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Efficient algorithm for designing multipurpose control systems
for invertible and right-invertible MIMO LTI plants
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Abstract. In the paper an approach to design of multipurpose control systems is considered. It is presented an universal and efficient algorithm
for synthesis of multipurpose control system for proper, invertible and right-invertible multi-input multi-output dynamic (MIMO) plants which
can be both unstable and/or non-minimumphase. The developed control systems feature both dynamic (either block or row-by-row) decoupling
and arbitrary closed-loop pole placement and zero steady-state errors for regulation or tracking processes in presence of (non-diminishing)
disturbances.
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1. Introduction

The goal of control is to maintain stability of the system and
at the same time to satisfy many other requirements in order to
achieve high performance of control processes. It is advisably
to be able to e.g. enforce dynamic properties for a closed-loop
system with simultaneous minimization of overshoots and/or
setting time and zeroing steady-state errors [1]. It may be very
difficult to realize these requirements especially for complex
multi-input multi-output plants, mainly due to coupling of the
plant inputs with different outputs. This is why decoupling of
the MIMO systems plays a very significant role in design-
ing control systems. It allows us to consider each decoupled
loop independently of any other one. When the row-by-row
(diagonal) decoupling is applied to the system a set of single-
input single-output subsystems, which are easier to control, is
obtained. However dynamic decoupling of MIMO systems is
one of the most difficult problems in construction of multivari-
able control systems especially for non-square (usually right-
invertible) plants which can have non-minimum phase trans-
mission zeros. It is well known in the decoupling theory that
some poles of the decoupled (compensated) system, related to
the so-called interconnection transmission zeros of the plant,
are fixed. These can generate uncontrollable and/or unobserv-
able parts of the closed-loop system. Cancellations of such
non-minimum phase zeros (unstable “hidden” modes) make
the system unstable.

Although the idea of dynamic decoupling for multivariable
(MIMO) systems has been considered by many authors since
1960s beginning with [2] and that decoupling problem with
stability has been intensively studied in the past (see e.g. [3–8])
open problems still exist. The most of the methods allows some
fixed poles to exist in the decoupled system which (if they are
unstable) can result in the system instability. Moreover, they
are often confined to square plants with minimum phase zeros
only. So, in designing of a control system it is crucial to use a

decoupling algorithm which allows us to avoid unstable “hid-
den” modes and is enough flexible to be able to allow for some
other requirements.

The developed multipurpose control systems, apart from
block (or diagonal) dynamic decoupling, feature both an arbi-
trary closed-loop pole placement assumed independently for
each decoupled part of the system, and zero steady-state regu-
lation or tracking errors in the presence of deterministic dis-
turbances, and reconstruction (or optimal estimation) of the
plant’s state vector, if it is inaccessible (and/or noised).

The first results which fulfilled the above mentioned re-
quirements were given in [9]. The papers [10,11] expand the
results of Wolovich to more general proper invertible and right-
invertible plants with both stochastic and deterministic distur-
bances. In the paper [11] it was presented an algorithm for de-
signing multipurpose control systems which provides all of the
above-mentioned properties of multipurpose control systems
for non-square (right-invertible) continuous plants. It makes
use of the decoupling method presented previously in [12]. Yet,
this algorithm, contains some steps which make it practically
useless. However, modifications proposed in [13–15] allow us
to return to this algorithm and make it more efficient and nu-
merically reliable. In this paper it is presented a new improved
version of the algorithm for synthesis of multipurpose control
systems. It is designed for linearm-input l-output both invert-
ible m = l and right-invertible withm > l plants described
by proper rational full rank transfer matrixT (s). Plants can be
unstable, non-minimum phase or both.

2. Problem statement

We consider a controllable and observable linear LTI MIMO
model of the plant defined by the state and output equations

ẋ(t) = Ax(t) + Bu(t) + Er(t)
y(t) = Cx(t) + Du(t)

(1)
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wherex(t) ∈ Rn, u(t) ∈ Rm and y(t) ∈ Rl (m > l)
are the state, input and output vectors respectively. The vector
r(t) ∈ Rr describes deterministic (non-diminishing) distur-
bances. In the polynomial matrix approach transfer matrices of
all elements of the system are defined by pairs of polynomial
matrices either relatively right prime (r.r.p.) for plants, or rel-
atively left prime (r.l.p.) for other elements. Applying this ap-
proach, the plant model can be transformed into the relatively
prime matrix fraction description in the frequency s-domain as
follows

y = B1(s)A−1
1 (s)u + A−1

3 (s)B3(s)r̄ (2)

where

B1(s)A−1
1 (s) = C(sIn −A)−1B + D (3)

and
A−1

3 (s)B3(s) = C(sIn −A)−1Er(s). (4)

