
BULLETIN OF THE POLISH ACADEMY OF SCIENCES
TECHNICAL SCIENCES
Vol. 54, No. 4, 2006

Modelling of non-linear long water waves on a sloping beach
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Abstract. The paper deals with a non-linear problem of long water waves approaching a sloping beach. In order to describe the phenomenon
we apply the Lagrange’s system of material variables. With these variables it is much easier to solve boundary conditions, especially conditions
on a shoreline. The formulation is based on the fundamental assumption for long waves propagating in shallow water of constant depth that
vertical material lines of fluid particles remain vertical during entire motion of the fluid. The analysis is confined to one – dimensional case of
unsteady water motion within a ’triangular’ body of fluid. The partial differential equations of fluid motion, obtained by means of a variational
procedure, are then substituted by a system of equations resulting from a perturbation scheme with the second order expansion with respect to a
small parameter. In this way the original problem has been reduced to a system of linear partial differential equations with variable coefficients.
The latter equations are, in turn, substituted by a system of difference equations, which are then integrated in a discrete time space by means of
the Wilson-θ method. The procedure developed in this paper may be a convenient tool in analysing non-breaking waves propagating in coastal
zones of seas. Moreover, the model can also deliver useful results for cases when breaking of waves near a shoreline may be expected.
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1. Introduction

In the description of long water waves propagating in shal-
low water a vertical momentum equation is usually assumed in
such a form that the equation may be integrated independently
from the equations corresponding to horizontal variables. Par-
ticular forms of the vertical acceleration term in the vertical
momentum equation lead to different forms of the shallow wa-
ter equations. For instance, two different approximations in the
description of pressure field have lead to two classical theories
of long water waves. The first one, known as the Airy’s the-
ory of very long waves, is based on the assumption that the
pressure is hydrostatic. In the second approach, developed in-
dependently by Boussinesq and Korteweg and de Vries, the
fluid acceleration influences the pressure field [1].

The theory formulated by Korteweg and de Vries [2] corre-
sponds to potential motion of an incompressible fluid. The as-
sumption of potential motion of the fluid and description of the
problem in space variables simplifies the analysis. A drawback
of such a formulation in the space variables is a solution to
boundary conditions, especially on moving boundaries of the
fluid domain. A solution to the initial value problem for long
waves of small amplitude approaching a sloping beach belongs
to Carrier and Greenspan [3]. The authors discovered a trans-
formation allowing them to reduce non-linear shallow water
equations to a linear differential equation for the fluid velocity.
With the equation, they calculated the run-up height of non-
breaking long waves on a sloping beach. Shuto [4] analysed
a similar problem described in material variables. Like in the
Eulerian description, a vertical acceleration term does not ap-
pear in a first order approximation of the momentum equations.
Theoretical results obtained were compared with experimental
data. A detailed discussion of the long waves phenomenon, to-

gether with a wide bibliography of the subject, may be found
in Dingemans [5].

In the classical theories, the governing equations of fluid
motion, written in the space variables, correspond to an aver-
age horizontal component of the velocity field over the fluid
depth. It means that horizontal displacements of fluid particles
forming a vertical material segment are equal to a common
value depending on space variables and time. This kinematic
assumption has been a starting point in a description of the long
water waves phenomenon in material variables formulated by
Wilde [6]. Like in the previous cases, in the latter approach the
vertical material lines of fluid particles remain vertical during
entire motion of the fluid. With the latter formulation it is much
easier to solve boundary conditions. The price for it however is
a more complicated structure of the equations of fluid motion.

In the present paper the problem of long water waves ap-
proaching a shoreline is considered. The discussion is limited
to a plane problem, which, in our formulation, is transformed
to one – dimensional in space, time dependent problem of non-
breaking waves on a sloping beach. The analysis is performed
with the help of material description of the phenomenon, and,
in a sense, it is a generalisation of the problem discussed by
Wilde [6]. Like in the latter approach, it has been assumed
that vertical material lines, formed by the fluid particles, re-
main vertical during entire motion of the fluid. In our case, the
analysis is confined to the description of motion of a triangular
fluid domain with sloping bottom, starting to move at certain
moment of time.

Fundamental equations of the model considered have been
derived by means of a variational procedure with prescribed
displacement field in the material co-ordinates. The resulting
non-linear partial differential equations of the fluid motions
are then substituted by a system of linear equations obtained
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by means of a perturbation scheme. As compared to the previ-
ous approaches, the formulation in the present paper seems to
be less restrictive one.

