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Abstract. The paper deals with a composite element in which the matrix is reinforced with two families of parallel continuous fibres inclined
to thex; axis at the angled; and¥,. The stress and strain states were determined in an element subjected to normal and tangential loads. The
problem of two-criteria optimization is considered. Minimum strain energy and minimum cost of composite element were chosen as criteria.
The strain energy is determined with respect to the system of principal axes of stress. Three independent variables: the angle directing tt
first family of fibres, the angle between two families and volume fraction of fibres are selected as the design variables. Examining patrticular
load cases in composites made with epoxy resin reinforced with carbon fibres elements and in high performance fibre reinforced cementitiot
composite elements, optimum solutions have been determined in the sense of assumed criteria.

Key words: multicriterial optimization, composite element with two non-orthogonal families of fibres, minimum strain energy.

1. Introduction sponding parameter which describes the strain energy density
in terms of stress.
The optimization of fibre reinforcement was considered since The description of a composite element presented by
many years for advanced composites. Many of the papers déddrks [8—10] is a continuous description taking into account
with the composite materials reinforced by one or orthogdhe physical properties of the matrix and fibres and taking into
nal families of fibres. The fibre direction was often selectedccount the assumption of strain compatibility between fibres
as a design variable and the optimum fibre direction was detemnd matrix. A similar model of a fibre composite body was pre-
mined from various mechanical criteria. Many papers deal witbented bySwitka [11]. The aforementioned paper concerned
the problem of finding the optimal orientation of orthotropicelastic plates made of fibrous composite and loaded in bend-
axes for an elastic body in order to maximize or minimize thang. The expression for the tensor of internal forces in the cen-
stiffness of the body (the elastic energy is assumed as a me&nal plane of the plate has a form similar to the expression for
ingful measure of the global stiffness) Banichuk [1], Pedersehe mean stress in the composite element, [8]. This expression
[2—4], Sacchi Landriani and Rovati [5]. One of the earlier rediffers in the number of fibre families and in the term for de-
sults on optimal orientation of material symmetry axes can lermination of density of-th family of fibres.
found in the work [1], where necessary conditions for optimal The papers by Marks [9,10] differ basically from those
distribution of material properties in orthotropic bodies subthat concern problems of optimization of the orientation of
jected to plane state of stress are given. The same optimalftgres in orthotropic bodies, presented in the papers speci-
conditions for an orthotropic material was independently olfied above. The papers [9,10] deal with the optimization of a
tained by Pedersen [2,3] and Sacchi, Rovati [5]. They showedhmposite element made of matrix reinforced with two non-
that for orthotropic materials the principal strain and stress derthogonal families of continuous fibres. The minimum strain
rections are aligned when the criterion for optimal orientatioenergy is chosen as the optimization criterion similar to those
is satisfied. In most cases it was obtained alignment betwegnother papers on orthotropic materials. The necessary condi-
principal stress directions, principal strain directions and prirtions for the minimum of strain energy described in the system
cipal material directions too. However, optimal orientations exaf principal stress directions are determined on the basis of
ist for which the principal axes of material differ from thosethe Kuhn-Tucker theorem. From analytical solution of the op-
of the principal strains. Pedersen [2,3] performed a systematimization problem for two fibre families, three solutions have
study of the optimal solutions in the plane stress problem fdreen found, in which a global minimum of the strain energy
the case of a material that had low shear stiffness and forcan be searched for. The solutions are: two family of fibres
material that had high shear stiffness. The more general prodre aligned and placed along the direction of principal stress
lem to maximize or minimize stiffness was studied by Pedersamrresponding to its greater absolute value, two fibre families
and Bendsoe [6], Pedersen and Cheng [7]. The optimal orienfdaced along the principal directions and two non-orthogonal
tion of fibres was determined by means of the above-mentionétire families satisfying the certain set of equations. The opti-
material parameter — shear stiffness, which appears in the eral solution depends on the material constants of the matrix
pression for the strain energy density, and of another, corrand fibres, on the magnitude of the load, and on the volumetric
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content of fibres. In the cases of two kinds of composites aff vectors tangent to the first and the second fibre family, the
basically different properties of fibres and matrix identified arstress components in the composite can be presented as fol-
the ranges of principal stresses ratio at which the global miniews:
mum of the strain energy corresponds either to the first, to the
second or to the third solution [12].

