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Abstract. The study of the different engineering materials according to their mechanical and dynamic characteristics has become an area of 
research interest in recent years. Several studies have verified that the mechanical properties of the material are directly affected by the distribu-
tion and size of the particles that compose it. Such is the case of asphalt mixtures. For this reason, different digital tools have been developed in 
order to be able to detect the structural components of the elements in a precise, clear and efficient manner. In this work, a segmentation model 
is developed for different types of dense-graded asphalt mixtures with grain sizes from 9.5 mm to 0.0075 mm, using sieve size reconstruction 
of the laboratory production curve. The laboratory curve is used to validate the particles detection model that uses morphological operations 
for elements separation. All this with the objective of developing a versatile tool for the analysis and study of pavement structures in a non-de-
structive test. The results show that the model presented in this work is able to segment elements with an area greater than 0.0324 mm2 and 
reproduce the sieve size curves of the mixtures with a high percentage of precision.
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According to the author of [10], the general steps for dig-
ital image processing are thresholding, filtering, segmentation 
and extraction. Each one of them develops a series of specific 
operations that allow to obtain the required information from 
an image. Thresholding allows to create a binary or grayscale 
image, manipulating the values of the histogram of each color 
layer defining an intensity range to modify its colors. Filtering 
uses different mathematical functions to eliminate noise and 
unnecessary elements. Segmentation is performed through 
morphological operations that use spatial distribution of the 
image to separate and define geometries. Finally, extraction 
implements computational algorithms to classify or interpret 
the information on image elements [11‒13].

Some recent works that have used digital image processing 
for the segmentation of particles and objects are presented 
below. In the field of medicine, M. Mejia and M. Alzate [14] 
developed a tool to aid the diagnosis and examination of pe-
ripheral blood smears, segmenting seven different erythrocyte 
abnormalities using a neural network. The results show a suc-
cess rate in the classification of 97%, as compared to the manual 
classification performed by an expert. A work in the field of 
agriculture presented by Espinoza, Valera et al. [15] presents the 
segmentation of two pest types that affect the tomato in Spain 
used a detection support tool. It begins with an adjustment of 
the histogram of the images and with implementation of digital 
filters and notes an average identification error of 6%. Two pa-
pers have also been presented on the subject of pavements. The 
first one was developed by Tedeschi and Benedetto [16] and the 
second by Hyun-Seok and Young-Suk [17]. Both works show 
the segmentation of different types of cracks using traditional 
segmentation techniques. As a result, the first system has 93% 
of accuracy in the recognition of failures. This figure stands at 
97.4% for the second paper, which additionally uses artificial 
intelligence for the classification and extraction of elements.

1.	 Introduction

Research on structural components and particulates of elements 
is becoming a field of high importance in engineering [1]. The 
distribution of particles in the different materials has a direct 
impact on their mechanical and dynamic behavior, according 
to Di Maria, Bianconi et al. in [2]. For example, in asphalt 
mixtures, the homogeneous or random orientation of the ag-
gregate is related to maximum stresses, durability, stability and 
self-consolidation, among other variables [3].

In order to improve this type of studies, digital tools, using 
images, have been developed. The photos allow for inspection 
and obtaining information on samples in a more precise and 
systematic manner for processes that were previously manual 
or visual [4, 5]. There are two types of methods for the analysis 
of images with particles: the direct method, which segments 
element by element, looking to determine individual shapes 
or areas, and the indirect one, which analyzes the complete 
set [6].

According to S. Yin, Y. Qian and M. Gong in [7], direct 
digital image processing focuses on extracting and under-
standing from an image as many features as possible of its 
contents. The process is based on dividing the image into 
different partitions that represent the studied objects. With 
the elements segmented using different computational algo-
rithms, those objects are recognized. This way, the main ob-
jective is to change the representation of the image through 
a process that helps make it more understandable and easier 
to analyze [8, 9].
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This work presents an implementation of digital image pro-
cessing for the classification of particles in different types of 
dense-graded asphalt mixtures. Segmentation separates the ele-
ments within a range of 25 to 0.075 mm in size, and results are 
compared with the laboratory sieve size curves of the samples. 
The comparison is made to verify the quantity of material that 
can be recognized and to generate a digital tool for the recon-
struction of material percentages. The paper is divided first into 
a section on methods, where the entire process is shown from 
image acquisition until aggregate separation. Then in the results 
section the different error tables are presented for the proposed 
method to make the relevant conclusions and proposals for fu-
ture work.

