (1− η) +

(
E(s)

)2

4
η2 sin2 α

]

× cos [(2ϑ1 + α)− 2β] cos α
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+
(
σ2

I − 2νσIσII + σ2
II

) (
E(m)

)2
(1− η)2

(1 + ν)2 (1− ν)

+
(
σ2

I + σ2
II

) 3E(m)E(s)η (1− η)
8 (1 + ν)

+
(
σ2

I − (1 + ν)σIσII + σ2
II

) E(m)E(s)η (1− η)
4 (1 + ν) (1− ν)

}
.

(5)

3. Basic notions of multicriteria optimisation

The search of the composite materials with better and better
properties, particularly the materials used in building struc-
tures, are a subject of many investigations, both theoretical and
experimental. For such materials various requirements are for-
mulated, often contradictory. In such situation the multicriteria
optimization can help out in finding of a material with the re-
quired properties.

The basic notions in formulating a multicriteria optimiza-
tion problem are: decision variables, constrains and optimiza-
tion criteria, also known as objective functions.

The decision variables are usually expressed in the form
of a vectorxT = (x1, x2, ..., xn) in an n-dimensional space
called the decision space. Every point in the space corresponds
to a composite withn decision variables.

In optimization of materials, unconstrained extrema of the
objective function are seldom looked for. A great number of
constrains are usually imposed, defining the feasible region
Ω. The feasible regionΩ is usually only a part of then-
dimensional space of the decision variables given byΩ =
{xεRn: h(x) = 0, g(x) ≤ 0}.

The multicriteria optimization consists in the choice of the
best solution from many possible variants on the basis of many
criteria, i.e. on the selection of a vectorfT = (f1, f2, ..., fk)
corresponding to an objective function. A multicriteria opti-
mization problem can be therefore treated as an optimization
problem of an objective function vector. The objective func-
tions space is k-dimensional. An objective regionf(Ω) is a
part of the objective space.

The solutionxid which makes every objective function
reach its extremum independently, is called the ideal solution
of multicriteria optimization. In the case of the search for the
minimumf(x), xid is therefore the ideal solution of multicri-
teria problem ifxid ∈ Ω andf(xid) ≤ f(x) for everyx ∈ Ω.
As the objective functions are usually in conflict, the ideal so-
lution does not exist in most cases. This means that all criteria
can simultaneously obtain their minimum values. Such criteria
are referred to as cooperating criteria and the related solution
is called the ideal solution.

The solution, in which none of the objective functions can
be improved without simultaneous deterioration of at least
one of the remaining objective functions, is called the non-
dominated solution. Vectorx∗ is a non-dominated solution
when no suchx ∈ Ω exists thatfj(x) ≤ fj(x∗) at j ∈ J =
1, 2, ..., k and fj(x) < fj(x∗) for at least onej ∈ J . The
search for non-dominated solutions is called optimization in
the Pareto-sense. The Pareto solution in general is not unique.
Manyx∗ vectors usually exist in theΩ space, to which corre-

sponds the vectorf∗ = f(x∗) constituting the set of compro-
mises.

In view of the great number of non-dominated solutions, it
is necessary to select the best one on the basis of an additional
criterion. Such a solution is called the preferred solution. The
preferred solutionxpr is a non-dominated selected on the basis
of an additional criterion. It corresponds to the valuesf(xpr)
contained within the objective region and is considered to be
the best solution.

A solution of a multicriteria optimization problem in-
cludes, therefore, objective quantities, to which belong:

– the set of compromises,
– the ideal point,

and the quantities which depend on additional preferences:

– preferred solution, that is the vector of objective functions
fpr and the corresponding vector of decision variablesxpr.

If there are no additional preferences, the preferred solution
is assumed to be the point belonging to the set of compromises,
situated nearest to the ideal point and the corresponding vector
of the decision variables [13,14].

4. Multicriterial optimization of orientation
and volume fraction of fibres

The optimization criteria are as follows:

– minimum strain energy of the composite element (4)
– minimum cost of the composite element. The cost is ex-

pressed in the following form [10]:

K(η) = (1− η)k1 + ηk2, (6)

wherek1 andk2, are unit costs of matrix and fibres, respec-
tively. Herek2 > k1.