2. Fundamental equations of an unsteady
motion

In what follows we consider a plane problem of fluid motion
in the Euclidean space. We confine our attention to the trian-
gular fluid body shown schematically in Fig. 1. The motion
of the fluid is induced by an assumed horizontal motion of
the generator A-D starting to move at a certain moment of
time. For the assumed harmonic motion of the generator, af-
ter a finite elapse of time from the starting point, the water
surface waves will reach the shoreline. At the same time the
run up of the shoreline occurs and thus, the material point C
in the figure will be shifted along the slope. In order to de-
scribe the fluid motion we introduce the Cartesian system of
co-ordinates in an actual configuration(zr, r = 1, 2) , and a
similar system in a reference configuration denoted by capital
letters(Zλ, λ = 1, 2). The co-ordinates of the latter system
define names of the fluid particles (positions of the particles at
an initial moment of time). Moreover, it is convenient to intro-
duce a common Cartesian system of co-ordinates. The motion
of the fluid is described as the mapping of the names into actual
positions occupied by the material points

z1(Zα, t) = Z1 + u(Z1, t),

z2(Zα, t) = Z2 + v(Zα, t),
(1)

in whichα = 1, 2 , andu(Z1, t) andv(Zα, t) are components
of the displacement vector of the fluid particle(Z1, Z2).

Fig. 1. Finite fluid domain with sloping bottom

With respect to the above, it is assumed the vertical com-
ponent of the displacement field

v(Zα, t) = h(Z1 +u)−h(Z1)+
w(Z1, t)

H − h(Z1)
[
Z2 − h(Z1)

]
.

(2)
In the equation, the first two terms on the right hand side

denote a rigid vertical displacement of the water columnZ1 =
const, andw(Z1, t) is the additional vertical component of dis-
placement of a material point of the free surface. The fluid
body vertical shift entering the equation may be expressed as

h(Z1 + u)− h(Z1) = uh′(Z1) +
1
2
u2h′′(Z1) + · · ·, (3)

where the primes denote differentiation with respect toZ1 and
h′(Z1) is the bottom slope.

In the discussed case, shown in Fig. 1, the segmentsAB
andBC have different, but constant slopes. For small horizon-
tal displacements it is justified to neglect higher order terms
in expansion (3) and confine our attention to the linear term
in the equation. However, in order to get a better insight into
the problem considered, in what follows, the square term in the
equation is taken into account and thus, the vertical displace-
ment is described by the following formula

v(Zα, t) =f(Z1, t) + u(Z1, t)h′(Z1)

+
w(Z1, t)

H − h(Z1)
[
Z2 − h(Z1)

]
,

(4)

with

f =
1
2
h′′(Z1) u2(Z1, t). (5)

For a constant bottom slope one should substitutef = 0 in Eq.
(4).

Having the displacement componentsu(Z1, t) and
v(Z1, Z2, t) we can calculate the Jacobian of the transforma-
tion (1)

J = det
[
zi
α

]
= (1 + u′)

(
1 +

w

H − h

)
(6)

For incompressible fluids the Jacobian is equal to one, and thus

w(Z1, t) = −(H − h)
u′

1 + u′
. (7)

Substitution of the relation into Eq. (4) leads to the following
result

v(Zα, t) = u(Z1, t)h′ − u′

1 + u′
(Z2 − h) + f(Z1, t). (8)

With respect to the displacement component, the vertical ve-
locity reads

v̇(Zα, t) = u̇(Z1, t)h′− u̇′

(1 + u′)2
(Z2− h) + ḟ(Z1, t). (9)

Hereinafter the dots denote differentiation with respect to time.
Knowing the displacement field we can calculate the po-

tential energy of the fluid

Epot. = ρg

L∫

0

H∫

h

z2(Zα, t)JdZ2dZ1, (10)

whereρ is the fluid density,g is the gravitational acceleration,
L = L1 + L2 (see Fig. 1) andJ = 1.

Substituting (1) and (8) into Eq. (9) and making integration
over the fluid depth, one obtains

Epot. =
1
2
ρgH

L∫

0

[
H(1− α2) + 2h′(1− α)u

−H(1− α)2
u′

1 + u′
+ (1− α)f

]
dZ1,

(11)
in whichα depends only onZ1

α = α(Z1) =
h(Z1)

H
. (12)

382 Bull. Pol. Ac.: Tech. 54(4) 2006



Modelling of non-linear long water waves on a sloping beach

At the same time, the kinetic energy of the fluid is described
by the formula

Ekin. =
1
2
ρ

L∫

0

H∫

h

[
(u̇)2 + (v̇)2

]
JdZ2dZ1. (13)

From substitution of the velocity component (9) into the
last equation and integration along the water depth, the follow-
ing relation results

Ekin. =
1
2
ρH

L∫

0

[
(1 + h′2)(1− α)(u̇)2 −Hh′(1− α)2

× u̇u̇′

(1 + u′)2
+

1
3
H2(1− α)3

(u̇′)2

(1 + u′)4
+ (1− α)(ḟ)2

+ 2h′(1− α)u̇ḟ −H(1− α)2
u̇′ḟ

(1 + u′)2

]
dZ1.