2.	 Methods and materials

For the development of the work samples of different types of 
hot mix asphalt are required. A mixture of asphaltite, a conven-
tional MDC-19 and a recycled pavement (RAP) is used under 
the regulations of the National Roads Institute of Colombia 
(INVIAS). A gyratory compactor and the sieve size curves pre-
sented in Fig. 1 are employed in the manufacturing.

The complete working model used in this work is observed 
in Fig. 2, where the stages of acquisition, conditioning, pre-
sieving, separation and sieving are clearly defined. Matlab®, 
as a platform of development and programming, is used for 
handling and processing of images.

Fig. 1. Sieve size curves

Fig. 2. Working model for aggregate segmentation
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2.1. Acquisition of image. A conventional 18 Megapixel 
camera with a precision lens is used to capture the image. The 
photo is made with different filters, as shown in Fig. 3, to de-
termine the best form of capture. It is necessary to try different 
filters because asphalt mixtures present some problems such 
as the confusion of dark stones with the background (paving 
grade bitumen).

Searching for the filter with which best result is obtained, 
several critical points are taken into account like the fact that 
the dark aggregate that can be confused with the asphalt and 
the contact points that share particles, as shown in Fig. 4. The 
watercolor filter softens the colors to white and highlights 
the edges to black. Using this filter, the color difference be-
tween the aggregate will not affect the processing and the 
edge enhancement will help complete preliminary particles 
separation.

The threshold value (Vx) can change depending on the ex-
ternal disturbances at the moment of taking the photo. In order 
to maximize inter-class variance, the Otsu method is used, ac-
cording to [18]. Equation 2 shows the calculation of the vari-
ance proposed by the method, in which the maximum value is 
chosen to obtain the optimum threshold value as observed in (3).

	 σ 2
B(t) = ω1(t)(µ1(t) ¡ µT)

2 + ω2(t)(µ2(t) ¡ µT)
2� (2)

	 Vx =  Arg Max
1 ∙ t ∙ L {σ 2

B(t)}� (3)

Where t are the different color values that pixels can take 
within the range of the spectrum of the photo and ω1 and ω2 
are the probability distributions of the image color levels. µ1 
and µ2 represent the mean for the different classes composed 
by the color tones and µT is the average color intensity of the 
whole image [19].

For aggregate separation, first the K parameter is obtained 
using (4), which relates the actual size of the sample in milli-
meters with its representation in pixels. This is calculated by 
means of measuring the number n of heights in the real element 
and in the image.

	 K = 
∑n

i = 1
Photo heighti

Real heighti

n
  = 

Pixel
mm

� (4)

Then, the total area of the aggregate is calculated using the 
expression from (5). The function counts white pixels inside 
the image. This data is necessary to calculate the sieve size per-
centages later, and to verify the method proposed in the work.

	 Area = 
x
∑

y
∑M(x, y)� (5)

2.3. Preliminary sieving. The separation of the aggregate is 
done the same way as in the laboratory. The material is passed 
through a series of sieves, which are elements with a square 
mesh with a defined pitch length P. The sieve retains particles 
with an area greater than the mesh square. To recreate them dig-
itally, the K relation value is used, where a vector T is created 
with the pass areas in pixels using the lengths of the different 

(a) (b) (c) (d)

Fig. 3. Shooting with a variety of filters: (a) standard, (b) tungsten, (c) oil, (d) watercolor

Fig. 4. Critical point of contact and color

The watercolor filter handles a convolution mask which is 
then scrolled through the image, detecting continuous elements. 
These are assigned a light color tone while the discontinuities 
(edges) become darker.

2.2. Image conditioning. Let Im be an acquired RGB multi-
layer image. The values of the layers are modified with a 
threshold using the part function of (1). The background of 
the photo is highlighted, sending the dark values to 0 and the 
aggregate to 1.Thus the new M image is created.

M(x, y) = 
0  if 	 Im(x, y, 1) and Im(x, y, 2) and Im ∙ Vx

1  if 	 Another case
� (1)



282

O.J. Reyes-Ortiz, M. Mejía, and J.S. Useche-Castelblanco

Bull.  Pol.  Ac.:  Tech.  67(2)  2019

sieves presented in millimeters. The calculation of the vector’s 
expression is given in (6).