There are three independent design variables: the angle of
inclinationϑ1 of one of fibre families tox1 axis, the angleα
between the two families and the volume of fibre reinforcement
η. The constrains for the variables are:

0 6 ϑ1 6 π, 0 6 α 6 π, η 6 η 6 η,

whereη, η are lower and upper limit fractions of fibres.
To solve the problem a substitute objective function is con-

structed:

F ∗ = W − µ1ϑ1 + µ2 (ϑ1 − π)− µ3α + µ4 (α− π)

+ µ5

(
η − η

)
+ µ6 (η − η̄) .

(7)

The necessary conditions for the minimum strain energy
are derived from the Kuhn-Tucker theorem in the following
form:
– the conditions of equality are:

ϑ1

(
∂ W

∂ϑ1
− µ1 + µ2

)
= 0,

α

(
∂ W

∂α
− µ3 + µ4

)
= 0, (8)

η

(
∂W

∂η
− µ5 + µ6

)
= 0,
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− µ1ϑ1 = 0, µ2 (ϑ1 − π) = 0, −µ3α = 0,

µ4 (α− π) = 0, µ5(η − η) = 0, µ6 (η − η̄) = 0;

– the conditions of inequality are:

∂ W

∂ϑ1
−µ1+µ2 > 0,

∂W

∂α
−µ3+µ4 > 0,

∂W

∂η
−µ5+µ6 > 0,

∂F ∗

∂µi
6 0, i = 1, ..., 6, ϑ1 > 0, α > 0, η > 0, µi > 0.

(9)
By virtue of the Kuhn-Tucker’s theorem (8), (9), it clearly ap-
pears that the global minimum of the strain energy can occur
at one of the solutions of the system of equations presented
below:
1◦

sin [(2ϑ1 + α)− 2β] = 0
sin α = 0
η = η

(10)

2◦

sin [(2ϑ1 + α)− 2β] = 0, (11)

E(m)

(1− ν2)
(1− η)

×
{[

(σII − σI)
2

(
E(m)E(s)

2(1− ν)
η(1− η) +

(
E(s)

)2

4
η2

)

× cos α− (
σ2

II − σ2
I

) (
E(m)E(s)

2 (1 + ν)
η (1− η)

+

(
E(s)

)2

4
η2

(
sin2 α− 2 cos2 α

)
)

cos [(2ϑ1 + α)− 2β]

+ (σI + σII)
2

(
E(s)

)2

4
η2 cos α cos 2α

]

×
((

E(m)
)2

(1 + ν)
(1− η)2 +

E(m)E(s)

(1 + ν)
η (1− η)

+

(
E(s)

)2

4
η2

(
1− cos4 α− ν sin4 α

)
)

+

(
E(s)

)2

2
η2

[
− (σII − σI)

2

×
(

E(m)E(s)

4 (1− ν)
η (1− η) cos 2α−

(
E(s)

)2

4
η2 sin2 α

)

+
(
σ2

II − σ2
I

)
(

E(m)E(s)

(1 + ν)
η (1− η) +

(
E(s)

)2

2
η2 sin2 α

)

× cos [(2ϑ1 + α)− 2β] cos α

+ 2
(
σ2

I − 2νσIσII + σ2
II

) (
E(m)

)2

(1 + ν)2 (1− ν)
(1− η)2

+
(
σ2

I − (1 + ν)σIσII + σ2
II

) E(m)E(s)

2 (1 + ν) (1− ν)
η (1− η)

+
(
σ2

I + σ2
II

) 3E(m)E(s)

4(1 + ν)
η(1− η) + (σI + σII)2

(
E(s)

)2

4
× η2 sin2 α cos2 α

] (
ν sin2 α− cos2 α

)
cos α

}
= 0

η = η

3◦
cos α = 0,

cos [(2ϑ1 + α)− 2β] = 0
η = η.