(14)
The relevant momentum equation is obtained by means of

a standard variational procedure. For the conservative system
considered the variation of the action integral reads

δI = δ

tk∫

0

(Ekin. − Epot.)dt. (15)

Knowing that the operations of variations and differentia-
tions are commutative, the variation of the integrand variables
in the equation gives

δI =
1
2
ρH

tk∫

0

L∫

0

[R0δu + R1δu̇ + R2δu
′ + R3δu̇

′] dZ1dt

+
1
2
ρgH2

tk∫

0

L∫

0

[
G7δu

′ − 1− α

H
(2h′ + uh′′)δu

]

× dZ1dt = 0.
(16)

The terms of the integrands are

R0 = F1(h′′)2 + F2h
′h′′ − F3Hh′′,

R1 = 2(1 + h′2)G1 −Hh′G3 + F4(h′′)2 + F5h
′h′′ − F6Hh′′,

R2 = 2Hh′G2 − 4
3
H2G6 + F7Hh′′,

R3 =
2
3
H2G5 −Hh′G4 − F8Hh′′,

(17)
and

F1 = 2(1− α)(u̇)2u, F2 = 2(1− α)(u̇)2,

F3 = (1− α)2
u̇u̇′

(1 + u′)2
, F4 = 2(1− α)(u)2u̇,

F5 = 4(1− α)uu̇, F6 = (1− α)2
uu̇′

(1 + u′)2
,

F7 = 2(1− α)2
uu̇u̇′

(1 + u′)3
, F8 = (1− α)2

u̇u

(1 + u′)2
, (18)

G1 = (1− α)u̇, G2 = (1− α)2
u̇u̇′

(1 + u′)3
,

G3 = (1− α)2
u̇′

(1 + u′)2
, G4 = (1− α)2

u̇

(1 + u′)2
,

G5 = (1− α)3
u̇′

(1 + u′)4
, G6 = (1− α)3

(u̇′)2

(1 + u′)5
,

G7 = (1− α)2
1

(1 + u′)2
.

For a constant bottom slopeh′′ = 0, R0 = 0 and all the
termsF1, F2, ... , F7 are equal to zeros. For the linear oper-
ations considered, the terms in integrands (16) may be trans-
formed to another forms. For example

R1δu̇ =
∂

∂t
(R1δu)− Ṙ1δu. (19)

Similar relations can be obtained for the remaining terms.
In view of the relation, the variation of the action integral leads
to the equation

−
tk∫

0

L∫

0

×
[
−R0 + Ṙ1 + R′2 − Ṙ′3 + gHG′7 + g(1− α)(2h′ + h′′u)

]

×δu dZ1dt + R3δu |tk

0

∣∣∣
L

0
+

L∫

0

[R1 −R′3] δu|tk
0 dZ1 +

tk∫

0

×
[
R2 − Ṙ3 + gHG7

]∣∣∣
L

0
δu dt = 0.

(20)
For the discussed case of fluid motion starting from rest,

the arbitrary variationδu vanishes at the end time points, i.e.
for t = 0 and t = tk. At the same time, we require (20) to
vanish for allδu(Z1, t), which implies

−R0+Ṙ1+R′2−Ṙ′3+gHG′7+g(1−α)(2h′+h′′u) = 0. (21)

For a prescribed generator motionδu|Z1=0 = 0 and the
last term in Eq. (20) gives[

R2 − Ṙ3 + gHG7

]∣∣∣
Z1=L

= 0. (22)

One can check that the last condition if fulfilled at the shore
point Z1 = L identically. Equation (21) is the momentum
equation for the assumed motion of the fluid. From substitu-
tion of the descriptions (17) and (18) into (21) the following
equation results

− 2
3
H2(1− α)2

× [
ü′′(1 + u′)2 − 4ü′u′′(1 + u′)− 4u̇′u̇′′(1 + u′) + 10(u̇′)2u′′

]

+ 2Hh′(1− α)
[
ü′(1 + u′)2 − 2(u̇′)2(1 + u′)

]
+ 2Hh′(1− α)