	 Ti = (PK)2� (6)

Figure 5 shows the distribution the aggregate sizes and 
the T calculation for nine sieves used in this work. The image 
is captured of the aggregate passing through the sieves from 
the largest to the smallest one using a different area filter for 
each case.

The main goal of this section is to separate the elements 
into subgroups to apply morphological operations. In order to 
separate the aggregate of 25 mm in size, it is necessary to have 
a morphological structural element larger than the one used with 
the particles of 0.425 mm in size. That is the reason for which 
the elements are divided into different images before any op-
eration. Figure 6 shows an example of preliminary sieving of 
12.5 mm-sized particles, where it is observed how it is neces-
sary to apply morphological operations to separate the particles 
that remain together.

Fig. 5. Calculation of digital sieves

Fig. 6. Preliminary sieving

Preliminary sieving uses the values of the vector T to com-
pare them with individual areas of the particles. Each area of the 
aggregate is calculated using the same function of equation 5, 
which was also used for the calculation of the total area. All the 
aggregate goes through the sieves from 1” up to No. 200. A new 
image is created with the material that didn´t pass through the 
sieve. These particles are subtracted from the total, to which 
the following sieve will be applied.

2.4. Segmentation. For each of the resulting images of pre-
sieving, the opening morphological operation is used in order 
to define, separate, segment or eliminate unnecessary particles 
[20]. The mathematical model for the morphological operation 
of opening is seen in (7). This is an operation composed of 
erosion followed by dilation that helps separate bound elements 
without affecting their total area [21].

	

	 Erosion: εB(A) = A Θ B = {z jBz µ A}
	Dilation: δB(A) = A © B = {z jBz \ A  6= ∅}
	Opening: γB(A) = A ° B = δB(εB(A))

� (7)

A is the image, B represent the structuring element, z is 
a pixel position (x, y) and Bz is the structural element B cen-
tered at z.

Erosion is the result of checking whether Bz is completely 
enclosed in A. If that is not the case, the pixel A(z) is not con-
tained in εB(A). In the dilation, if A and Bz overlap by at least 
one element, the pixel A(z) is contained in δB(A). It is more 
intuitive when B is viewed as a convolution mask that slides 
over image A in all its positions [22, 23].

The sizes of the morphological structural elements increase 
from the smallest to the largest sieve. It is necessary to watch the 
size of the structures to avoid the elimination of small particles 
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joined with larger aggregates. In Fig. 7, the impact of different 
size values for the separation of the aggregate is observed.

Once the morphological operations have been applied to all 
the pre-sieving images, a single image containing all the sepa-
rated particles of the sample is reconstructed. Using the oper-
ations, the elements of the image are modified and some are 
even eliminated. For this reason, the original and reconstructed 
image are compared through the correlation function (8) used 
by Xiangzhi Bai in [24]. When the modification exceeds 5%, 
the values of morphological structural element sizes must be 
reduced.

	 r = 
ΣxΣy(Fxy ¡ F–)(Ftxy ¡ F–t)

ΣxΣy(Fxy ¡ F–)2(Ftxy ¡ F–t)2
� (8)

Where Fxy and Ftxy are the images to be compared and F– 
and F–t  are the averages of the elements for each image. If the 
correlation is greater than 95%, the final sieving is performed 
with filtering the area of each particle Aj of the reconstructed 
image. The filters use a pass window defined by the relations 
of the vector T.

2.5. Sieving. A general working scheme of a sieve is presented 
in Fig. 8, wherein the retained material is subtracted from the 

Fig. 7. Opening morphological application

Fig. 8. Digital sieving

Disk radio = 7

Disk radio = 5

Disk radio = 3

Original

Particle 
elimination

Particle 
separation

Disk Structure Element

R



284

O.J. Reyes-Ortiz, M. Mejía, and J.S. Useche-Castelblanco

Bull.  Pol.  Ac.:  Tech.  67(2)  2019

total aggregate. Sieving is independent of the shape of the ag-
gregate. The area in pixels that occupies each particle in the 
photo is always compared with each sieve pass area.