The present work is a development of the aforementioned
papers. Two-criteria optimization of a disc element formed of
the matrix reinforced with continuous, non-orthogonal fibres
belonging to two families is considered. Minimum strain en-
ergy and minimum cost of composite element were assumed
as the criteria of optimization. The fibre directions of two fam-
ilies and volume fraction of fibres are selected as the design
variables. The necessary conditions of minimum strain energy
were determined from Kuhn-Tucker theorem. The strain en-
ergy is determined with respect to the system of principal axes
of stress.

The obtained solutions are applied to design of elements of [ o Z g,‘/p;f =
building structures. The optimum directions of the fibre fam- S

ilies and volume fraction of the fibre reinforcement are deter-
mined in the composite of epoxy matrix reinforced with carbon
fibres and in the high performance cementitious composite re-
inforced by steel fibres. These structural elements are subjected 011 = Crie11 + Craggn + Cis (2e12)
to various normal and tangential loads.

g 022 = Crae11 + Cooean + Coz (2612), (2)

o12 = Cize11 + Ceag + Cs3 (2612) ,

Fig. 1. Composite element reinforced by two families of fibres

2. Basic assumptions and constitutive equations

Let us consider the composite element in the shape of a disc
which the matrix is reinforced by two families of parallel fibres EM) h

ere:

m
inclined at angle®, andd, to x; axis, see Fig. 1. Every family Cu = (1+v)(1—v) h
is constituted of continuous, thin fibres placed in parallel rela- Ry Ry
tively to each other in the plane parallel to the middle plane of +E® (h cos* 91 + N cos’ 192) )
the disc element. The fibres of a given family have a common
constant direction and are densely distributed. The composite vE™) h

element is in the plane state of stress which can be described”"* ~ (1+ 1) (1—v) h

by three stress components of a generalized plane stress state ) (ha . 2 ) ho . )

0ap @, 3 = 1,2. The stress components,; correspond to + B (h sin” 9 cos™ 1 + - sin” 3 cos ?92> ;
certain mean values over the thickness of the plate. Follow-

. . . . . _ ha ) h )

ing assumptions were taken regarding the materials: the ma Cys = E©) (h sin ¥y cos® ¥ + M in 95 cos® 192) ,

trix is isotropic, matrix as well as thin fibres are linear elastic h

and homogeneous, strain compatibility is ensured between the Bm) h

fibres and the matrix. Taking advantage of generalized stress Cyp= " — "

state and the assumptions concerning the materials, physical A+v)(1-v) h

relationships were obtained defining stress components in the 1 B® (’la sint 9, + hy sin 192>
composite in the following form [8] h ’

h h
Em v o, Coz = E® (a sin® 91 cos ¥y + —2 sin3 ¥y cos 192) ,
%a8 =11, (W + 1—V5°‘ﬁ565) T h h
+ B0 ersasaats W Ca=sg
oh he h
+ E( )%Ewbwbababg + E®) (h sin® 9, cos® 91 + ﬁb sin? ¥, cos? 192> .

where E(™) — Young's modulus of matrix/(*) — Young's  From Eq. (2) the strain components are determined; they take
modulus of fibresy — Poisson’s ratio of the matrik,,, - thick-  the following form:

ness of matrixp, andh, - thicknesses of fibre layers having
direction vectorsa andb (h = h,, + h, + hy). Physical re-

lations (1) have the form of relationships describing homoge- €92 = 812011 + S22022 + S23012,
neous and anisotropic material. Taking into account the form 2619 = S13011 + Sa3093 + S33012.

€11 = S11011 + S12022 + S13012,
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Assuming equal distribution of fibres in two directions, that is
defines the volume fraction

ha_hb_

= 1y, wherep = 2=lm

x sin (291 4+ a)sin® a},

of fibres; denoting in addltlon the angle between fibre families 9 (E(m))2 E(m) f(s)
by «, the components of matrig;; are given in the following Szg=—=¢ ——+——(1— 77)2 +—
form,: 7 D|(1+v)1-v) 1+v)(1-v)
E(m) g(s)
o 1 { (B e B X (=mn =y (=
U=5V7 7 2, Tt rm Ty (2)
D{(a+v)(1-v) 40+v)(1-v) X [1—0052(2191—&—0[)00520[]—&-% (E(S))
(m) p(s)
x (1—n)n+% L=m)n x 7 sin® (20 + a) sin” a}
EEY | 2 (20 2 e (m)
_m( —n)n cos2 (291 + «) cos 2 _ EM (1 —n)
B E®) ; A tw) (L —v)
e — — m 2 m S
S0+ (1 =mn)n cos (201 + a)cosa (B0 (1—n)?  EME®)1-p)
1 2 (1 + 1/) (1 + 1/)
+ = (E(S)> (n)? [cos a — cos (201 + a)]” sin? a} , )
8 (B2 2