(12)

In order to obtain a solution of the two-criterial optimiza-
tion problem, we should determine a compromise set, an ideal
solution, and a preferred solution. For this purpose we should
construct the normalized functions in the following form:

Φ1 (ϑ1, α, η) =
W (ϑ1, α, η)

Wo

Φ2 (η) =
K (η)
Ko

,

(13)

whereW (ϑ1, α, η) is the function (5), andK(η) the function
of cost (6);Wo andKo are the maximum values of these func-
tions in the compromise set. BecauseKo = (1 − η̄)k1 + η̄k2,
the functionΦ2 depends on the ratio of unit costs of fibres to
that of matrix

Φ2 (η) =
(1− η) + η k2

k1

(1− η̄) + η̄ k2
k1

. (14)

In order to obtain an ideal solution we should search mini-
mum of the strain energyW (ϑ1, α, η) and the function of cost
K(η). The strain energy attains minimum for upper limit frac-
tion of fibresη = η and for the angles of fibre inclination

ϑ1 =
o

ϑ1 andα =
o
α. The determined angles are obtained from

the solutions of the system of the Eqs. (10) or (11) or (12).
The solutions depend on type of composite, they depend there-
fore on material constants of matrix and fibres, on upper limit
volume fraction of fibresη and on the imposed external loads
p, q, τ . The function of cost of the composite element (6) is the
linear function of the decision variableη and attains minimum
at lower limit fraction of fibresη. Therefore the ideal solution
is characterized by following coordinates:

Φid
1 =

W

(
o

ϑ1,
o
α, η

)

Wo
,

Φid
2 =

1− η + η k2
k1

ko
,

(15)

herek0 = 1 − η + η k2
k1

, andWo is the minimal value of the

strain energyW for η = η and for the anglesϑ1 =
∗
ϑ1, α =

∗
α,

which are obtained from the solutions of the system of Eqs.
(12) or (13) or (14).

The function of cost is a linear function of the decision
variableη and the function of the strain energy is the func-
tion of three decision variablesϑ1, α, η. Therefore to obtain
the compromise set, we should search for different values of
theη ∈ [

η, η
]

the values of the functionΦ2 (14) and minimum
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values of the function(13). The preferred solution may be ob-
tained as the Euclidean metric function [13,14] expressing the
distance between the set of compromises and the ideal point,
and its minimum is determined:

T (ϑ1, α, η)

=
{ [

Φ1 (ϑ1, α, η)− Φid
1

]2
+

[
Φ2 (η)− Φid

2

] 2
} 1

2
.

(16)

It is supposed that the composite element is subjected to
two normal loads:p along the axisx2 andq = kp along the
axisx1 and to a tangent loadτ = lp in the following type of
composites:

– the composite of epoxy matrix reinforced by carbon fibres
with the material constants (E(m) = 3.5 GPa,E(s) = 220
GPa,ν = 0.35) with the lower and upper limit fractions
η = 0.1 andη = 0.6, respectively. Three examples are con-
sidered with the following ratios of loads:k = 0.5 l = 0.3;
k = 0.5 l = 0; k = −0.5 l = 0.3. In the function of cost,
the ratio of the unit costs of the carbon fibres to epoxy ma-
trix k2/k1 = 7.4 is accepted.

– the high performance cementitious composite reinforced by
steel fibres with the material constants (E(m) = 40 GPa,
E(s) = 210 GPa,ν = 0.23) with the lower limit fraction
η = 0.02 and upperη = 0.08. Two examples are consid-
ered with the following ratios of loads (k = 0.5 l = 0.3;
k = −0.5 l = 3). In the function of cost, the ratio of the
unit costs of the steel fibres to concrete B70k2/k1 = 100 is
accepted.