The area of the material retained per sieve is calculated to 
assign a percentage based on the total area of the aggregate 
previously calculated. Using formula (9), the percentages are 

generated taking into account the material that has already been 
removed from the previous sieves. For the calculation of the 
error, the real percentages are compared with the calculated 
values. The normalized error function that is used in this case 
can be seen in (10).

	
Percentage1 = 100

Percentage1 = Percentagei ¡ 1 ¡ 100
³

SieveAreai

TotalArea

´� (9)

	 Error1 = 
100 jRealPercentagei ¡ Percentagei j

RealPercentagei
� (10)

3.	 Results

The segmentation and sieve size reconstruction model is applied 
for 40 samples of different types, including conventional sam-
ples, asphaltite samples characterized by their fine aggregate 
of 9.5 to 0.075 mm in size and RAP (recycled asphalt pave-
ment). Fig. 9 shows the result of segmentation of a conventional 
sample and its distribution in the different sieves.

The reconstruction of the sieve size curve for each type of 
mixture can be seen in Figs 10, 11 and 12. In them, the passing 
material is the percentage of the aggregate total area that passes 
to the next, smaller sieve. For this reason, we naturally begin 
with 100% of the particles. On the other hand, the diameter 
variable is the pitch length P for each sieve in a logarithmic 
scale. Mx, RAPx and AFx are the analyzed samples of the dif-
ferent mixtures.

Table 1 shows consolidation of the error for each type of 
mixture as per different sieve sizes. The reconstruction of the 
particles made for elements up to the No. 80 sieve have an 
average error of 2.98% and the error grows up to 7.26% on 

Fig. 9. Segmentation by sieves

Table 1 
Consolidated error

Sieve / Samples
Reconstruction error percentage (%)

RAP Asphaltite Conventional Average

1” 0.00 00.00 00.00 00.00
3/4” 0.00 00.00 00.00 00.00

1/2” 2.61 00.00 03.43 02.01
3/8” 3.72 01.71 03.72 03.04

No 4 2.81 01.59 03.70 02.69

No 10 7.25 03.79 02.55 04.51

No 40 1.73 02.07 02.98 02.20

No 80 2.84 03.11 01.95 02.62

No 200 9.11 29.50 55.62 31.40

Error up to No. 80 3.46 02.45 003.04 02.98

Error up to No. 200 4.27 06.96 10.55 07.26
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Fig. 10. Sieve size reconstruction for conventional samples

Fig. 11. Sieve size reconstruction for RAP samples
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average in sieve No. 200. The particles of 0.075 mm in size 
cannot be detected so easily. This is seen in graphs 8, 9 and 10, 
where the curves diverge in the last sieve.

4.	 Conclusions

The segmentation model for dense-graded asphalt mixtures 
presented in this paper demonstrates the use and versatility of 
digital image processing for particle discrimination within a ma-
terial. The algorithm segments particles larger than 0.0324 mm2 

of area with a lower average error of up to 3%. In future works, 
the image acquisition can be improved to obtain a better defini-
tion of the elements and thus to segment inferior areas. To op-
timize the method, it is necessary to include a larger number of 
samples to analyze and apply artificial intelligence techniques 
within the algorithm to make it more efficient for the discrim-
ination of particles.

The sieve size reconstruction performed in this work not 
only presents a functional model for segmentation of the ag-
gregate but also presents a digital tool with a wide field of ap-
plication for civil engineering in pavements. One field of use in 
the area of geotechnics can be, for instance, as a quality control 
system for road construction or as a support tool in road design.

Implementation of the watercolor filter eliminates two crit-
ical points in aggregate segmentation, i.e. color discrimination 
and contact points. This is because it is a specialized contours 

detection filter. The method developed in this work is thus not 
affected by dark or multicolored aggregate. Even when two 
particles share the same border.

Meanwhile, morphological operations help separate ele-
ments joined together by the noise generated during acquisi-
tion of the image or the lack of resolution in the camera. In the 
development of this work, the opening operation was used to 
separate the aggregate and showed promising results for the 
segmentation. This operation presents a problem in the defi-
nition of the dimension of the structural element size, since 
oversizing causes the elimination of work material. For this 
reason, the integration of this type of operations with modern 
techniques of artificial intelligence is proposed to improve the 
selection of structural elements in a flexible manner and at low 
computational cost.
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