1 { (E(™) A2+ Em) g(s)
D) (1+v)?(1-v) 8(1-v)
x (1 =n)n[l —cos2 (2% + a) cos 2¢]
(E)°
16

S1o =

17 [cos 2a — cos 2 (29, + a)] sin? a} )

Em) g(s) .
{_2(1—|—1/) (1 —n)nsin (291 + o) cosa

E(m) B(s)
————— (1 —=n)nsin2 (2¢1 + «a) cos 2«
v

n? [cos a — cos (201 + )]
x sin (201 + ) sin® a} ,
2
1 (E(m)> )
Sopp=—({¢ ——5—F-——(1— +
22 D{(1+y)2(1—u)( n)

3E(M) E(s) )
EI

E(m) g(s)
4(14+v)(1—-v)

x (1—=n)n+

E(m) p(s)
S 8(1—v)
Em) g(s)
T

+1 E®) 2( 2 2 2
( ) 1) [cos a + cos (291 + «)]” sin oz},

8
3)

(1 =m)ncos2 (291 + «) cos 2«

(I =n)ncos (291 + a)cosa

s Em) g(s) ) (2
o (o

(m) g(s)
_BmEO
4(1-v)
(B9)°
4

—n)nsin2 (291 + a) cos 2«

_|_

n? [cos a + cos (201 + )]
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The strain energy of composite element may be expressed by
the relation from [8]

U= % {[[ oisei3av = b [[ wag, (4)
where the integrandvis "
1 1

W =

50apEas = {511 (011)° + 2512011022 + So3 (022)°

2
+ 2813011012 + 2523092012 + S33 (012)2} .

In order to simplify the expression of function W, a new
coordinate systemy(, y2) is introduced, inclined at anglé
to coordinate, z2) , which is coincident with principal axes
of stress and denote the stress tensor componenis,ky; ;
(01 = Oyrys» OI1 = Oyyysr Tyry, = 0). The both coordinate
system are Cartesian and orthogonal. In the new coordinate
system the strain energy’ is:

W = ! (51101 + 281207011 + S2207;)
whereS,;(v, 8 = 1,2) are functions defined by Egs. (3) de-
pending on variable$§d; + (), a. After substituting expres-
sionsSy1, S12, Soo the strain energy in the system of principal
axes of stress is expressed in the following form [6]:

1 ) E(m) p(s)
= — — — E— 1_ 12
w QD{ (011 —071) HS(l—I/) n(1 —n) cos 2a

(E9) ,
— g sina cos2[(291 + a) — 20]
E))? E())?
- ( ) n? sin’ a +(0H+01)2( ) n%sin? o cos? a
16 8
Em) g(s) E6) '
+ (07, — o) 010" 1—77)+( 4) n*sin® a

X cos [(2091 + ) — 2] cos
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5 ) (E(m))2 (1- 77)2 sponds the vectof* = f(x*) constituting the set of compro-
+ (of = worom +07;) R mises.
14 -V
(m) (s In view of the great number of non-dominated solutions, it
+ (0 + 0%)) SETE™n (1 — n) (5) is necessary to select the best one on the basis of an additional
8(1+v) criterion. Such a solution is called the preferred solution. The
EMEG) (1 —n) preferred solutio?" is a non-dominated selected on the basis
+ (o7 — (1 +v)oror +07p) iU . T
1 TP " 1 + 0) (1 —v) of an additional criterion. It corresponds to the valygs?")

contained within the objective region and is considered to be
3. Basic notions of multicriteria optimisation the best solution. L _
A solution of a multicriteria optimization problem in-

The search of the composite materials with better and bett@iides, therefore, objective quantities, to which belong:
properties, particularly the materials used in building struc-

tures, are a subject of many investigations, both theoretical and
experimental. For such materials various requirements are for-
mulated, often contradictory. In such situation the multicriteriand the quantities which depend on additional preferences:
optimization can help out in finding of a material with the re-_
quired properties.