5. Minimum strain energy and minimum cost
of a composite element made of epoxy matrix
reinforced with two families of carbon fibres

In the first example (k = 0.5 l = 0.3) the functionW
reaches minimum when the decision variables satisfy the set
of Eqs. (11). The solution of these equations has the following
form ϑ1 = 36.17◦, α = 57.46◦, η = 0.6. The obtained angles
of fibre inclination satisfy the condition2ϑ1 + α = 2β + π.
The functionΦ2(η) attains its minimum forη = 0.1 and
ko = 4.84. The constantWo is the value of the functionW
in pointϑ1 = 44.18◦, α = 41.44◦, η = 0.1 andWo = 0.2485.
This is the maximum value of the functionW in the compro-
mise set. In the non-dimensional space of objective functions
Φ1Φ2 (Fig. 2) the compromise set is introduced, the ideal point
A is determined by the following coordinates:

Φid
1 = 0.2325, Φid

2 = 0.3388.

As the preferred solution is admitted point D of compromise
set that is closest to the ideal solution. Its coordinates are ob-
tained from the Eq. (16):

Φ1 = 0.4569, Φ2 = 0.5769.

In the space of the design variables this corresponds to

ϑ1 = 37.86◦, α = 54.08◦, η = 0.28.

In the second example (k = 0.5 l = 0) the strain energy
attains its minimum when the decision variables too satisfy the

Eqs. (11). Then the solution of the equations isϑ1 = 55.1◦,
α = 69.8◦, η = 0.6. The constantWo is adopted as the value
of the functionW in the pointϑ1 = 59.35◦, α = 61.30◦,
η = 0.1 andWo = 0.2485. The ideal solution is determined
by the following coordinates:

Φid
1 = 0.2321, Φid

2 = 0.3388.

The preferred solution is proposed to be the point which is
closest to the ideal solution and is determined by the follow-
ing coordinates

Φ1 = 0.4580, Φ2 = 0.5757.

In the space of the design variables, this corresponds to:

ϑ1 = 56.03◦, α = 67.94◦, η = 0.2791.

Fig. 2. Compromise set for a composite element of epoxy matrix re-
inforced with carbon fibres fork = 0.5 andl = 0.3

In the third example (k = −0.5 l = 0.3) the function W
attains minimum when the decision variables satisfy the set
of Eq. (12). The solution of these equations has the following
form ϑ1 = β + 90◦ = 79.10◦, α = 90◦, η = 0.6. Here for
upper limit fraction of fibres two orthogonal fibre families co-
incide with the directions of principal stresses. The value of the
functionW in the pointϑ1 = β + 90◦, α = 90◦, η = 0.1 is
accepted as the constantWo = 0.3702. The coordinates of the
ideal solution are

Φid
1 = 0.2014, Φid

2 = 0.3388.

The preferred point in the compromise set is determined by the
coordinates:

Φ1 = 0.4196, Φ2 = 0.5693.

In the space of the design variables this corresponds to

ϑ1 = 79.1◦, α = 90◦, η = 0.2743.

In the considered examples the obtained compromise sets
have similar shape as presented in Fig. 2. In the first two exam-
ples, we suppose that the composite element is subjected to the
tensile loadp along the axisx2, to the tensile loadq = 0.5p
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applied along the axisx1 and in the first example to the tan-
gent loadτ = 0.3p. It may be concluded, that the preferred
solutions correspond to the composite element with a volume
fraction of fibres equal to 28% and with two families of fibres,
which are inclined at following angles:

– in the first example the first family of fibres is inclined at
an angle37.86◦ to the axisx1 and the angle between both
families is54.08◦,

– in the second example the first family of fibres is inclined
at an angle56.03◦ and the angle between both families is
67.94◦.

The obtained angles satisfy therefore the condition2ϑ1 +
α = 2β + π. In the third example it is supposed that the com-
posite element is subjected to the tensile loadp along the axis
x2, to the compressive loadq = −0.5p applied along the axis
x1 and to the tangent loadτ = 0.3p. In this example, the op-
timal solution is the composite element with two orthogonal
fibre families coincide with the directions of principal stresses
and with a volume fraction of fibres equal to 27%.