× [
(u̇′)2 − üu′′

]
(1 + u′)3+

− [
2(h′)2 −Hh′′(1− α)− 2(1 + h′2)(1 + u′)2

]
(1 + u′)4ü+

− 2gH

{
(1− α)u′′(1 + u′)3 +

h′

H

[
1− (1 + u′)2

]
(1 + u′)4

}
+

− 2(u̇)2
[
u(h′′)2 + h′h′′

]
(1 + u′)6 + (1− α)Hh′′u̇u̇′(1 + u′)4
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+
[
2(h′′)2

∂

∂t
(u2u̇) + 4h′h′′

∂

∂t
(uu̇)

]
(1 + u′)6+

−Hh′′(1− α)

×
[

∂

∂t
(uu̇′)(1 + u′)4 − 2u(u̇′)2(1 + u′)3

] (23)

+ 2Hh′′(1− α)
[

∂

∂Z1
(uu̇u̇′)(1 + u′)3 − 3uu̇u̇′u′′(1 + u′)2

]

− 4h′h′′uu̇u̇′(1 + u′)3 + Hh′′(1− α)

×
[

∂

∂Z1
(üu + u̇2)(1 + u′)4 − 2(üu + u̇2)u′′(1 + u′)3 +

−2
∂

∂Z1
(uu̇u̇′)(1 + u′)3 + 6uu̇u̇′u′′(1 + u′)2

]
+

− 2h′h′′
[

∂

∂t
(u2u)(1 + u′)4 − 2uu̇u̇′(1 + u′)3

]

+ gh′′u(1 + u′)6 = 0.

In the case of a constant bottom slopeh′′ = 0, and the
equation reduces to a simpler form. It is perhaps worth to add
here that for the case shown in Fig. 1, the last condition is sat-
isfied for all points(0 6 Z1 6 L) except for a small vicinity
of the pointB in the figure.

3. Approximate solutions to the momentum
equation

The momentum Eq. (23) is the non-linear partial differential
equation with respect to the independent variablesZ1(0 6
Z1 6 L) andt > 0. The equation has been derived under as-
sumption that the slope of the fluid bottom is a small quantity
(|h′| << 1). With respect to the assumption, we resort to ap-
proximate solution in which the displacementu(Z1, t) possess
the power series expansion with respect to a small parameterε
([7,8])

u = εu1 + ε2u2 + ε3u3 + · · · (24)

In analysis developed in the further part we do not iden-
tify explicitly the parameter of the expansion. Substituting (24)
into Eq. (23) and collecting terms with the same power of the
parameter, a system of linear equations is obtained. In order to
simplify the discussion we limit our consideration to the two
lowest powers of the expansion. The first order approximation
of the equation is
[
1 +

1
2
Hh′′(1− α)

]
ü1 − 1

3
H2(1− α)2ü′′1

+Hh′(1− α)ü′1 − gH(1− α)u′′1 + g(2h′u′1 +
1
2
h′′u1) = 0.

(25)
For h = 0 the equation reduces to the case of constant depth.
Similarly, the second power terms in the expansion lead to the
following equation
[
1 +

1
2
Hh′′(1− α)

]
ü2 − 1

3
H2(1− α)2ü′′2 + Hh′(1− α)ü′2

−gH(1− α)u′′2 + g(2h′u′2 +
1
2
h′′u2)−NL = 0,

(26)

where the NL term in the equation depends on the first order
solution:

NL =
2
3
H2(1− α)2 [ü′′1u′1 − 2ü′1u

′′
1 − 2u̇′1u̇

′′
1 ]−Hh′(1− α)

× [
2ü′1u

′
1 − (u̇′)2 − ü1u

′′
1

]− 2
[
3 + Hh′′(1− α) + (h′)2

]

× ü1u
′
1 + 3gH(1− α)u′1u

′′
1 − 9gh′(u′1)

2

−h′h′′
[
(u̇1)2 + 2u1ü1

]

−1
2
Hh′′(1− α) [ü1u

′
1 + 2u̇1u̇

′
1]− 3gh′′u1u

′
1.

(27)
Although the equations are linear, they have variable co-

efficients and thus, they are still difficult to be solved analyti-
cally. Therefore, in order to get solutions of the equations we
resort to a discrete formulation by means of the finite differ-
ence method. With the discrete approach, the space derivatives
with respect to the independent variableZ1 are substituted by
finite difference quotients, according to the formulae:

∂u

∂Z1
∼= 1

2a
(uj+1 − uj−1) ,

∂2u

∂(Z1)2
∼= 1

a2

(
uj−1 − 2uj + uj+1)

)
,

(28)

wherea is a constant spacing of horizontal nodal pointsZ1
j =

j · a (j = 0, 1, 2, · · ·, N ) with the end pointsZ1
0 = 0 and

Z1
N = L− a, respectively.