Since the transformed disturbance vectorr(s) is included
into the transfer matrix the symbol̄r in the Eq. (2) denotes a
“fictitious” impulsive input signal applied to the deterministic
disturbance model. Letm3+(s) denote an unstable and monic
polynomial chosen as least common multiplier (l.c.m.) of all
unstable poles of the transfer matrixA−1

3 (s)B3(s).
Assuming dynamic (block or diagonal) decoupling of the

designed control system we group output and reference signals
into “k” blocks according to the partitions

y(t) =




y1(t)
...

yi(t)
...

yk(t)




, y0(t) =




y01(t)
...

y0i(t)
...

y0k(t)




, i = 1, 2, ..., k (5)

where

yi(t) ∈ Rli , y0i(t) ∈ Rli ,
k∑

i=1

li = l. (6)

Similarly, as in the disturbance vectorr(s) case, the refer-
ence signal vectoryo(s) is generated from the reference model
defined by (unstable) strictly proper transfer matrix functions
(possible with different transfer functions for each reference
signal or for settled “k” groups (blocks) of reference signals)

yo(s) = A−1
o (s)Bo(s)ȳo, (7)

with the impulsive signal input̄yo. Let mi
0+(s) denote monic

polynomials adequately chosen for eachi-th group of refer-
ence signalsy0i(t).

The goal we pursue is to obtain a decoupled control sys-
tem in which each part (loop)i = 1, 2, ..., k of a multipurpose
system defined by pairs of signalsy0i(t),yi(t) ∈ Rli could be
controlled independently of other partsj 6= i. Moreover, each
part of the system should be designed with individually sup-
posed dynamic properties according to the given class of refer-
ence signalsy0i(t) ∈ Rli . The same requirements concern the
problem of full (diagonal) decoupling of the considered con-
trol system. In this caseli = 1 andk = l. The structure of
such a control system is presented in Fig. 1.

Fig. 1. Structure of the multipurpose control system

The problem may be solved as follows. The first stage is
dynamic (block or diagonal) decoupling of the “inner” part
of the control system between the signalsq(t) ∈ Rl and
y(t) ∈ Rl which are grouped into

q(t) =




q1(t)
...

qi(t)
...

qk(t)




and y(t) =




y1(t)
...

yi(t)
...

yk(t)




with qi(t) ∈ Rli , yi(t) ∈ Rli , i = 1, 2, ..., k.
The second stage is to design “k” controllers for “k” decoupled
parts of the control system.

All goals of the multipurpose control systems can be
achieved in a control system structure presented in Fig. 1,
which contains the dynamic feedforward compensator, the Lu-
enberger observer with feedback matrixF and the decoupled
controller. There may be a lot of ways of designing a multipur-
pose control system. By employing the above mentioned idea
the scheme presented in Fig. 1 may be transformed to the form
presented in Fig. 2 with the controllerM−1

2 (s)N2(s) and an
‘inner’ part of the systemN(s)D−1(s).

Fig. 2. Structure of the MIMO control system in polynomial approach

Once the ‘inner’ part of the system between the signalsq
andy has been decoupled (diagonal or block), in order to de-
sign a control system it is sufficient to solve a set of “k” (uni-
lateral) polynomial matrix equations

M ii
2 (s)Dii(s)+N ii

2 (s)Nii(s) = ∆ii(s), i = 1, 2, ..., k (8)

with respect to the matricesM ii
2 (s) andN ii

2 (s) (of minimal
degree) for knownDii(s), Nii(s) and for suitable defined
(Hurwitz) matrix ∆ii(s) matched to the assumed configura-
tions of the closed-loop control system poles. In order to do
that we can employ the usual pole placement technique to syn-
thesise a set of controllers (decoupled controller) for the decou-
pled system. However, such a way of system designing does
not ensure that all design goals will be achieved.

