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Efficient algorithm for designing multipurpose control systems
for invertible and right-invertible MIMO LTI plants
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Abstract. In the paper an approach to design of multipurpose control systems is considered. It is presented an universal and efficient algorithr
for synthesis of multipurpose control system for proper, invertible and right-invertible multi-input multi-output dynamic (MIMO) plants which
can be both unstable and/or non-minimumphase. The developed control systems feature both dynamic (either block or row-by-row) decouplin
and arbitrary closed-loop pole placement and zero steady-state errors for regulation or tracking processes in presence of (non-diminishini
disturbances.
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1. Introduction decoupling algorithm which allows us to avoid unstable “hid-

. o . den” modes and is enough flexible to be able to allow for some
The goal of control is to maintain stability of the system and, o, requirements.

at the same time to satisfy many other requirements in order to
achieve high performance of control processes. It is advisab[%

to be able to e.g. enforce dynamic properties for a closed—loqury closed-loop pole placement assumed independently for

syst.em yvith simultan.eous minimization of overshoots and/cgach decoupled part of the system, and zero steady-state regu-
setting time and zeroing steady-state errors [1]. It may be V€[dtion or tracking errors in the presence of deterministic dis-

diffic_u_lt o realiz_e these requireme_nts especially fqr Complefﬁrbances, and reconstruction (or optimal estimation) of the
multi-input multi-output plants, mainly due to coupling of the lant’s state vector, if it is inaccessible (and/or noised).

plant inputs with different outputs. T.h's. IS why decpupllng mP The first results which fulfilled the above mentioned re-
the MIMO systems plays a very significant role in design-

ing control systems. It allows us to consider each decouplec‘é"rements were given in [9]. The papers [10,11] expand the

: results of Wolovich to more general proper invertible and right-
loop independently of any other one. When the row-by-row . . . S

: L . . Invertible plants with both stochastic and deterministic distur-
(diagonal) decoupling is applied to the system a set of single- . ;
. . . . ances. In the paper [11] it was presented an algorithm for de-
input single-output subsystems, which are easier to control,éls ning multipurpose control systems which provides all of the
obtained. However dynamic decoupling of MIMO systems i gning purp y P

. . . L ve-mention roperti f multipur ntrol m
one of the most difficult problems in construction ofmultwan-abo e-mentioned properties of multipurpose control systems

. . for non-square (right-invertible) continuous plants. It makes
able control systems especially for non-square (usually right- q (rig ) P

invertible) plants which can have non-minimum phase tran use of the decoupling method presented previously in [12]. Yet,

mission zeros. It is well known in the decoupling theory thaj
some poles of the decoupled (compensated) system, relaten? return to this algorithm and make it more efficient and nu-

the so-called interconnection transmission zeros of the plang, . . . . .
are fixed. These can generate uncontrollable and/or unobsew/gncally reliable. In this paper it is presented a new improved
: 9 Vﬁrsion of the algorithm for synthesis of multipurpose control

able parts of the closed-loop system. Cancellations of sug stems. It is designed for lineat-inputi-output both invert-

.. L " S
non-minimum phase zeros (unstable “hidden” modes) maifgle m = [ and right-invertible withm > [ plants described

the system unstqble. ) i o by proper rational full rank transfer matriR(s). Plants can be

Although the idea of dynamlcldecoupllng for mUIt'Va”ab_leunstable, non-minimum phase or both.
(MIMO) systems has been considered by many authors since
1960s beginning with [2] and that decoupling problem with

stability has been intensively studied in the past (see e.g. [3-&) Problem statement

open problems still exist. The most of the methods allows somge consider a controllable and observable linear LTI MIMO

fixed poles to exist in the decoupled system which (if they arg,ggel of the plant defined by the state and output equations
unstable) can result in the system instability. Moreover, they

are often confined to square plants with minimum phase zeros &(t) = Az(t) + Bu(t) + Er(t) (1)
only. So, in designing of a control system it is crucial to use a y(t) = Cz(t) + Du(t)