In order to save the place, hereinafter we omit the lower
indices of the dependent variables in Eqs. (25) and (26). For
a typical pointk(Z1 = ka) within the fluid domain, the finite
difference analogue of Eq. (25) is written as continuous in time
and discrete in space equation

−W1ük−1+W2ük−W3ük+1−S1uk−1+S2uk −S3uk+1 = 0,
(29)

in which

W1 =
1
3

(
H

a

)2

(1− α)2 +
1
2
h′

H

a
(1− α),

W2 = 1 +
1
2
Hh′′(1− α) +

2
3

(
H

a

)2

(1− α)2,

W3 =
1
3

(
H

a

)2

(1− α)2 − 1
2
h′

H

a
(1− α),

(30)

and

S1 =
1
a

[
gH

a
(1− α) + gh′

]
,

S2 = 2
gH

a2
(1− α) +

1
2
gh′′,

S3 =
1
a

[
gH

a
(1− α)− gh′

]
.

(31)

Such equations are written for all the consecutive points:
Z1 = a, Z1 = 2a, · · ·, Z1 = L− a. A remark is needed. With
respect to the discrete formulation we also need information
about the displacementu(t) of the corner pointZ1 = L (the
shore point C in Fig. 1). In a formal way, a relevant differen-
tial equation for the boundary point may be obtained by taking
the limit Z1 → L (α → 1) in Eq. (25). In the discrete model
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considered a better way however is to describe the displace-
ment of the point by means of displacements of neighbouring
nodal points. For instance, the displacement of the shore point
may be assumed as equal to the displacement of the next point
Z1 = L − a. Another way is to express the displacement by
means of the Gregory-Newton extrapolation formula [9]

uC =
11
3

uN − 5uN−1 + 3uN−2 − 2
3
uN−3. (32)

Numerical tests show that the two formulations lead to
practically the same results except for a small vicinity of the
corner point where differences between the two formulations
do not exceed a few percentages. The final set of Eqs. (29) is
written in the matrix form

[AM] (Ü) + [BM] (U) + (P) = 0. (33)

In the equation

(U)T = (u1, u2, · · · , uN ),

(Ü)T = (ü1, ü2, · · · , üN ),

(P)T = (−W1ü0 − S1u0, 0, 0, · · · , 0) .

(34)

In accordance with the extrapolation (32) the matrix[AM]
assumes the following form

[AM] =




W2 −W3

−W1 W2 −W3

· · ·
· · ·

−W1 W2 −W3

W •
4 W •

3 −W •
1 W •

2




, (35)

where:

W •
1 = WN

1 − 5WN
3 , W •

2 = WN
2 − 11

3
WN

3 ,

W •
3 = −3WN

3 , W •
4 =

2
3
WN

3 .

(36)

The superscriptN in the equations denotes the nodal point
Z1 = L− a. In a similar way, the matrix[BM] reads

[BM] =




S2 −S3

−S1 S2 −S3

· · ·
· · ·

−S1 S2 −S3

S•4 S•3 −S?
1 S?

2




, (37)

with

S•1 = SN
1 − 5SN

3 , S•2 = SN
2 − 11

3
SN

3 ,

S•3 = −3SN
3 , S•4 =

2
3
SN

3 .

(38)

It should be noted that the non-zero elements of the matri-
ces depend on the independent variableZ1 of the considered
point but do not depend on time. It may be seen that the first
equation of the set (29) contains termsü0 andu0 which are
known functions of time as boundary condition atZ1 = 0. In
order to perform integration of Eq. (29) in the time domain,
we introduce the discrete time and make use of the Wilsonθ

method. In this method, the acceleration between the subse-
quent time steps is approximated by a linear function of time.
For a mechanical system, the procedure is unconditionally sta-
ble for θ > 1.37 [10]. In order to make the discussion clear
some fundamental equations of the method are summarised be-
low (for details see [10]). Assuming that we know solution of
the problem at the timet, the standard equations of the method
are

u̇(3) =
3

DT

(
u(3) − u(1)

)− 2u̇(1) −
DT

2
ü(1),

ü(3) =
6

DT 2

(
u(3) − u(1)

)− 6
DT

u̇(1) − 2ü(1),

(39)

whereu(1) = u(t), u(3) = u(t + DT ), and DT =θ∆t with
θ = 1.47.

The second of Eqs. (39) may be rewritten as

DT 2

6
ü(3) = u(3) −

[
u(1) + DT u̇(1) +

DT 2

3
ü(1)

]
. (40)

The relation holds for each nodal point, and thus, the sys-
tem of Eqs. (33) written for the timet(3) = t(1) +DT assumes
the form (

[AM] +
DT 2

6
[BM]

)
(U(3))

− [AM] (UA) +
DT 2

6
(P) = 0 ,

(41)

where

(UA) = (U(1)) + DT (U̇(1)) +
DT 2

3
(Ü(1)) (42)

is a known solution for the time leveltk = t(1), and(P) de-
scribes the generator motion.