In contrast to the above situation, another possibility is to
lead a system to the form where both denominator matrices
M ii

2 (s) of controllers and numerator matrices of the “inner”
parts of the systemNii(s) in the Eq. (8) are known. Here
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the minimal degree solution of a set ofk (bilateral) polyno-
mial matrix equations (8) (in the case of diagonal decoupling
it is a set ofk = l polynomial equations) yields simultane-
ously both the denominator matrices for the block decoupled
“inner” parts of the systemDii(s) and the controller’s numer-
ator matricesN ii

2 (s). The possibility of defining denomina-
tor matricesM ii

2 (s) allows one to apply the internal model
principle and thus satisfy the zero steady state regulation or
tracking errors condition. According to the sufficient condi-
tions of that principle given in [16] (see also [17] and [9]),
the denominator matrices of the controller can be chosen as
M ii

2 (s) = diag[mii(s)Ili ], for i = 1, 2, ..., k wheremii(s) is
the l.c.m.of polynomials for all unstable parts of the transfer
matrices defined in the Eqs. (4) and (7).

So, the second method allows one to synthesize a multi-
purpose control system which would fulfill all designing goals.
There an appropriate control (decoupling) law should be only
employed which would match the above procedure. It should
allow us to choose the numerator and denominator matrix of
the ’inner’ part of the system independently of each other. The
method, which after some adjustments could be used, was pre-
sented in [13–15].

The feedback law, employed to decouple the system (the
linear state variable feedback along with dynamic feedfor-
ward) is described by

u(s) = G−1(s)L0(s)f(s) + G−1(s)L(s)q(s), (9)

where
f(s) = F (s)xp(s) , Fx(t) (10)

xp(s) is a partial state vector of the plant,G(s) ∈ R[s]m×m,
L(s) ∈ R[s]m×l, L0(s) ∈ R[s]m×m, F (s) ∈ R[s]m×m –
polynomial matrices such thatG−1(s)L0(s) andG−1(s)L(s)

are proper andF (s)A−1
1 (s) is strictly proper. Without any lose

of generality the matrixL0(s) may be taken asL0(s) = Im.
Then the system has the structure presented in Fig. 3.

According to this scheme the considered multipurpose con-
trol systems are suitably defined in s-domain by: proper and
possible “low-order” transfer matrixG−1(s)L(s) for the dy-
namic feedforward compensator, strictly proper (or proper)
transfer matricesQ−1(s)H(s) andQ−1(s)K(s) for the full
(or reduced) order Luenberger observer along with a feedback
matrix F and a strictly proper transfer matrixM−1

2 (s)N2(s)
for the decoupled controller. All of the above-mentioned poly-
nomial matrix fractions should be relatively left prime (r.l.p.)
with nonsingular, row-reduced, denominator matrices.

The main problem is to find a method for block decoupling
of the “inner” part of the control system (between the signals
q andy) for a non-square plant withm > l in such a way
as to obtain the transfer matrixTyq(s) free of cancellation of
unstable “hidden” modes. For the applied decoupling law this
transfer matrix takes the form

Tyq(s)

= B1(s)
[
Q(s)G(s)A1(s)−K(s)A1(s)−H(s)B1(s)

]−1

×Q(s)L(s)

= B1(s)
[
G(s)A1(s)− F (s)

]−1
L(s)

= N(s)D−1(s)
(11)

with

N(s) = block diag[Nii(s), i = 1, 2, ..., k] ∈ R[s]l×l (12)

and

D(s) = block diag[Dii(s), i = 1, 2, ..., k] ∈ R[s]l×l. (13)

Fig. 3. Structure of the decoupled control system with inaccessible plant’s state vector
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Fig. 4. Structure of decoupled ’inner part’ of the system for the “augmented” plant

The algorithm starts with determination of the numerator
matrix of “inner” part of the system. It is taken as a block diag-
onal matrixN(s) = block diag[Nii(s), i = 1, 2, ..., k], where
particular blocksNii(s) are g.c.l.d. of columns of i-th row-
block ofB1(s) caused by the partition (5)

B1(s) =




B11(s)
...

B1i(s)
...