The developed multipurpose control systems, apart from
ck (or diagonal) dynamic decoupling, feature both an arbi-

his algorithm, contains some steps which make it practically
%gless. However, modifications proposed in [13-15] allow us
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wherex(t) € R", u(t) € R™ andy(t) € R' (m > 1) \

are the state, input and output vectors respectively. The vect( oo i Controller | 9] Feedforward 1 * Plant 7
r(t) € R" describes deterministic (non-diminishing) distur- y - compensator

bances. In the polynomial matrix approach transfer matrices ¢ f Observer |
all elements of the system are defined by pairs of polynomig %

matrices either relatively right primex(p.) for plants, or rel- Fol—

atively left prime ¢1.p.) for other elements. Applying this ap-
proach, the plant model can be transformed into the relatively
prime matrix fraction description in the frequency s-domain as

Fig. 1. Structure of the multipurpose control system

follows The problem may be solved as follows. The first stage is
Y= Bl(s)Al—l(S)u+Ag1(s)]33(s)f (2)  dynamic (block or diagonal) decoupling of the “inner” part
h of the control system between the signgl¢) € R' and
where y(t) € R' which are grouped into
—17a) — _ AV-1
and . .

A3'(s)Bs(s) = C(sI, — A) "' Er(s). (4)

Since the transformed disturbance veat@s) is included
into the transfer matrix the symb@lin the Eq. (2) denotes a
“fictitious” impulsive input signal applied to the deterministic () Y (t)
disturbance model. Lehs (s) denote an unstable and monicwith q;(t) € R, y;(t) € R, i=1,2, ..., k.
polynomial chosen as least common multipliec.(n) of all  The second stage is to design “k” controllers for “k” decoupled
unstable poles of the transfer matrg 1(8)B3(8). parts of the control system.

Assuming dynamic (block or diagonal) decoupling of the  All goals of the multipurpose control systems can be
designed control system we group output and reference signatshieved in a control system structure presented in Fig. 1,
into “k” blocks according to the partitions which contains the dynamic feedforward compensator, the Lu-

enberger observer with feedback matfixand the decoupled
y1(t) Yo (t) S .
i controller. There may be a lot of ways of designing a multipur-
: : pose control system. By employing the above mentioned idea
y(t) = [ vi(t) |, yo(t) = | yoi(t) | , i=1,2,...k (5) the scheme presented in Fig. 1 may be transformed to the form
: : presented in Fig. 2 with the controll@d, *(s) N,(s) and an
yk.(t) yo;é(t) ‘inner’ part of the systeniV (s) D~ (s).

where Yot e q y

k M (s)Ny(s) N(s)D"(s)
yi(t) S Rl"’, in(t) S Rli, le = . (6) _
i=1

Similarly, as in the disturbance vectofs) case, the refer- Fig. 2. Structure of the MIMO control system in polynomial approach
ence signal vectay, (s) is generated from the reference model

defined by (unstable) strictly proper transfer matrix functions Once the ‘inner’ part of the system between the siggals
(possible with different transfer functions for each referencandy has been decoupled (diagonal or block), in order to de-
signal or for settled “k” groups (blocks) of reference signals) sign a control system it is sufficient to solve a set of “k” (uni-

_ _ lateral) polynomial matrix equations
Yols) = A (5)Bo(s)Gor (7) ) poly a

(23 (23 -

with the impulsive signal inpug,. Letm}_ (s) denote monic M3 (s) Dii(s) + No'(s) Nui(s) = Aii(s),1 = 1,2,k (8)
polynomials adequately chosen for eaeth group of refer- with respect to the matrice®Z:'(s) and N (s) (of minimal
ence signalgy; (¢). degree) for knownD;;(s), IN;;(s) and for suitable defined