For the initial value problem considered it is reasonable
to assume a smooth beginning of the fluid motion starting to
move from rest, for which not only the velocity, but also the
acceleration field disappear at the initial moment of time. In
order to describe such a generation of the fluid motion w apply
here results developed in [11]. The horizontal motion of the
piston – type generator is described by the formula

u0(t) = a ·A(τ) cos ω t + D(τ) sin ω t, (43)

whereω is the angular frequency,a = s−3 is a time factor, and

A(τ) =
1
3!

τ3 exp(−τ),

D(τ) = 1−
(

1 + τ +
1
2!

τ2 +
1
3!

τ3

)
exp(−τ), τ = ηt.

(44)
The parameterη in the relations is responsible for a growth

in time of the generator amplitude. With passing time the gen-
eration approaches the harmonic generation with unit ampli-
tude and the prescribed angular frequency. Having the formu-
lae one can calculate the displacement, velocity and the accel-
eration on the boundaryZ1 = 0 needed in our procedure at
each step of the discrete time. The solution of the Eq. (41) is
obtained with the help of a standard procedure for linear alge-
braic system of equations. Knowing the solution att + DT ,
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it is a simple task to calculate the state of the system at the
subsequent moment of time, i.e. att + ∆t

ü(t + ∆t) = ü(1) +
∆t

DT
(ü(3) − ü(1)),

u̇(t + ∆t) = u̇(1) + ∆tü(1) +
(∆t)2

2DT
(ü(3) − ü(1)),

u(t + ∆t) = u(1) + ∆tu̇(1) +
(∆t)2

2
ü(1)

+
(∆t)3

6DT
(ü(3) − ü(1)).

(45)

4. First order solution
In order to learn more about main features of the discrete
model discussed above, let us consider the first order approx-
imation to the momentum equation. It may be seen from Eq.
(29), that the discrete model does not contain damping terms.
At the same time, for the harmonic generation of the fluid mo-
tion a resonance phenomena may occur. In order to examine
the case, let us consider the homogeneous system

[AM] (Ü) + [BM] (U) = 0 (46)

obtained by disregarding the forcing term(P) in Eq. (33).
Substituting the time harmonic factorexp(iωt), i.e. U =

U0 exp(iωt) into the equation, one obtains
(
[BM]− ω2 [AM]

)
(U0) = 0. (47)

The formula describes the eigenvalue problem for the ma-
trices [AM] and [BM]. A standard procedure enables us to
calculate the eigenvalues for a chosen water depth on the gen-
erator face and a set of bottom slopes of the triangular fluid
domain. For the problem considered the most important are
the lowest eigenvalues. Numerical calculations have been per-
formed for the depthh = 0.60 m on the left boundary and
the bottom slopes equal to 0.05, 0.10, 0.15 and 0.20. In all the
cases a discrete model withN = 101 nodal points has been
considered. Some numerical results obtained in the computa-
tions are shown in Table 1.

Table 1
Eigenfrequencies of the fluid domain

Sequence h′ = 0.05 h′ = 0.10 h′ = 0.15 h′ = 0.20
number L2 = 12 L2 = 6 L2 = 4 L2 = 3

1 0.3831 0.7641 1.1409 1.5117
2 0.7006 1.3923 2.0666 2.7154
3 1.0141 2.0039 2.9461 3.8200
...

...
...

...
...

100 11.6520 16.1542 19.4162 22.0132
101 11.8168 16.6032 20.2116 23.2042

The numbers in the table display the subsequent frequen-
cies for each of the bottom slopes. As compared to the case
of water waves propagating in fluid of uniform depth equal to
0.60 m, the lowest frequencies for the slopeh′ = 0.1 corre-
spond to the waves of length:λ1 = 19.95 m, λ2 = 10.95 m
andλ3 = 7.61 m, respectively. Assuming that the waves am-
plitude equalsη0 = κH, whereκ ∈ (0.05÷ 0.10) in our case,