B1k(s)




. (14)

ThenB1(s) takes the form

B1(s) = N(s)B(s). (15)

As it was presented above the decoupled ‘inner’ part of
the system does not have to be stable but it should be free
of any unstable cancellations, unobservable and/or uncon-
trollable, unstable poles. However, if the polynomial matrix
G̃(s) ∈ R[s]l×l, which is ag.c.l.d.of all columnsB(s) de-
fined by the relation

B(s) = G̃(s)B̃(s), (16)

is not unimodular, and if its zeros lie in the unstable region of
the complex plane, the (unobservable) poles of decoupled sys-
tem corresponding to these zeros are fixed and unstable [12].
These so called ‘interconnection’ transmission zeros cannot be
eliminated by a feedforward compensator of zero order. So, in
such a case a dynamic compensator is to be used. To remove
these unobservable poles we can use the compensation scheme
together with an additional dynamic feedforward compensator
obtained by augmenting the plant model with a serial dynamic
elementRa(s)P−1

a (s). This element has to be connected to
the input of the original plant presented in Fig. 4 and finally
“shifted” into the structure of dynamic feedforward compen-
sator [11,12].

After calculating the elementRa(s)P−1
a (s), the “stan-

dard” procedure with an “augmented plant” can be used and a
decoupled systemTyq(s) without fixed poles caused bỹG(s)
is automatically obtained.

Of course, this raises the question of how to calculate this
additional dynamics. A suitable algorithm was given by Hikita
[12] and Bánka [11]. Recently it has been modified in [15] to

make it more reliable and efficient. This algorithm guarantees
free location of all poles of the system and guarantees that all
designed elements (parts of the system) are proper (or strictly
proper), so they are able to be physically realizable. Thus, we
obtain the following design algorithm for the considered block
decoupled multipurpose control system.

3. The algorithm
Step 1. Given the plant description, derive its transfer matrix

B1(s)A−1
1 (s) using Wolovich’s “structure theorem”.

Permute rows ofB1(s), if necessary, to group plant’s
outputsy(s) (andy0(s)). SubstituteB1(s) := PB1(s),
whereP is a permutation matrix.

Step 2. DefineN(s) = block diag[Nii(s), i = 1, 2, ..., k],
whereNii(s) are g.c.l.d. of the columns ofi-th row-
block of B1(s). CalculateB(s) ∈ R[s]l×m such that
B1(s) = N(s)B(s).
DetermineG̃(s) ∈ R[s]l×l, a g.c.l.d.of all columns of
the matrixB(s) = G̃(s)B̃(s).
If G̃(s) is unimodular (or stable) go to Step 3, else do
the following steps:

Step 2.1. Convert the left to right fractions̃G−1(s)Ei =
R̃i(s)J̃−1

ii (s) for i = 1, 2, .., k with Ei defined byIl =
[E1,E2, ..., Ek]. DefineR̃(s) = [R̃1(s), ..., R̃k(s)] and
J̃(s) = block diag[Jii(s), i = 1, 2, ..., k].

Step 2.2. CalculateB̂(s) ∈ R[s]l×m andR̂(s) ∈ R[s]m×m

by the left to right conversioñR−1(s)B̃(s)
= B̂(s)R̂−1(s).

Step 2.3. Convert the right to left fraction of
A1(s)[R̂ad(s)]−1 = Ṙ−1(s)Ṗ (s) and setRa(s) =
Ṙad(s) andP̄ (s) = Ṗ (s). TheR̂ad(s) andṘad(s) are
adjoints ofR̂(s) andṘ(s), respectively.

Step 2.4. SelectU4(s) ∈ R[s]m×m such thatRa(s)U4(s) is
column-reduced.
SubstituteRa(s) := Ra(s)U4(s).
For assumed poles derivePa(s) = Λ(s) where
Λ(s) = diag[λi(s), i = 1, 2, ...,m] with deg[λi(s)] =
degci[Ra(s)].

Step 2.5. Derive minimal state space realization of
Ra(s)P−1

a (s)

ẋa(t) = Aaxa(t) + Bauoa(t)
u(t) = Caxa(t) + Dauoa(t),

(17)
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wherexa(t) ∈ Rna , uoa(t) ∈ Rm andu(t) ∈ Rm are
vectors of state, input and output of this element respec-
tively.

Step 2.6. Connect (in series) additional dynamic element with
the plant

ẋoa(t) =
[

A BCa

0 Aa

]
xoa(t) +

[
BDa

Ba

]
uoa(t)

y(t) =
[
C DCa

]
xoa(t) + DDauoa(t),

(18)
where vectorxoa(t) comes from substitution

xoa(t) =
[

x(t)
xa(t)

]
. (19)

Step 2.7. Using Wolovich’s “structure theorem” derive the
r.r.p. transfer matrix fractionB1(s)A−1

1 (s) for obtained
state space description of the “augmented plant”.
Go to Step 2.

