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Abstract. The paper presents an analysis of overvoltages caused by a direct lightning strike in intrusion detection system equipped with under-
ground radiating cable sensors. Waveforms of currents and voltages in the system components are calculated using analytical formulas basing on 
a transmission-line model in the frequency domain. The time-domain waveforms are computed using the inverse fast Fourier transform (IFFT). 
Three network configurations of the intrusion detection system are analyzed.
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nected to the power mains. Some representative configurations 
of the intrusion detection systems are described in Section 3. 
Low energy is necessary for proper action of the system de-
vices, and relatively small amount of electromagnetic energy 
is enough to affect their work.

The most dangerous lightning threats for the systems include 
direct strikes to overhead components and metallic structures, 
to the earth or to a tree close to the underground cables. A part 
of the lightning current penetrates the sensor cables. That part 
of the direct lightning stroke or the lightning-induced current 
causes overvoltages and leads to interferences or damages. The 
study of the problem is needed by the designers of underground 
systems to assess the threat caused by the lightning currents and 
to choose proper surge protective devices (SPDs) to prevent the 
electrical breakdown of the system components.

Analysis of the LEMP action on buried cables is relatively 
difficult. This hazard was analyzed in many publications. The-
oretical and experimental study on disturbances induced in 
buried cables was published in [7, 8]. Results of measurements 
and modeling of coupling of lightning electromagnetic field 
to cables in a mine were reported in [9]. Analytical models of 
transients induced in cables by plane waves were presented in 
[10‒11]. Many theoretical investigations were carried out using 
numerical methods. Among them, two numerical methods are 
commonly used: FDTD [12‒15] and the method of moments 
[2‒5]. A hybrid algorithm with application of FDTD was pre-
sented in [16]. The finite element method was used in [17]. An 
evaluation of numerical methods can be found e.g. in [18]. An 
overview of developments in modeling of the LEMP effects on 
overhead lines and underground cables was carried out in [19].

Models and solutions are usually numerical and their ex-
perimental validation needs special equipment [8, 9]. On the 
other hand, the intrusion detection systems are usually designed 
and installed by small companies for whom the purchase of 
advanced commercial computer codes is too expensive. This is 
why engineers often need possibly simple analytical formulas 
or low-cost software. The analytical study of the lightning ac-
tion on cables can be carried out basing on [20, 21]. However, 

1.	 Introduction

Lightning is a considerable source of disturbances and damages 
to electrical and electronic circuits, equipment and systems. 
Particularly threatened are those systems, which are composed 
of long outdoor components, due to their exposure to direct 
lightning strikes and to the lightning electromagnetic fields. 
Adequate lightning protection system (LPS) shall be used in 
order to protect electrical and electronic systems against direct 
strikes [1]. Many works were published on protection of sys-
tems affected by the lightning electromagnetic pulse (LEMP), 
e.g. [2‒5].

An intrusion detection system based on long underground 
radiating cable sensors is the subject of this paper. The intru-
sion detection networks are used for monitoring perimeters of 
secured terrains for unwanted activity. Cable systems may be 
realized as standalone or networked for longer perimeters. Their 
equivalent lightning collection area [1] can be of the order of 
square kilometers, so their exposure to lightning action is very 
likely. Long cable systems spread over large areas are usually 
not protected by an outer LPS due to unacceptable costs.

The intrusion detection system is composed mainly of 
electronic controllers, coaxial radiating cable sensors of sev-
eral hundred meters in length, and cable terminators [6]. The 
system components are buried in the ground at a depth of 23 cm 
to 40 cm. Each controller is locally grounded, with the required 
grounding resistance not exceeding the typical value of 10 W. 
The system can be realized as standalone, with a single con-
troller and sensor cables usually routed along an open line, or as 
a network, with many controllers and sensor cables forming an 
open line or a closed loop. Electrical power can be supplied to 
each controller by additional wires or through the sensor cables. 
In the latter case only one or some controllers are directly con-
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most publications in the field consider only single buried cables. 
The analysis of networked cable systems is rarely met in the 
literature.

The aim of this paper is to present the use of analytical 
formulations developed by Vance in [20] for calculations of 
surges caused by a direct lightning strike to networked buried 
cables. The presented results are helpful for designing of surge 
protection for such systems. Studies were carried out after pub-
lication of [20], showing limited validity of Vance’s formulas 
[21]. However, the results of the use of Vance’s formulas for 
modeling of direct lightning strikes were proved in [22] to be 
consistent with outputs of a trusted numerical code.