The goal we pursue is to obtain a decoupled control sygHurwitz) matrix A;;(s) matched to the assumed configura-
tem in which each part (loop)= 1, 2, ..., k of a multipurpose tions of the closed-loop control system poles. In order to do
system defined by pairs of signals;(t), y;(t) € R" could be thatwe can employ the usual pole placement technique to syn-
controlled independently of other parts# i. Moreover, each thesise a set of controllers (decoupled controller) for the decou-
part of the system should be designed with individually sugpled system. However, such a way of system designing does
posed dynamic properties according to the given class of refaeret ensure that all design goals will be achieved.
ence signalgy;(t) € R". The same requirements concern the In contrast to the above situation, another possibility is to
problem of full (diagonal) decoupling of the considered conlead a system to the form where both denominator matrices
trol system. In this casg = 1 andk = [. The structure of MJi‘(s) of controllers and numerator matrices of the “inner”
such a control system is presented in Fig. 1. parts of the systeniV;;(s) in the Eq. (8) are known. Here
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the minimal degree solution of a set bf(bilateral) polyno- are proper and(s)A; !(s) is strictly proper. Without any lose

mial matrix equations (8) (in the case of diagonal decouplingf generality the matrixd.o(s) may be taken a&((s) = I,,.

it is a set ofk = [ polynomial equations) yields simultane- Then the system has the structure presented in Fig. 3.

ously both the denominator matrices for the block decoupled According to this scheme the considered multipurpose con-

“inner” parts of the systenD,;(s) and the controller's numer- trol systems are suitably defined in s-domain by: proper and

ator matricesVi'(s). The possibility of defining denomina- possible “low-order” transfer matrig ! (s)L(s) for the dy-

tor matricesM.i(s) allows one to apply the internal model namic feedforward compensator, strictly proper (or proper)

principle and thus satisfy the zero steady state regulation wansfer matrice€) ! (s)H (s) andQ~'(s) K (s) for the full

tracking errors condition. According to the sufficient condi{or reduced) order Luenberger observer along with a feedback

tions of that principle given in [16] (see also [17] and [9]),matrix F and a strictly proper transfer matrikZ, *(s) Ny (s)

the denominator matrices of the controller can be chosen fs the decoupled controller. All of the above-mentioned poly-

Mii(s) = diagfn.i(s)I,], fori = 1,2, ...,k wherem;;(s) is  nomial matrix fractions should be relatively left primd.p.)

thel.c.m. of polynomials for all unstable parts of the transfemwith nonsingular, row-reduced, denominator matrices.

matrices defined in the Egs. (4) and (7). The main problem is to find a method for block decoupling
So, the second method allows one to synthesize a multf the “inner” part of the control system (between the signals

purpose control system which would fulfill all designing goalsq and y) for a non-square plant witin > [ in such a way

There an appropriate control (decoupling) law should be onlgs to obtain the transfer matrik,,(s) free of cancellation of

employed which would match the above procedure. It shoulghstable “hidden” modes. For the applied decoupling law this

allow us to choose the numerator and denominator matrix tfansfer matrix takes the form

the 'inner’ part of the system independently of each other. Thgw o(5)

method, which after some adjustments could be used, was pre

sented in [13-15]. = Bi(s) [Q(5)G(s)Ai(s) — K(s)Ai1(s) — H(s)Bi(s)]
The feedback law, employed to decouple the system (the Q(s)L(s)

linear state variable feedback along with dynamic feedfor- [

ward) is described by = Bu(s) —F(s)] " L(s)
u(s) = GHs)Lo(s)f(5) + G ()L()als), (9 P (” )
where with
F(s) = F(s)mp(s) = Falt) (10) N(s) = block diagNyi(s),i = 1,2,..., k] € R[s]'*! (12
x,(s) is a partial state vector of the pla(s) € R[s]™*™, and
L(s) € R[s]™!, Lo(s) € R[s]™™, F(s) € R[s]™™ —

R
polynomial matrices such thé ' (s) Lo (s) andG ' (s) L(s) D(s) = block diadD;(s),i = 1,2,...,k] € R[s]"*'. (13)

Yo | LT

By(s) B,(s)
A, '(s) Feedforward A3_1(S)
Controller compensator Plant
Yoty e q + u X + Yr y
é—»MZ'I(S) N,(s) > L(s) —>®—> G'(s) > A ()~ Bi(s) —
y - A +ﬂ +
¢ + ot
K(s) »(%)« H(s) |«
: Observer
Q'(s)