Step 3. If m = l go to Step 4 else:
Derive a unimodular matrixU(s) such that
B(s) U(s) = [Il 0 ].
Let U−1(s) = [UT

1 (s) UT
2 (s) ]T ,

whereU1(s) ∈ R[s]l×m, U2(s) ∈ R[s](m−l)×m.
SubstituteB̄(s) = U2(s).

Step 4. Perform the right to left conversion

of A1(s)
[

B(s)
B̄(s)

]−1

= Q̃−1(s)P̃ (s) to obtain

P̃ (s) ∈ R[s]m×m with Q̃(s) ∈ R[s]m×m row-reduced.
Determineνj = degrj [Q̃(s)] for j = 1, 2, ..,m and de-
fineν = max{νj}.
Givenνj andν, deriveP̂ (s) = diag[sν−νi ]P̃ (s).
Let P̂ (s) = [P̂ F (s), P̂ L(s)], whereP̂ F (s) ∈ R[s]m×l

andP̂ L(s) ∈ R[s]m×(m−l).

Define P̂ F (s) = [P F
1 (s)

...P F
2 (s)

......
...P F

k (s)], where
P̂ F

i (s) ∈ R[s]m×li , i = 1, 2, . . . , k.
Step 5. For i = 1, 2, ..., k andj = 1, 2, . . . , li determine de-

greesd̄i
j for diagonal elementsdi

j(s) of Dii(s) from the

constraintdeg di
j(s) = max{degcj P̂ F

i (s)− ν, 0}.
Step 6. DefineM2(s) = block diag[M ii

2 (s)] =
block diag[Ilimi(s), i = 1, 2, ..., k] with polynomials
mi(s) chosen as l.c.m. of the unstable and monic poly-
nomialsm3+(s) andmi

0+(s) generated from poles of
the unstable parts of the transfer matrices (4) and (7).
Denotem̄i

j = degrj M ii
2 (s) for i = 1, 2, . . . , k and

j = 1, 2, . . . , li.
Step 7. Determineδ̄i

j = deg δi
j(s) = m̄i

j + d̄i
j and define de-

greesδ̄i =
li∑

j=1

δ̄i
j for determinants of∆ii(s). Assum-

ing stable values for poles of the closed-loop system
generate the matrices∆ii(s) with known |∆ii(s)| =
δ̄i∏

p=1
(s− sp) (independently) for each block of the sys-

tem. To avoid any cancelations between∆(s) and
N(s), zeros of each∆ii(s) andNii(s) should be dis-
joint.

Leading coefficient matrix of matrices∆ii(s) (not
necessary diagonal) should satisfy the conditions
Γ (∆ii(s)) = Γ r(M ii

2 (s))Γ c(Dii(s)).
Step 8. Given M ii

2 (s), Nii(s) and ∆ii(s), solve (bilateral)
polynomial matrix equations

M ii
2 (s)Dii(s) + N ii

2 (s)Nii(s) = ∆ii(s)

for i = 1, 2, ..., k

with respect toDii(s) andN ii
2 (s) (of minimal degree).

Step 9. Perform the right to left conversion of

A1(s)
[

D(s)B(s)
B̄(s)

]−1

= Φ−1
D (s)ΦN (s)

to obtainΦN (s) ∈ R[s]m×m with ΦD(s) ∈ R[s]m×m

row-reduced.
Determineµj = degrj [ΦD(s)], j = 1, 2, ..., m and de-
fineµ = max{µj}.
Givenµj andµ, deriveΦ̂N (s) = diag[sµ−µj ]ΦN (s).
Select an unimodular matrix̂W (s) ∈ R[s]m×m such
thatΦ̂N (s)Ŵ (s) is column-reduced.

Step 10. Determine degrees̄lj = deg[l̂j(s)] for
j = 1, 2, ..., m from the constraint̄lj =
max{degcj [Φ̂N (s)Ŵ (s)]− µ, 0}and set̂L(s) =
diag[l̂j(s)] with l̂j(s) chosen freely as stable (monic)
polynomials suited to the assumed (uncontrollable)
poles of the transfer matrixTyq(s).

Step 11. Calculate[L(s), L̄(s)] = L̂(s)Ŵ (s) to obtain the
matricesL(s) ∈ R[s]m×l and L̄(s) ∈ R[s]m×(m−l),
the firstl and the lastm− l columns ofL̂(s)Ŵ (s).