The present work is a continuation of the research presented 
in [22‒24]. Papers [22, 23] dealt with a model of a single buried 
cable and its validation, and [24] – with simplified engineering 
estimation of maximum values of overvoltages caused by light-
ning in buried systems. In the present paper, calculations of 
surge waveforms are carried out using analytical formulations 
in the frequency domain and the IFFT transform to the time 
domain. Calculations presented here concern systems that are 
more complex than those analyzed in [22‒24], which became 
possible after overcoming the numerical issues discussed in 
Section 4.

2.	 Model of underground cable

The transmission-line model is used for further analysis. Con-
sider a lightning strike to the ground very close to one end of 
an underground cable of length l (Fig. 1). Controllers C1 and 
C2 with grounded enclosures are installed at the cable ends. 
The grounding resistances are equal R1 and R2, respectively.

Assume that the system insulation withstands the threat. Part 
of the lightning current IL is dissipated to the ground by resis-
tance R1. Current Iin invades the cable outer conductor through 
a metal enclosure of the input controller C1. The surge current 
I(z) flows along the cable outer conductor to the enclosure 
of controller C2 and to its grounding resistance R2. Symbol 
U(z) stands for the voltage occurring in the insulating jacket 
between the cable outer conductor and the reference ground 
(Fig. 1). Voltage U(z) may be considered as the approximate 
measure of the threat of electrical breakdown to the components 
of the system. The contribution of the cable inner conductor is 
neglected, as in [20].

Dimensions a and b in Fig. 1b are the inner and outer radius 
of the insulation jacket, respectively. Burying depth d is not 
considered for the approximate formulas [20]. This approach 
was validated in [22] for a direct lightning strike.

The propagation factor in the soil is equal to:

	 γg = αg + jβg =   jωµ0(σg + jωε0εrg) ,� (1)

where µ0 and ε0 are the vacuum permeability and permittivity, 
respectively, σg – soil conductivity, εrg – soil relative permit-
tivity.

Current Iout and voltage U2 at the cable output are calculated 
using the commonly known equations:

	 Iout = –
U1

Z0
sinh γ l + Iin cosh γ l ,� (2)

	 U2 = Iout R2 ,� (3)

where Z0 and γ  are the characteristic impedance and the prop-
agation coefficient of the equivalent transmission line, respec-
tively.

Note that the surge analyzed here propagates in the trans-
mission line formed by the cable outer conductor, the cable 
insulation jacket, and the soil. Hence, Z0 is not equal to the 
cable characteristic impedance for a working signal since the 
working signal is guided between the cable inner and outer 
conductors.

Characteristic impedance Z0 and propagation coefficient γ 
are determined as:

	 Z0 =  Z/Y ,   γ  =  ZY ,� (4)

where Z [Ω/m] and Y [S/m] are the impedance and admittance 
per unit length of the equivalent transmission line, respectively 
[20].

Impedance Z is the sum of the internal impedance of the soil 
Zg, the internal impedance of the cable outer conductor Zc, and 
the inductive impedance of the insulating jacket jωLi:

	 Z = Zg + Zc + jωLi ,� (5)

	 Zg ¼ 
ωµ0

8
 + jω

µ0

2π
ln

2δg

Γb
,� (6)

Fig. 1. Single undergound cable (a) and its cross-section (b)
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	 Zc ¼ 
1

2πaTσc

(1 + j)T/δc

tanh [(1 + j)T/δc]
,� (7)

	 Li =  µ0

2π
ln b

a
,� (8)

where: δg = 1/αg – the skin depth in the soil, Γ = 1.78107... 
– the Euler constant, T – the thickness of the cable outer con-
ductor, δc =  2/(ωµ0σc)  – the skin depth in the conductor 
(copper), σc – the metal conductivity.

Admittance Y is composed of the capacitive admittance jωCi 
of the insulation in series with the unit admittance of the soil 
Yg [20]:

Y = 
jωCiYg

jωCi + Yg
,� (9)

Ci = 
2πε0εri

ln(b/a)
,� (10)

Yg = γg
2/Zg ,� (11)

where εri is the relative permittivity of the insulating jacket.
The input impedance of the equivalent transmission line is 

given by:

	 Zin = Z0
R2 + Z0 tanh γ l
Z0 + R2 tanh γ l

.� (12)

The results of calculations in the frequency domain are 
transformed to the time domain using the Matlab procedure of 
the Inverse Fast Fourier Transform (IFFT) [25].