6. Minimum strain energy and minimum cost
for a high performance cementitious
composite element reinforced by steel fibres

In the first example (k = 0.5 l = 0.3) the function W reaches
minimum when the decision variables satisfy the set of equa-
tions (10). This solution of these equations has the following
form ϑ1 = β+90◦ = 64.9◦, α = 0◦, η = 0.08. Here for upper
limit fraction of fibres the single family of fibre corresponds
to the principal direction of stress. The functionΦ2 attains its
minimum for η = 0.02 andko = 8.92. The functionW for
ϑ1 = 64.9◦, α = 0◦, η = 0.02 is adopted as the constantWo.
In the non-dimensional space of objective function (Fig. 3) the
compromise set is introduced, the ideal pointA is determined
from the condition (15) and has the following coordinates:

Φid
1 = 0.8373, Φid

2 = 0.3341.

As the preferred solution the point D of compromise set, that
is closest to the ideal solution, is admitted. Its coordinates are
obtained from the Eq. (16):

Φ1 = 0.9868, Φ2 = 0.3783,

which corresponds to the design variables

ϑ1 = 64.9◦, α = 0◦, η = 0.02398.

In the second example (k = −0.5 l = 3) the strain energy
attains its minimum when the decision variables satisfy the
Eq. (12). Then the solution of the equations isϑ1 = β +90◦ =
52.02◦, α = 90◦, η = 0.08. The constantWo is the value of
the functionW in the pointϑ1 = 52.02◦, α = 90◦, η = 0.02.
The ideal solution is determined by the following coordinates:

Φid
1 = 0.8867, Φid

2 = 0.3341.

In the considered example the preferred point in the compro-
mise set is determined by the coordinates:

Φ1 = 0.9960, Φ2 = 0.3549.

In the space of the design variables, this corresponds to:

ϑ1 = 52.02◦, α = 90◦, η = 0.0219.

In the considered examples the obtained compromise sets
have the similar shape as presented in Fig. 3. In the first exam-
ple the preferred solution correspond to the composite element
with one family of fibres inclined in the direction coinciding
with the principal stress axisϑ1 = β + 90◦ = 64.9◦ and with
the volume fraction of fibres equal to 2.4%. In the second ex-
ample the preferred solution correspond to the composite ele-
ment with two orthogonal fibre families coincide with the di-
rections of principal stressesϑ1 = β + 90◦ = 52.02◦and with
the volume fraction of fibres equal to 2.2%.

Fig. 3. Compromise set for a high performance cementitious compos-
ite element reinforced by steel fibres fork = 0.5 andl = 0.3

7. Concluding remarks
The problem of two-criteria optimization was considered. Min-
imum strain energy and minimum cost of composite element
were assumed as criteria.

On the basis of the analytical solution (10), (11), (12) it was
found, that the strain energy of the composite element attains
minimum at the upper limit fraction of fibres and at one of the
three following arrangements of fibres: two family of fibres
are aligned and placed along the direction of principal stress
corresponding to its greater absolute value, two fibre families
placed along the principal directions, two non-orthogonal fi-
bre families satisfying the set of Eqs. (11). The function of the
cost attains minimum at the lower limit fraction of the fibres,
so these criteria are therefore in a conflict.

Examining particular load cases in composite elements of
epoxy resin reinforced by carbon fibres and in high perfor-
mance fibre reinforced cementitious composite elements, the
angles of inclination of fibres and the fraction of fibres have
been determined in the sense of assumed criteria. The optimal
angles of inclination of fibres depend on the material constants
of matrix and fibres, on the magnitude of load and on the max-
imal fraction of fibres. In high performance fibre reinforced
cementitious composite elements the optimal fraction of fibres
is almost equal to the minimal fractionη. Here the criterion of
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cost in which the ratio of the unit costs of the steel fibres to
concrete matrix is accepted as the high value, has a great in-
fluence in determining the preferred solutions. At the low ratio
k2/k1, the fraction of fibres in the preferred solution is larger.

The obtained solutions are local. They concern an inter-
nal differential element. Such formulation of the designing
problem of an optimal distribution of non-orthogonal fibres
and their volumetric contents (in terms of both criteria), can
be applied to design composite structures with certain bound-
ary conditions, which can be realized by numerical procedures
based on the finite element method.
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