Step 12. Execute right matrix division[L(s)D(s)B(s) +
L̄(s)B̄(s)]A−1

1 (s) = G(s) − F (s)A−1
1 (s), where

G(s) ∈ R[s]m×m is the quotient and−F (s)
∈ R[s]m×m is the remainder.

Step 13. If the plant’s state vector is not accessible for direct
measurement, in order to design the full order Luen-
berger observer set the matrix

C̄2(s) = diag[̄cj(s)], j = 1, 2, ..., l,

wherec̄j(s) =
d̄j∏

i=1

(s− si). Thesi are assumed (stable)

values of poles for the observer and̄dj are observabil-
ity indices equal to the row degrees̄dj = degrj A2(s),
whereA2(s) is the denominator matrix of ther.l.p. ma-
trix fraction description of the plant’s transfer matrix

A−1
2

(s)B2(s) = C(sIn −A)−1B + D.

Transform matrixC̄2(s) to the matrixC2(s) with the
same (row) structure asA2(s).
Determine the “gain” matrixL of the observer from the
equation

C2(s)−A2(s) = S̃(s)T̃L (20)

whereS̃(s) andT̃ are calculated duringr.l.p. (dual) fac-
torization of the plant’s transfer matrix.
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4. Comments on the time domain realization
of designed control system

If in Step 2 of the above presented algorithm the matrixG̃(s)
is unimodular, then the feedback matrixF can be determined
directly from the relationshipF (s) = F T̂ Ŝ(s), whereT̂ and
Ŝ(s) are known. These are calculated in Step 1 during ther.r.p.
factorization of the plant’s transfer matrix (3).

If G̃(s) is not unimodular and the additional Steps 2.1–2.7
were taken, then having (new) matricesT̂ andŜ(s) (which re-
sult from r.r.p. factorization of the “augmented” plant ) derive
matrixFoa from the equationF (s) = FoaT̂ Ŝ(s). Let

Foa =
[
F

... Fa

]
, 21

whereF ∈ Rm×n determines the first part of feedback from
plant’s state vector andFa ∈ Rm×na the second part of feed-
back from the state vector of an additional dynamic element.
Then

f(t) = [Fx(t) + Faxa(t)] , 22

wherex(t) andxa(t) are state vectors of the plant and addi-
tional dynamic element, respectively.

The additional dynamic elementTa(s) = Ra(s)P−1
a (s)

should be shifted into the feedforward compensator. Then the
control law (in s-domain) takes the form

uoa(s) = G−1(s)
[
L(s) Im

] [
q(s)
f(s)

]
, 23

whereuoa(s) is an input to the “augmented” plant.
ElementG−1(s)L(s) calculated in Steps 11 and 12 of the

algorithm may be realised by state and output equations

ẋk(t) = Akxk(t) + Bkuk(t)
uoa(t) = Ckxk(t) + Dkuk(t),

24

wherexk(t) ∈ Rnk anduoa(t) ∈ Rm are state and output
vectors and

uk(t) =
[

q(t)
Fx(t) + Faxa(t)

]
, 25

is an input vector to the feedforward compensator. Matrices

Bk, Dk may by defined asBk =
[
Bkp

... Bkm

]
, Dk =

[
Dkp

... Dkm

]
, where Bkp ∈ Rnk×p, Bkm ∈ Rnk×m,

Dkp ∈ Rm×p andDkm ∈ Rm×m.
Finally the feedforward compensatorG−1(s)L(s) that in-

cludes the additional dynamic elementRa(s)P−1
a (s) may be

described by the state and output equations

ẋw(t) =

[
Ak BkmFa

BdCk Aa + BdDkmFa

]
xw(t) +

[
Bkp Bkm

BaDkp BaDkm

]
uw(t)

u(t) =
[

DaCk Ca + DaDkmFa

]
xw(t) +

[
DaDkp DaDkm

]
uw(t),

26
wherexw(t) anduw(t) come from

xw(t) =
[

xk(t)
xa(t)

]
, uw(t) =

[
q(t)

Fx(t)

]
. 27

Output signalu(t) of this compensator is the input signal to
the “original” plant.

The state and output equations of the other system elements
may be obtained by using any of the well known conversion
from mfd to ss methods [18]. So, here we receive “k” con-
trollers (in time domain) for each decoupled block of the sys-
tem.