The basic notions in formulating a multicriteria optimiza- - ]
tion problem are: decision variables, constrains and optimiza- !fthere are no additional preferences, the preferred solution
tion criteria, also known as objective functions. is assumed to be the point belonging to the set of compromises,

The decision variables are usually expressed in the forﬁ;tuated nearest to the ideal point and the corresponding vector

of a vectorz” = (1, zs,...,,) in ann-dimensional space of the decision variables [13,14].

called the decision space. Every point in the space corresponds C . . .

to a composite with, decision variables. . Multicriterial optimization of orientation
In optimization of materials, unconstrained extrema of the @nd volume fraction of fibres

objective function are seldom looked for. A great number ofhe optimization criteria are as follows:

constrains are usually imposed, defining the feasible region . . . .

Q. The feasible regiorf2 is usually only a part of the:- minimum strain energy of the composite element (4)

dimensional space of the decision variables givenSby= minimum cost of th? composite -element. The cost is ex-
{zeR™ h(z) =0, g(z) < O}. pressed in the following form [10]:

The multicriteria optimization consists in the choice of the
best solution from many possible variants on the basis of many K(n) = (1 —=n)ky + nka, (6)

criteria, i.e. on the selection of a vect§t' = (f1, f2,.... ft)  wherek; andks, are unit costs of matrix and fibres, respec-
corresponding to an objective function. A multicriteria opti-jyely, Herek, > k;.

mization problem can be therefore treated as an optimization There are three independent design variables: the angle of
problem of an objective function vector. The objective funCingiination 9, of one of fibre families tar, axis, the angle:
tions space is k-dimensional. An objective regif(f2) is @  petween the two families and the volume of fibre reinforcement

part of the objective space. n. The constrains for the variables are:
The solutionz® which makes every objective function
0<d <7, O0<ax<m,

reach its extremum independently, is called the ideal solution URSUASEE

of multicriteria optimization. In the case of the search for thevheren, 7; are lower and upper limit fractions of fibres.

minimum f (), ='¢ is therefore the ideal solution of multicri- To solve the problem a substitute objective function is con-

teria problem ifr’ € Q andf(z'?) < f(z) foreveryz € Q.  structed:

As the objective functions are usually in conflict, the ideal so- p* — W — ;1,9 + p, (01 — 7) — pser + g (@ — )

lution does not exist in most cases. This means that all criteria _ (7)

can simultaneously obtain their minimum values. Such criteria ~~ + H3 (n=m) + 1 (n =)

are referred to as cooperating criteria and the related solution The necessary conditions for the minimum strain energy

is called the ideal solution. are derived from the Kuhn-Tucker theorem in the following
The solution, in which none of the objective functions caform:

be improved without simultaneous deterioration of at least the conditions of equality are:

one of the remaining objective functions, is called the non- 0

dominated solution. Vectot* is a non-dominated solution 0 (

when no suche € Q exists thatf;(z) < f;(«*) atj € J =

the set of compromises,
the ideal point,

preferred solution, that is the vector of objective functions
fP" and the corresponding vector of decision variabl&s

« . ow
1,2,...k and f;(x) < fi(x*) for at Igast ong € J. Th_e _ a (8 — li3 +M4) =0, (8)
search for non-dominated solutions is called optimization in @
the Pareto-sense. The Pareto solution in general is not unique. ow
Many x* vectors usually exist in th& space, to which corre- T\ g, ~Hs s ) =0,
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— 91 =0, pp (W —7) =0, —pza=0, , o\ 3EME® , (E®)
pa(a—m) =0, ps(n—n)=0, pe(n—mn)=0; * (o1 +on) Ty - et o) T
— the conditions of inequality are: x n? sin? v cos? o] (v sin? o — cos? a)cosa} =0
Tg‘f—uﬁruz >0, %—uﬁm >0, %‘:—ufrue >0, 3:7 -
OF* cosa =0,
8ui<0, i=1,..,6, 9120, a>0, n=>0, p; =0. cos [(201 + @) — 28] = 0 (12)
(9) n=m.