the relevant Ursell parameter for the wavesUr = 40÷ 85, and
thus, such cases correspond to non-linear shallow water waves
described by the Boussinesq and Korteweg–de Vries equations
[12]. In the discussed problem however, we have a finite do-
main of fluid with variable depth and therefore the Ursell num-
ber is not a proper characteristic of the phenomenon. The re-
mainder, higher frequencies in the table, correspond to shorter
waves. The eigenvalues cover a relatively large range of fre-
quencies associated with waves of different lengths and there-
fore, one should be almost certain that in a vicinity of a coast-
line, a fluid flow will fall in a resonance mode with waves ar-
riving at the coastline. The result of such a phenomenon is a
growth of water wave up till a breaking of it will be reached.
In real conditions, due to dissipation of energy of waves ap-
proaching a beach, a motion of water near the shoreline is of
course more complicated than the results of the model consid-
ered. Nevertheless, the important result of the model on the
resonance phenomenon reflects a real feature of flow induced
by periodic waves arriving at a coastline. It is perhaps of im-
portance to emphasise here that, because of the changing wa-
ter depth and the resonance phenomenon, the flow within the
finite domain will, in general, not be periodic even for the pe-
riodic waves approaching the shore. In order to illustrate the
phenomenon, numerical calculations have been performed for
a set of angular frequencies of the generation. In particular, we
have chosen a resonance frequency, and, for comparison, a fre-
quency which does not belong to the resonance set. In all cases
considered the amplitude of the generator motion was assumed
to be constant and equal to 0.06 m.

In the numerical procedure, as a first step, horizontal dis-
placements of chosen material points in the vicinity of the
shoreline are calculated as functions of a discrete time se-
quence. Then, in the second step, the space derivatives of the
horizontal displacements are evaluated. The vertical displace-
ments are obtained with the help of Eq. (7). Some of the results
obtained in numerical calculations are shown in Fig. 2, where
the graphs illustrate the first order solution of the problem men-
tioned.

The plots describe the displacements of the pointL−a. The
relevant displacements of the shoreline point are nearly equal
to that shown in the figure. From the plots it may be seen, that,
within the resonance range, the model behaves like a classical
linear mass - springs system loaded with a harmonic force of
frequency equal to an eigenfrequency of the system. The lin-
ear model enables us to calculate a run up of the shoreline. It is
seen that the displacements of the line exceed the amplitude of
the generation significantly. The last feature is mainly a result
of the diminishing water depth, however in the case of a reso-
nance, one may expect additional growth of the displacements.
In order to evaluate the vertical displacement of the fluid par-
ticles forming the free surface we need to calculate the space
derivative of the horizontal displacement.

The amplitude of the derivative grows when going to the
shoreline. And thus, it may happen, that the assumption that
|u′| is a small quantity is satisfied only in a deeper part of the
fluid, in a certain distance from the coastline, and fails to be
valid within the range of the smallest water depth. More pre-
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cisely, because of the denominator(1 + u′) of Eq. (7), proper
results of vertical displacements can be obtained only for cases
when the denominator is far off zero. In the case the deriva-
tive goes to minus one the formula leads to an indeterminate
result. For the latter case, the vertical displacement may be ob-
tained from the approximated formulav ∼= h′u, which delivers
plausible results for the range of smallest water depth – in the
vicinity of the coastlineC in Fig. 1. But, even in the singular
caseu′ = −1, the model presented above gives proper hori-
zontal displacements, which carry important information about
the phenomenon. Therefore, although the formula (7) may be
not valid within the range of the smallest water depth we leave
it as the theoretical result of the model within the whole range
0 6 Z1 6 L. It means that as far as the horizontal displace-
ments of the fluid are concerned, the model provides reliable
results, but fails to deliver similar results for the vertical com-
ponent of the displacement.

Fig. 2. Linear solution for the pointL− a

The results obtained enable us to calculate the free surface
elevation at chosen space point i.e.η(z1 = const., t). Denoting
by zc the space point we transform Eqs. (1) and (7) into the
following form

Z1 + u(Z1, t) = zc,

η(zc, t) = h′(Z1)u(Z1, t)− u′(Z1, t)
1 + u′(Z1, t)

[
H − h(Z1)

]
.

(48)
Having a solution of Eq. (25) we can find a solution of the

last equations by means of an iterative procedure. With respect

to the latter description, one must remember that at the space
point the depth of the fluid should be greater than zero. Oth-
erwise, the shoreline pointC (see Fig. 1.) will occupy a posi-
tion below the considered space point within a certain range of
time.

5. Second order solution
Having the first order solution of the momentum equation, one
can calculate the second order term, and accordingly, the sec-
ond order solution. The latter can be obtained by integration of
Eq. (26) with respect to time and space.

Fig. 3. Non-linear solution for the pointL− a

Like in the previous case we have the linear partial dif-
ferential equation with variable coefficients, but now, the free
term of the equation depends on the first order result. Like in
the previous case numerical calculations have been made for
the bottom slopeh′ = 0.1 and the frequenciesω = 1 s−1 and
ω = 0.7641 s−1 of the generation. Some of the results obtained
in numerical calculations are shown Fig. 3, where the graphs
illustrate main features of the model at hand. From the graphs
it follows that average distributions in time of the second order
terms are greater than zero. It means, that much information
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about bottom slope in the formulation is carried by the second
order term. In the case of a resonance both of the components
are reinforced in time.