In the case of using the full order Luenberger observer
there will be a “standard” realization of (strictly proper) ob-
server with the “gain” matrixL calculated in Step 13

˙̃x(t) = (A−LC)x̃(t) + (B −LD)u(t) + Ly(t)
f(t) = F x̃(t).

(28)

It is also possible to design a functional (reduced order) Luen-
berger observer defined by the matricesQ(s), H(s) andK(s)
which satisfy the (unilateral) matrix polynomial equation

K(s)A1(s) + H(s)B1(s) = Q(s)F (s), 29

whereQ(s) ∈ R[s]m×m is defined in some “regular” form

with assumed (stable) polynomialdetQ(s) =
n1∏

j=1

(s− sj)

and F (s) = F T̂ Ŝ(s) for known matricesT̂ and Ŝ(s) ob-
tained during factorization of the “original” plant description
(3). Then the canonic realization of the (proper) transfer matri-

cesQ−1(s)[K(s)
... H(s) may be converted to the state space

description of observer

ż(t) = Aoz(t) + Bou(t) + Loy(t)
f(t) = Foz(t) + Doy(t)

30

with z(t) ∈ Rn1 (n1 < n), u(t) ∈ Rm, y(t) ∈ Rl and
f(t) ∈ Rm, by using any known method.

Moreover, in stochastic case the Kalman filter may also be
designed in Step 13 by using the matrixC2(s) obtained from
left spectral factorization of

A2(s)V AT
2 (−s)+B̃2(s)W B̃T

2 (−s) = C2(s)UUT CT
2 (−s)

31
for (strictly proper)A−1

2 (s)B̃2(s) = C(sIn−A)−1G, where
G ∈ Rn×p is an additional input matrix in the plant’s state
description

ẋ(t) = Ax(t) + Bu(t) + Er(t) + Gw(t)
y(t) = Cx(t) + Du(t) + v(t).

32

Vectorsw(t) ∈ Rp andv(t) ∈ Rl are “white” Gaussian noises
with covariance matricesW > 0 andV > 0. Matrix U in Eq.
is an orthogonal matrix. Independent zero-mean noisesw(t)
andv(t) are additional (not measured) stochastic disturbances
contaminating inputs and outputs of the plant, respectively.
Then the standard realization of the stationary Kalman filter
has the same form (28) as the full order Luenberger observer
with substitution of a “gain” matrixL := K. This matrix is
calculated from Eq. (20).

5. Example
In order to illustrate the theoretical considerations an example
of design of a multipurpose control system is presented. We
choose a plant (ofn = 5 order withm = 4 inputs andl = 3
outputs) defined by the following matrices of the state and out-
put equations
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A =




0 1 0 1 0
−2 −1 1 2 1
−4 0 2 1 −1

1 −1 1 0 −2
0 1 0 −1 0




, B =




0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1




, E =




1 0
0 1
0 0
0 0
0 0




,

C =




0 0 0 0 −1
0 1 0 0 0
0 0 1 0 0


 , D =




1 0 0 0
0 0 0 0
0 0 0 0


 .

This plant can be described in ther.r.p. matrix fraction as
follows

B1(s) =




s + 1 −1 5 0
1 0 2 0
0 1 1 0


 ,

A1(s) =




s + 1 −1 4 1
0 s− 2 1 5
1 −1 s2 − 2 1
−1 0 −2 s


 .

It has the poless1,2 = −1.653 ± i0.994, s3,4 = 1.45 ±
i1.156, s5 = 1.404 and one transmission zeroso

1 = 2. So, the
plant is unstable and nonminimum phase.

Before the design procedure is started we assume the fol-
lowing:

– the control system will be block decoupled with the parti-
tion (5) of the output and reference input taken asl1 = 1
andl2 = 2, which allows existing a coupling between sig-
nalsy2(t) andy3(t),

– “ramp” reference signalyo1(t) for the first loop (output
y1(t)) and “step” reference signalsyo2(t) andyo3(t) for the
second block (outputsy2(t) andy3(t)),

– two different deterministic disturbance signals: a sinusoidal
disturbancer1(t) of frequency 0.25 Hz and constant (step)
disturbance signalr2(t).