Fig. 3. Structure of the decoupled control system with inaccessible plant’s state vector
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Feedforward Added
compensator dynamic element Plant
q + 1 u 2 xap 1 'xp y
> L(s) G (s) [ P (s) = R.(s) = A () Bi(s) ——
_l’_
v
lm F(S)

Fig. 4. Structure of decoupled 'inner part’ of the system for the “augmented” plant

The algorithm starts with determination of the numeratomake it more reliable and efficient. This algorithm guarantees
matrix of “inner” part of the system. It is taken as a block diagfree location of all poles of the system and guarantees that all
onal matrixV (s) = block diaglVi;(s),i = 1,2, ..., k], where designed elements (parts of the system) are proper (or strictly
particular blockslV;;(s) are g.c.l.d. of columns of i-th row- proper), so they are able to be physically realizable. Thus, we
block of B;(s) caused by the partition (5) obtain the following design algorithm for the considered block

Biy(s) decoupled multipurpose control system.

3. The algorithm

Step 1. Given the plant description, derive its transfer matrix
: B, (s)A7'(s) using Wolovich’s “structure theorem”.
Bii(s) Permute(r(;v(vs ((;TBl((s))), |Sf r;)ec_esiagry,( t)o gr(;gg p(la)nt's
outputsy(s) (andyg(s)). SubstituteB; (s) := 1(s),
ThenB, (s) takes the form whereP is a permutation matrix.
Bi(s) = N(s)B(s). (15) Step2. Define N (s) = block diag[V;;(s), i = 17.2,...,k:],
where N;;(s) are g.c.l.d. of the columns ofi-th row-

As it was presented above the decoupled ‘inner’ part of  plock of B, (s). CalculateB(s) € R[s]'*™ such that
the system does not have to be stable but it should be free B, (s) = N(s)B(s).

of any unstable cancellations, unobservable and/or uncon-  petermineG(s) € R[s]'*!, ag.c.l.d.of all columns of
trollable, unstable poles. However, if the polynomial matrix the matrixB(s) = G(s)B(s).

Bi(s) = | Bu(s) | . (14)

G(s) € R[s]"*!, which is ag.c.l.d.of all columnsB(s) de- If G(s) is unimodular (or stable) go to Step 3, else do
fined by the relation the following steps:
B(s) = G(s)B(s), (16) Step 2.1. Convert the left to right fractionG'(s)E; =
_ _ o o _ R;(s)J;;*(s) fori = 1,2, .., k with E; defined byl; =
is not unimodular, and if its zeros lie in the unstable region of g, E, . E,].DefineR(s) = [Ri(s),..., Ri(s)] and

the complex plane, the (unobservable) poles of decoupled sys- j(s) = block diagl;;(s),i = 1,2, ..., k].

tem corresponding to these zeros are fixed and unstable [1§1ep 29 CalculateB(s) € R[s)*™ and R(s) € R[s|mxm
These so called ‘interconnection’ transmission zeros cannot be by the left to right conversiolR " (s) B(s)

eliminated by a feedforward compensator of zero order. So, in B(s)R*l(s).

such a case a dynamic compensator is to be used. To remye > 3 convert  the right to left fraction of
these unobservable poles we can use the compensation schemg A (s)[R (5)]! = R_l(s)P(s) and setR.(s) —
together with an additional dynamic feedforward compensator Rld(s) aﬁjﬁ(s) _ P(s). The Rug(s) and R Z(S) are
obtained by augmenting the plant model with a serial dynamic adL}oints of R(s) andR(s). respegtively. “
elementR,(s) P, !(s). This element has to be connected toStelo 2.4.SelectlU, (s) € R[S]mlxm such thatR, (s)U(s) is
the input of the original plant presented in Fig. 4 and finally column-reduced. “

“shifted” into the structure of dynamic feedforward compen- SubstituteR, (s) := Rq(s)Ua(s).