By virtue of the Kuhn-Tucker’s theorem (8), (9), it clearly ap- _ ) o o
at one of the solutions of the system of equations presenttign problem, we should determine a compromise set, an ideal

below: solution, and a preferred solution. For this purpose we should
10 construct the normalized functions in the following form:
sin[(201 +0) ~ 20 =0 oW a)
sinae =0 (10) 1 (01, a,n) = W
_ ¢ (13)
n=n s (1) K (n)
2 ’ K, ’
sin [(201 + o) — 28] = 0, (11)  whereW (91, a,n) is the function (5), ands (n) the function

of cost (6);W, and K, are the maximum values of these func-
tions in the compromise set. Becausg = (1 — 7)k; + 7jka,

Lmlg —n) the function®, depends on the ratio of unit costs of fibres to
(1—v?) , that of matrix
Em) g(s) (E(S)) (1—1n)+nk
xS (o1 —o1)° (77(1 —n)+ 772) By () = — 2 T 14
H 21-v) 4 T )
E(m) p(s) . . . -
x cosa — (03 — 0?) < n(1-mn) In order to o_btam an ideal solution we should_search mini-
2(1+v) mum of the strain energ’ (9, o, ) and the function of cost
(E(S))2 K (n). The strain energy attains minimum for upper limit frac-
+ 72 (sin2 a — 2 cos? a)) cos [(201 + o) — 2] tion ofofibresn = 7 and for the angles of fibre inclination
¥1 = 91 anda = &. The determined angles are obtained from
5 (E(S))2 ) the solutions of the system of the Egs. (10) or (11) or (12).
+(or+orr) 1 cosacos2a The solutions depend on type of composite, they depend there-
fore on material constants of matrix and fibres, on upper limit
(E(m>)2 ,  EME® volume fraction of fibreg and on the imposed external loads
m (1—-mn)"+ mﬁ 1—mn) p, q, 7. The function of cost of the composite element (6) is the
linear function of the decision variablgand attains minimum
(E(S))2 5 4 4 at lower limit fraction of fibres;. Therefore the ideal solution
T (1 —cos’ a —vsina) is characterized by following coordinates:
()2 ° o
+ (E2 ) 772 |:_ (UII N 0,[)2 (I)id w (’1917 «, 17)
) Bs) (EW)? ' Wo ’ (15)
X mn(l—n)ce&ﬂa— g sinta (I)id_l_ﬂ"i'ﬂkf
2 = ko )
m) (s (s))2 g sk . L.
(0 —o?) (E( ) E( )17 1)+ (E®) P sin? a) hereky, = 1 — 17 + 732, andW, is the minimal v:;tlue of :he
(1+v) 2 strain energy¥’ for n = n and for the angleg; = 9, a = q,
x cos (201 + @) — 28] cos o which are obtained from the solutions of the system of Egs.
(12) or (13) or (14).
(E(m))2 The function of cost is a linear function of the decision
+2 (gf — 2uororr + o’%]) — (11— n)* variablen and the function of the strain energy is the func-
(1+v)"(1-v) tion of three decision variable,, «, . Therefore to obtain
Em E(s) the compromise set, we should search for different values of

2 2
+ (o7 = (L +v) o101 +07;) 20+ (1-0)" =1 they e [1,7] the values of the functiof®, (14) and minimum
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values of the functiori13). The preferred solution may be ob- Egs. (11). Then the solution of the equationglis= 55.1°,

tained as the Euclidean metric function [13,14] expressing the = 69.8°, n = 0.6. The constant¥,, is adopted as the value

distance between the set of compromises and the ideal poiat,the function in the pointy; = 59.35°, a = 61.30°,

and its minimum is determined: n = 0.1 andW, = 0.2485. The ideal solution is determined
T (91, ,7) by the following coordinates:

L (16) it =0.2321, ®Y =0.3388.

id12 i772) 2
= {[@1 (1, a0m) — @1 + [02 () — @4]*} .
. ) i i The preferred solution is proposed to be the point which is
It is supposed that the composite element is subjected {gysest to the ideal solution and is determined by the follow-
two normal loadsp along the axisco andq = kp along the ing coordinates

axisz; and to a tangent load = Ip in the following type of
composites: ®; =0.4580, P4 =0.5757.