As the transmission zero of the plant is an interconnec-
tion transmission zero, it is necessary to design, by the use of
Steps 2.1–2.7, an additional dynamic elementRa(s)P−1

a (s).
Assumingsa = −3 for (one) pole of this additional element,
we have obtained

Ra(s) =




0.147 −0.0587 0.808 −0.018
−0.111 0.231 −0.21 −0.86

0.485s− 2.32 −0.413 −1.678 0.708
−0.595 −0.207 −0.335 0.198


 ,

Pa(s) =




s + 3 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


 .

According to the supposed classes of disturbances and ref-
erence signals, as well as assumed partition of signals in the
system, the “denominator” matrixM2(s) of the controller was
defined in Step 6 as (diagonal)

M2(s) =




s4 + 1.5791s2 0 0
0 s3 + 1.5791s 0
0 0 s3 + 1.5791s


 .

Assuming the following values of poles in Step 7:

– for the first block:s1 = −1, s2 = −1.2, s3 = −1.4,
s4 = −1.6, s5 = −1.8, s6 = −2,

– for the second block:s7 = −1, s8 = −1.2, s9 = −1.4,
s10 = −1.6, s11 = −1.8, s12 = −1, s13 = −1.2,
s14 = −1.4, s15 = −1.6, s16 = −1.8,

andsuc = −1 as an uncontrollable pole of the control system
we obtain:
– numerator (block) matrix of the controller

N2(s) =



−26.2s3 − 1.236s2 − 22.87s− 4.8

0
0

0 0
12.58s2 − 21.46s + 7.257 −4.195s2 + 7.154s− 2.419
15.54s2 − 10.103s− 4.83 0




– dynamic feedforward compensatorG−1(s)L(s)

L(s) =




0 0 0
0 1 0

−1 0 1
1 0 0


 ,

G(s) =




0 0 1 0
0 0.407 −2.636 −0.805

0.97 −0.301 −7.611 0.648
0.147 −0.0587s− 0.4389 0.8087s + 9.23 −0.018s− 0.4




and the feedback matrix

F =




−0.18 −1.8 1.82 3.1 −3.45 −1.5
23.72 1.13 −13.7 −12.15 12.57 8.88

−14.58 24.47 −21.43 −43.3 85.18 25.06
28.58 −33.3 11.43 33.3 −86.18 −18.42


 .

The “gain” matrix of the full order Luenberger observer
with the values of its poles assumed ass1 = −3, s2 = −3,
s3 = −4, s4 = −5, s5 = −2 is given as

L =




19 −11.5 1
−4 9 0
−20 17.5 2
19.5 −6.5 1.5
−7 1.5 0




.

As it is shown in Fig. 5, according to our assumptions there
is no interaction between the signaly1(t) and the both signals
y2(t) andy3(t). So, the system is (block) decoupled and all
of the assumed design objectives are achieved. Control signals
u(t) which ensure above presented control processes are given
in Fig. 6.
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Fig. 5. Results of simulation of the block decoupled control system

Fig. 6. Control signals of the block decoupled control system obtained
during simulation

The designed control system (including the plant) has the
orderns = n + no + nfc + nc = 22, whereno = n = 5 is
the order of the Luenberger observer,nfc = 2 the order of the
feedforward compensator (including additional dynamic ele-
ment) andnc = 10 is the order of (block decoupled) controller.
The system has one uncontrollable polesuc = −1 in decou-
pled “inner” part of the system, as well as five uncontrollable
poless1 = −3, s2 = −3, s3 = −4, s4 = −5, s5 = −2 for
observer, which define stable “hidden” modes of the system.

6. Conclusions and final remarks
In the paper we have presented an universal and improved
algorithm for synthesis of multipurpose control system for
dynamic plants with the number of inputs being equal or
greater than the number of their outputs (invertible and right-
invertible MIMO plants). The proposed algorithm guarantees
all assumed designing goals to be achieved and ensures inter-
nal stability and internal property for both unstable and non-
minimum phase proper plants.

Reduced number of operations on polynomials in Steps
2.3–2.4 and improved numerical reliability of calculations by
use of the state space method combined with polynomial meth-
ods in Steps 2.5–2.7 and in Step 13 makes this algorithm more

efficient than the ones used so far. This algorithm is also self-
correcting due to the additional loop, which is applied after
Step 2.7 in order to avoid possible errors in calculations per-
formed in Step 2 and Steps 2.1–2.7. Hence, the presented algo-
rithm may become an effective tool in designing multivariable
systems.
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