sator [11,12]. :

After calculating the elemenR,(s)P;!(s), the “stan- i?;?sjuc;?ae&)\p?gsiding(s) mf\g\zzhwc:]sg;;»(s)] _
dard” procedure with an “augmented plant” can be used and a deq, [Ra(s)] ner e ¢
decoupled systerif, 4 (s) without fixed poles caused ¥ (s) Agarate
is automatically obtained. 1

Of course, this raises the question of how to calculate this Ro(s)Pe(s)
additional dynamics. A suitable algorithm was given by Hikita 24(t) = Aaza(t) + Baoa(t)
[12] and Babka [11]. Recently it has been modified in [15] to u(t) = Coxy(t) + Datioq(t),

Step 2.5.Derive  minimal state space realization of

(17)

432 Bull. Pol. Ac.: Tech. 54(4) 2006



N
<
DEMIA

www.czasopisma.pan.pl P N www.journals.pan.pl

Efficient algorithm for designing multipurpose control systems for invertible and right-invertible MIMO LTI plants

wherez,(t) € R™, u,,(t) € R™ andu(t) € R™ are

vectors of state, input and output of this element respec-

tively.

Leading coefficient matrix of matriced;;(s) (not
necessary diagonal}) should satisfy the conditions
I'(A;i(s)) = I'y (M3 (s))I'c(Dii(s)).

Step 2.6. Connect (in series) additional dynamic element wittStep 8. Given M3(s), N;;(s) and A;;(s), solve (bilateral)

the plant

0at) = [ 5] ntt) + | T |t

y(t) = [C DCy ] 20u(t) + DDquuoa(t),
(18)
where vectorr,, (t) comes from substitution

eult) = | 20| (19

Step 2.7. Using Wolovich’s “structure theorem” derive the
r.r.p. transfer matrix fractiorB; (s) A; ' (s) for obtained
state space description of the “augmented plant”.
Go to Step 2.

Step 3. If m = [ go to Step 4 else:
Derive a unimodular matri&/(s) such that
B(s)U(s) =[1; 0].
LetU~'(s) = [U{ (s) US (s)]",
whereU, (s) € R[s ]lxm Us(s) €
SubstituteB(s) = Us(s).

Step 4. Perform the right to left conversion

—1
of A;(s) [ggg] = Q !(s)P(s) to obtain

P(s) € R[s]™*™ with Q(s) € R[s|™*™ row-reduced.
Determinev; = deg,[Q(s)] for j = 1,2,..,m and de-
finer = max{v;}.

Givenv; andv, derive P(s) = diagis” "] P(s).

Let P(s) = [PF(s), PL(s)], wherePT (s) € R[s]™*!
and P~ (s) € R[s|™*(m—D,

Define P¥(s) = [P (s):Pf(s)....PF (s)], where
PF(s) e R[s|™,i=1,2,... k.

Step 5. Fori = 1,2,...,kandj = 1,2,...,[; determine de-
greesd’; for diagonal elements (s) of D;;(s) from the
constraintdeg d’ (s) = max{deg,; PF(s) —v,0}.

Step 6. Define M (s) = block diag M3 (s)] =
blockdiadI;;m;(s),i = 1,2,...,k] with polynomials
m;(s) chosen as |.c.m. of the unstable and monic poly-
nomialsms (s) andmfy (s) generated from poles of
the unstable parts of the transfer matrices (4) and (7).
Denotern) = deg,; Mj'(s) for i = 1,2,...,k and
ji=1,2,...,1

Step 7. Determined’ = deg di(s) = m} + dj and define de-

R[s](mfl)xm

_ L _.

greeso; = . 5; for determinants of4;;(s). Assum-
j=1

ing stable values for poles of the closed-loop system
generate the matriced;;(s) with known |A;;(s)| =

8

IT (s —s,) (independently) for each block of the sys-
p=1

tem. To avoid any cancelations betweek(s) and

N (s), zeros of each;;(s) and IN;;(s) should be dis-

joint.