— the composite of epoxy matrix reinforced by carbon fibre# the space of the design variables, this corresponds to:
with the material constantg(™ = 3.5 GPa,E(®) = 220 o o
GPa,v = 0.35) with the lower and upper limit fractions U1 =56.03"  a=67.94%  n=0.2791
n = 0.1 and7; = 0.6, respectively. Three examples are con-
sidered with the following ratios of load&:= 0.5 = 0.3; i
k=0510=0;k=—0.51=0.3.Inthe function of cost, %2
the ratio of the unit costs of the carbon fibres to epoxy ma-
trix ko /k1 = 7.4 is accepted. 0.9

— the high performance cementitious composite reinforced by
steel fibres with the material constan((*) = 40 GPa,
E() = 210 GPa,rv = 0.23) with the lower limit fraction .7 |
n = 0.02 and uppef; = 0.08. Two examples are consid-
ered with the following ratios of loads:(= 0.5 1 = 0.3;

k = —0.51 = 3). In the function of cost, the ratio of the D
unit costs of the steel fibres to concrete B0k, = 100is ~ 0-9]
accepted.
.. . .. AN
5. Minimum strain energy and minimum cost 0.3 S — —
of a composite element made of epoxy matrix Y 0.2 0.4 0.6 0.8 10 1

reinforced with two families of carbon fibres Fig. 2. Compromise set for a composite element of epoxy matrix re-

In the first example K = 0.5 1 — 0.3) the function W’ inforced with carbon fibres fot = 0.5 andl = 0.3
reaches minimum when the decision variables satisfy the set
of Egs. (11). The solution of these equations has the foIIowing[t
form ¥, = 36.17°, a = 57.46°, n = 0.6. The obtained angles
of fibre inclination satisfy the conditio); + o = 25 + .
The function®4(n) attains its minimum for; = 0.1 and

In the third exampleX = —0.5 [ = 0.3) the function W
ains minimum when the decision variables satisfy the set
of Eq. (12). The solution of these equations has the following
form ¢; = 8+ 90° = 79.10°, « = 90°, n = 0.6. Here for
£, ~ 454 The consant, is e alu of e funciony 1PPE I e ot tres o orhogena fore mies o
in pointy; = 44.18°, a = 41.44°,n = 0.1 andW,, = 0.2485. function W’ in the pointd, = 8 + 90°, a — 90°, n = 0.1 is

This is the maximum value of the functidi in the compro- .
mise set. In the non-dimensional space of objective functio%ecgfgﬂﬁsgg?econam = 0.3702. The coordinates of the

d,d, (Fig. 2) the compromise set is introduced, the ideal poin

A'is determined by the following coordinates: il =0.2014, i =0.3388.

P11 = 02325, Py =0.3388. The preferred point in the compromise set is determined by the
As the preferred solution is admitted point D of compromis&oerdinates:
set that is closest to the ideal solution. Its coordinates are ob- @y = 0.4196, Py = 0.5693.

tained from the Eq. (16):
®; =0.4569, &9 =0.5769.
In the space of the design variables this corresponds to
V1 = 37.86°, « =54.08°, n=0.28.

In the space of the design variables this corresponds to
% =79.1°, «a=90°, n=0.2743.

In the considered examples the obtained compromise sets
have similar shape as presented in Fig. 2. In the first two exam-

In the second examplé: (= 0.5 [ = 0) the strain energy ples, we suppose that the composite element is subjected to the
attains its minimum when the decision variables too satisfy thensile loadp along the axisc,, to the tensile load = 0.5p

368 Bull. Pol. Ac.: Tech. 54(4) 2006
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applied along the axis; and in the first example to the tan- In the space of the design variables, this corresponds to:
gent _IoadT = 0.3p. It may be concIL_Jded, that the_ preferred 9 = 52.02°, a=90°, n=0.0219.
solutions correspond to the composite element with a volume

fraction of fibres equal to 28% and with two families of fiores, [N the considered examples the obtained compromise sets

ple the preferred solution correspond to the composite element
— in the first example the first family of fibres is inclined atwith one family of fibres inclined in the direction coinciding
an angle37.86° to the axisz; and the angle between bothwith the principal stress axig, = 8 + 90° = 64.9° and with
families is54.08°, the volume fraction of fibres equal to 2.4%. In the second ex-
— in the second example the first family of fibres is inclinecample the preferred solution correspond to the composite ele-
at an angl€6.03° and the angle between both families isment with two orthogonal fibre families coincide with the di-
67.94°. rections of principal stresseég = 3 + 90° = 52.02°and with

. . 0
The obtained angles satisfy therefore the condifién + the volume fraction of fibres equal to 2.2%.

a = 23 + «. In the third example it is supposed that the com- \
posite element is subjected to the tensile lpadong the axis D, |
x2, to the compressive loag= —0.5p applied along the axis

x7 and to the tangent load = 0.3p. In this example, the op- 0.9 1

timal solution is the composite element with two orthogonal
fibre families coincide with the directions of principal stresses
and with a volume fraction of fibres equal to 27%.