Fig. 4. Non – linear solution for the pointL− L2/3

At the same time, it may be seen that, as compared to
the generator motion, the resultant space derivativeu′(Z1 =
Z1

N , t) has a relatively complex distribution in time. Moreover,
the derivative is not a small number and in some ranges of
time is close to minus one. On the other hand, one can ex-
pect less complex distributions of the variables for deeper part
of the fluid. An illustration of the latter case is presented in
Fig. 4, where the plots represent the solution for the material
pointsZ1 = L − L2/3. From the plots in Fig. 3 it follows
that vertical component of the displacement field in the small-
est water depth cannot be obtained from the formula (7). The
component may be estimated directly from the horizontal dis-
placement. Such approximation is justified for shallow water
and may be good enough for practical purposes. On the other
hand, from practical point of view, the most important are hor-
izontal displacements, which are described with a reasonable
accuracy by the model considered. Although we have confined
our attention to the non-breaking waves, the formulation for fi-

nite fluid domains provides useful estimation of the run up of
shoreline also for breaking waves.

6. Concluding remarks

The motion of water in neighbourhood of a sloping beach
depends mainly on bottom slope and characteristics of water
waves approaching the beach. Since the water depth dimin-
ishes towards the beach, one can observe a significant change
of the wave height in this zone. For many cases, due to the
growing steepness of the waves, the waves lose their stability
and a breaking phenomenon occurs. The growth of the wave
height is induced by the change of water depth and a reso-
nance phenomenon of the fluid motion. The latter takes place
when a frequency of approaching waves is close to frequency
of waves reflected from the beach. In such a case a collision of
the incoming waves with the reflected waves may reinforce the
waves height. In a general case, in order to describe a motion
of the fluid in such a domain it is necessary to find a solu-
tion of non-linear partial differential equations with non-linear
boundary conditions on moving boundaries. Since we have no
closed analytical solution of the equations, we are forced to
resort to certain approximations of the equations. Commonly,
the equations are substituted by the so-called non-linear equa-
tions for shallow water with space and time co-ordinates as
independent variables. But, even in the latter case it is diffi-
cult to find a solution of the equations. In the present work,
in a theoretical description of the problem, we apply material
and time co-ordinates as independent variables. With the latter
approach it is much easier to solve boundary conditions on a
shoreline. In particular, with assumed displacements of fluid
particles, the problem has been reduced the one-dimensional
in space, time dependent model describing the fluid motion. In
order to simulate water waves approaching a beach a ’triangu-
lar’ fluid domain has been considered with motion induced by
a piston type wave-maker. Basic equations of the model have
been derived by means of a variational procedure. The non-
linear equations, obtained in this way, have been substituted
by a system of equations resulting from power series expan-
sions with respect to a small parameter. With accordance to
the procedure mentioned, the most important is the linear, first
order approximation of the equations. The linear momentum
equation carries information on the water depth, as well as on
the resonance phenomenon. Formulation of the problem in the
discrete space has led to the eigenvalue problem for two ma-
trices representing the momentum equations for a set of nodal
material points. From the analysis it follows that the eigen-
values cover a relatively large range of frequencies inherent
for water waves, and therefore, a resonance phenomenon of
the waves appears. It should be stressed however, that, in a
general non-linear case, it is not possible to separate the non-
linear influence from the resonance phenomenon. Numerical
integration of the linear momentum equation in the time do-
main has confirmed that, the generation of water flow with the
resonance frequency will result in growing water wave height.
The system behaves like a mass - spring system loaded with
harmonic force within a resonance range. In order to obtain
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vertical component of the displacement field, we need to cal-
culate the space derivative∂u/∂Z1. Because of the oscillating
behaviour of the horizontal displacementu(Z1, t) in the neigh-
bourhood of a shoreline, it may happen that the derivative is
close to minus one and, at a certain moment of time the rele-
vant vertical displacement becomes undefined. Such a case in-
dicates a breaking phenomenon. An approximate evaluation of
the vertical displacement for the caseu′ ∼= −1 may be obtained
directly from the horizontal displacement, by means of the ap-
proximate formulav ∼= h′u. The latter approach is justified in
the range of smallest water depth, say forL −H 6 Z1 6 L.
It is important to note, that, even in the case of the breaking
wave, the discrete model developed above enable us to calcu-
late the horizontal displacement of a shoreline (the pointC in
Fig. 1).
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