Bull. Pol. Ac.: Tech. 54(4) 2006

W
Step 12. Execute right matrix division[L(s)D(s)B(s) +

polynomial matrix equations
M3 (s)Dii(s) + N3'(s)Nis(s) = Aui(s)
fori=1,2,...,k

with respect taD;; (s) and N3 (s) (of minimal degree).

Step 9. Perform the right to left conversion of

Aq(s) [D%)(f)(s)] =&, ()P (s)

to obtain®y (s) € R[s]™*™ with &p(s) € R[s]™*™
row-reduced.

Determiney; = deg.;[®p(s)],j = 1,2,...,
fine p = max{y;}.

Giveny; andy, derived y (s) = diags” i ]® x (s).
Select an unimodular matri¥ (s) € R[s]”*™ such
thatd y (s)W () is column-reduced.

m and de-

Step 10. Determine degreds = deg]l; (s )] for

j=1,2,...,m from the constraint;

ma{degg; [ ()W ()] — 1, 0}and st (5) =

diagi;(s)] with [;(s) chosen freely as stable (monic)
polynomials suited to the assumed (uncontrollable)
poles of the transfer matrik; , (s).

Step 11. Calculate[L(s), L(s)] = L(s)W (s) to obtain the

matricesL( ) c R[ ]mxl and L( ) R[S]mx(m l)

the first/ and the lasin — I columns ofL(s) W (s).

L(s)B(s)]A7'(s) = Gl(s) — F(s)A7'(s), where
G(s) € R[s]™*™ is the quotient and-F (s
€ R[s]™*™ is the remainder.

Step 13. If the plant’s state vector is not accessible for direct

measurement, in order to design the full order Luen-
berger observer set the matrix

C_’2<s> = dlag[éJ(S)L ] = 172a "-7l7

d;

I1 (s = s;). Thes; are assumed (stable)
=1

values of poles for the observer arigl are observabil-
ity indices equal to the row degreds = deg, ; Aa(s),
where A, (s) is the denominator matrix of thd.p. ma-
trix fraction description of the plant’s transfer matrix

A (5)Ba(s) =

whereg;(s) =

C(sI, — A)"'B + D.

Transform matrixC»(s) to the matrixCs(s) with the
same (row) structure ad(s).

Determine the “gain” matri{. of the observer from the
equation

S(s)TL (20)

. (dual) fac-

Ca(s) — Az(s) =

whereS(s) andT are calculated duringl.p
torization of the plant’s transfer matrix.
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4. Comments on the time domain realization The state and output equations of the other system elements

of designed control system may be obtained by using any of the well known conversion
from mfd to ss methods [18]. So, here we receivk’ “‘con-

is unimodular, then the feedback mat#ikcan be determined trollers (in time domain) for each decoupled block of the sys-

. . . PN - tem.
directly from the relationshig(s) = FT'S(s), whereT’ and In the case of using the full order Luenberger observer

5(s) are known. These are calculated in Step 1 during.tpe there will be a “standard” realization of (strictly proper) ob-

factorization of the plant’s transfer matrix (3). . o, . .
If G(s) is not unimodular and the additional Steps 2.1_2.?erYer with the "gain” matrbd, calculated in Step 13

were taken, then having (new) matricBsandS (s) (which re- z(t) = (A— LC)&(t) + (B — LD)u(t) + Ly(t)
sult fromr.r.p. factorization of the “augmented” plant ) derive (1) = F&(t).
matrix F,, from the equatiorF'(s) = F,,T'S(s). Let

If in Step 2 of the above presented algorithm the ma¥is)

(28)