0.7 1
6. Minimum strain energy and minimum cost

for a high performance cementitious

composite element reinforced by steel fibres 057
In the first exampleX = 0.5 [ = 0.3) the function W reaches |

L o : . A D

minimum when the decision variables satisfy the set of equa- ™
tions (10). This solution of these equations has the following 0'36 S To @

formd¥; = 5+90° = 64.9°, a = 0°,n = 0.08. Here for upper
limit fraction of fibres the single family of fibre correspondsFig. 3. Compromise set for a high performance cementitious compos-
to the principal direction of stress. The functi®g attains its ite element reinforced by steel fibres foe= 0.5 andl = 0.3
minimum forn = 0.02 andk, = 8.92. The functionWW for
Y1 = 64.9°, « = 0°, 7 = 0.02 is adopted as the constdi,. )
In the non-dimensional space of objective function (Fig. 3) thé- Concluding remarks
compromise set is introduced, the ideal poinis determined  The problem of two-criteria optimization was considered. Min-
from the condition (15) and has the following coordinates: imum strain energy and minimum cost of composite element
id id were assumed as criteria.

P =0.8373, by = 03341 On the basis of the analytical solution (10), (11), (12) it was
As the preferred solution the point D of compromise set, thagund, that the strain energy of the composite element attains
is closest to the ideal solution, is admitted. Its coordinates agginimum at the upper limit fraction of fibres and at one of the

obtained from the Eq. (16): three following arrangements of fibres: two family of fibres
d, = 0.9868, @, = 0.3783, are aligned and placed along the direction of principal stress
_ ) ) corresponding to its greater absolute value, two fibre families
which corresponds to the design variables placed along the principal directions, two non-orthogonal fi-
Y1 =64.9°, a=0° n=0.02398. bre families satisfying the set of Egs. (11). The function of the

. cost attains minimum at the lower limit fraction of the fibres,
In the second examplé: (= —0.5 1 = 3) the strain energy o these criteria are therefore in a conflict.

attains its minimum when the decisio_n variables satisfy the Examining particular load cases in composite elements of
Eg. (12). Then the solution of the equationgis= §+90° = o544y resin reinforced by carbon fibres and in high perfor-
52.02°, a = 90° 7 = 0.08. The constantV, is the value of \5c6e fipre reinforced cementitious composite elements, the
the f_unctlonW n th_e pointd; = 52.02°, a = 90°, 7 = 0.02. angles of inclination of fibres and the fraction of fibres have
The ideal solution is determined by the following coordinates,ee getermined in the sense of assumed criteria. The optimal

il =0.8867, @i =0.3341. angles of inclination of fibres depend on the material constants
of matrix and fibres, on the magnitude of load and on the max-
fnal fraction of fibres. In high performance fibre reinforced
cementitious composite elements the optimal fraction of fibres
®; =0.9960, &5 = 0.3549. is almost equal to the minimal fraction Here the criterion of

In the considered example the preferred point in the compr
mise set is determined by the coordinates:
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cost in which the ratio of the unit costs of the steel fibres to[6] P. Pedersen and M.P. Bendsoe, “On strain-stress fields resulting

concrete matrix is accepted as the high value, has a great in-  from optimal orientation”Proc. WCSMQL, 243-250 (1995).

fluence in determining the preferred solutions. At the low ratio[7] G. Cheng and P.Pedersen, “On sufficiency conditions for op-

k2 /k1, the fraction of fibres in the preferred solution is larger. ~ timal design based on ekstremum principles of mechaniks”,
The obtained solutions are local. They concern an inter- Me&h. ihX‘SéSO“d%_ (1)’| 135_150f(1997)' deformabil

nal differential element. Such formulation of the designing (8] M- Marks, “Composite elements of minimum deformability re-

. A - inforced with two families of fibres”Engineering Tran86 (3),

problem of an optimal distribution of non-orthogonal fibres 541-562 (1988), (in Polish)

and the_lr vqumet.nc contentg (in terms of bpth cr|te_r|a), Can 9] M. Marks, “Fibre-reinforced composite element of minimum

be apphe@ to deS|gn composite structures Wlth' certain bound- * geformanility”, Studia Geotechnica et Mechani28 (3-4), 77—

ary conditions, which can be realized by numerical procedures g7 (2003).

based on the finite element method. [10] M. Marks, “The composites reinforced by two families of fi-
bres”,IFTR Reportdl, (2004), (in Polish).
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