It is also possible to design a functional (reduced order) Luen-

Fo_lrpF 91 berger observer defined by the matri€gs;), H (s) and K (s)
oa e which satisfy the (unilateral) matrix polynomial equation
whereF € R™*" determines the first part of feedback from K(s)Ai(s) + H(s)Bi(s) = Q(s)F(s), 29

plant’s state vector anfl, € R™*"« the second part of feed- where Q(s) € R[s]™*™ is defined in some “regular’ form
back from the state vector of an additional dynamic element. i n
Then with assumed (stable) polynomidkt Q(s) = [] (s —s;)
j=1
f(t) = [Fa(t) + Faxa(t)], 22 and F(s) = FT3(s) for known matricesi and S(s) ob-
wherex(t) andx,(t) are state vectors of the plant and additained during factorization of the “original” plant description
tional dynamic element, respectively. (3). Then the canonic realization of the (proper) transfer matri-
The additional dynamic elemeffi,(s) = R,(s)P, !(s) . :
should be shifted into the feedforward compensator. Then t@SSQ. .(S) [K(s) : H(s) may be converted to the state space
: . éscription of observer
control law (in s-domain) takes the form
2(t) = A,z(t) + Bou(t) + Loy(t)

_ s 30
) = G [26) 1] [40)] s £(t) = Fy=(t) + Do)
whereu,, (s) is an input to the “augmented” plant. with z(t)me R™ (n1 < n), u(t) € R™, y(t) € R and
ElementG~(s)L(s) calculated in Steps 11 and 12 of thef (1) € &, by using any known method. _
algorithm may be realised by state and output equations Moreover, in stochastic case the Kalman filter may also be

. designed in Step 13 by using the mat€i%(s) obtained from
&1, (t) = Ay (t) + Bruk(t) o4 left spectral factorization of

Uoa(t) = Crak(t) + Dyu(t), As(5)V AL (—5)+ By(s)W BT (—s5) = Cy(s)UUTCT (—s)
wherexy(t) € R™ andu,.(t) € R™ are state and output } 31
vectors and for (strictly proper)A; ' (s)Bsy(s) = C(sI,, — A)~'G, where
q(t) G € R™? is an additional input matrix in the plant’s state
ug(t) = : 25 description
Fx(t) + Fox,(t) script
is an input vector to the feedforward compensator. Matrices &(t) = Az(t) + Bu(t) + Er(t) + Gw(t)

By, D;, may by defined asB;, = [ka : Bkm], D, = y(t) = Cz(t) + Du(t) + v(t).

Vectorsw(t) € RP andv(t) € R! are “white” Gaussian noises
[ka : ka]' where By, € R"™XP| By, € Ruwxm yvith covariance matric_eBV > 0andV > 0. Matrix U in_ Eq.

is an orthogonal matrix. Independent zero-mean noisés
Dyp € R™*P and Dy, € R™5. ~ andw(t) are additional (not measured) stochastic disturbances

Finally the feedforward compensat6t—' (s)L(s) thatin-  contaminating inputs and outputs of the plant, respectively.

cludes the additional dynamic elemeRy, (s)P, ' (s) may be  Then the standard realization of the stationary Kalman filter
described by the state and output equations has the same form (28) as the full order Luenberger observer

32

. Ay BimF, By Bim “gain” i = . i iX i
(1) = [Bd(k;‘k a f?demFa] u(t) + {Balgkp Baﬁkm] w(8) \év;'tlzuslg?esél?:g&n'z(;f. z(azc?;un matrixL, := K. This matrix is
u(t) = [DaCx Co+ DoDpmFa| @y (t) + [ DaDrp DaDim | ww(t),
wherewx,, (t) andu,,(t) come from 5. Example
In order to illustrate the theoretical considerations an example
To(t) = [zkgg}  ug(t) = {F“Ja(f&)} 27  of design of a multipurpose control system is presented. We
a choose a plant (ofi = 5 order withm = 4 inputs and = 3

Output signahu(t) of this compensator is the input signal tooutputs) defined by the following matrices of the state and out-
the “original” plant. put equations
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Assuming the following values of poles in Step 7:

0 10 1 O 0001 10 )
211 2 1 1000 01 — for the first block:s; = —1, s, = —1.2, 53 = —1.4,
A=|-4 02 1-1|,B=|0100|, E=|00]|, $1= 1685 =-18s55=-2,
1-11 0-2 0010 00 — for the second blocks; = —1, sg = —1.2, 59 = —1.4,
0 10 -1 0 0001 00 S10 = 71.6, S11 = 71.8, S12 = 71, S13 = 71.2,
S14 = —14, S15 = —16, S16 — —]..8,

0000 -1 1000

C=1|0100 0, D=]0000]. ands,. = —1 as an uncontrollable pole of the control system
0010 O 0000 we obtain:

This plant can be described in thep. matrix fraction as — numerator (block) matrix of the controller
follows

s+1-150 —26.253 — 1.23652 — 22.87s — 4.8
By (s) = 1 020/, No(s) = 0
0 110 0
s+1 -1 4 1
Ay(s) = 0 s—2 1 5 0 0
! 1 -1 s2-21]" 12.5852 — 21.465 + 7.257 —4.195s52 + 7.154s — 2.419
-1 0 -2 s 15.545% — 10.103s — 4.83 0

It has the poles; » = —1.653 £40.994, s34 = 1.45 £
i1.156, s5 = 1.404 and one transmission zes® = 2. So, the — dynamic feedforward compensat@r(s)L(s)
plant is unstable and nonminimum phase.

Before the design procedure is started we assume the fol- 000

lowing: L(s) = 010
. . . —-101]|"’

— the control system will be block decoupled with the parti- 100

tion (5) of the output and reference input takenas= 1
andl; = 2, which allows existing a coupling between sig—G(s)
nalsy(t) andys(t),

— “ramp” reference signal; (¢) for the first loop (output

y1(t)) and “step” reference signalg,(t) andy,s(t) for the 0 0 1 0
second block (outputg; () andys(t)), 0 0.407 —2.636 —0.805
— two different deterministic disturbance signals: a sinusoidal 0.97 —0.301 —7.611 0.648

disturbance-; (t) of frequency 0.25 Hz and constant (step)| 0.147 —0.0587s — 0.4389 0.8087s + 9.23 —0.018s — 0.4

disturbance signak(t).
o i , and the feedback matrix
As the transmission zero of the plant is an interconnec-

tion transmission zero, it is necessary to design, by the use of -0.18 —1.8 1.82 3.1 —3.45| -1
Steps 2.1-2.7, an additional dynamic elemBy{s) P, ! (s). p_ | 2372 113 —13.7-1215 1257 8.88
Assumings, = —3 for (one) pole of this additional element, —14.58 24.47 —21.43 —43.3 85.18| 25.06
we have obtained 28.58 —33.3 1143  33.3 —86.18 | —18.42
.14 —0. . —0.01 . .
_00 1171 82035f7 Eg(ﬁ —000868 The “gain” matrix of the full order Luenberger observer
R,(s) = 0.4855 — 2.32 —0.413 —1.678 0.708 | wnithie1 valu_es (5)f |ts_pole23. as;umedas: -3, s2 = —3,
—0.595  —0.207 —0.335 0.198 3= —H 84 =70, 5 = —2ISQVen as
s+3000 19 -11.5 1
0 100 —4 9 0
Pu(s) = 0 010" L=|-20 175 2
0 001 19.5 —6.51.5
-7 15 0

According to the supposed classes of disturbances and ref-
erence signals, as well as assumed partition of signals in the ag it is shown in Fig. 5, according to our assumptions there
system, the “denominator” matrix/,(s) of the controller was s ng interaction between the signal¢) and the both signals

defined in Step 6 as (diagonal) y2(t) andys(t). So, the system is (block) decoupled and all
s* 4+ 1.57915> 0 0 of the assumed design objectives are achieved. Control signals
M;(s) = 0 s +1.5791s 0 ) u(t) which ensure above presented control processes are given
0 0 % + 1.5791s in Fig. 6.
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1 : : : : 7 efficient than the ones used so far. This algorithm is also self-
0.8 & correcting due to the additional loop, which is applied after
" Yo Step 2.7 in order to avoid possible errors in calculations per-
0.6 o2 ; ; formed in Step 2 and Steps 2.1-2.7. Hence, the presented algo-
nﬂ& Yos ; / ' rithm may become an effective tool in designing multivariable
> 04 m / systems.
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