The time-domain results are calculated assuming that the 
lightning current waveform is approximated by the double-ex-
ponential impulse of 20 kA, 2/50 µs:

	 IL(t) = kI Im
£
exp(–α1t) ¡ exp(–α2t)

¤
,� (13)

where Im = 20 kA, kI = 1.07, α1 = 1.5292£104, α2 = 1.1888£ 
£106, t – time. These coefficients were introduced in [2]. The 
assumed waveform has parameters that are close to the average 
ones met in nature [1, 26‒30]. The impulse of 20 kA, 2/50 µs 
was also used in former Russian literature on lightning pro-
tection.

The formula for the lightning current spectrum has the con-
venient closed form:

	 IL( jω) = kI Im

³
1

α1 + jω
 ¡  1

α2 + jω

´
.� (14)

The plots of the assumed lightning current waveform and 
the modulus of its frequency spectrum are presented in Fig. 2.

The model of lightning in the form of a lumped current 
source is used. Hence, the electromagnetic field generated by 
the lightning channel is not considered. Such assumption may 
be done for objects located below ground. That may not be done 
for structures above ground, which are significantly affected by 
the electromagnetic induction.

3.	 Configurations of intrusion detection system

A single sensor for intrusion detection is composed of two co-
axial cables, up to 400 m in length, called radiating cables: 
a transmitter and a receiver. These cables run in parallel, at 
a distance of 1.5 m from one another, and are connected to the 
same controller. In network configurations, each controller in 
the system typically handles two pairs of such cables. The ter-
minators of cables associated with one controller are usually 
directly connected to the terminators of cables belonging to 
the neighboring controllers [6], so that the galvanic continuity 
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Fig. 2. Waveform of 20 kA, 2/50 µs current impulse (a) and modulus of its spectrum (b)
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2𝜋𝜋 ln √2𝛿𝛿𝑔𝑔
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(1+𝑗𝑗)𝑇𝑇 𝛿𝛿𝑐𝑐⁄
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 𝐿𝐿𝑖𝑖 = 𝜇𝜇0
2𝜋𝜋 ln 𝑏𝑏

𝑎𝑎 () 
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between the system components is kept. The terminators are 
isolated from the soil, so the circuit ends shown in Figs. 3a, b 
are electrically open.

The analysis is focused on the following typical configura-
tions of the system:
●	 Conf. A: two controllers, each handling one cable sensor 

forming a straight open line (Fig. 3a).
●	 Conf. B: three controllers, handling one or two cable sensors 

forming a straight open line (Fig. 3b).
●	 Conf. C: six controllers, each handling two cable sensors 

forming a regular hexagon loop (Fig. 3c).
The parameters of the cables are as follows [6]: εri = 2.3, 

σCu = 58.6£106 S/m, a = 6.365 mm, b = 7.75 mm, T = 0.33 mm,  
l = 800 m. The cables are buried in the soil of typical parameters: 
σg = 0.01 S/m and εrg = 10.0. All the grounding resistances 
R1 … R6 are equal to 10 Ω, which is consistent with requirements 
of the IEC standards [1].

Assume that the lightning current reaches the metallic en-
closure of controller C1 (Figs. 3a–c).

The transmission-line model presented in Section 2 in com-
bination with Kirchhoff’s laws have been applied for appro-
priate computer codes written in Matlab [25].

2048 spectrum samples have been computed in the frequency 
range from 0 Hz to 1023.5 kHz with interval ∆ f  = 0.5 kHz. 
That frequency band is sufficient for the analyzed case. How-
ever, a wider bandwidth may be needed for analysis of faster 
changing pulses (e.g. for models of subsequent return strokes 
[1‒4]).

4.	 Numerical issues

Considerable cumulation of roundoff errors has been encoun-
tered during computations of expressions containing hyper-
bolic functions in the upper part of the analyzed frequency 
band. The differences of values of exponential functions can 
be tens of orders of magnitude, which is presented in Fig. 4 
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Conf. B (b), Conf. C (c). Presented symbols of currents and voltages 

are used in Figs. 4‒9 and in Table 1
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showing changes of exp(γl) and exp(– γl) in the function of 
frequency. The double-precision floating-point arithmetic al-
lows storage of only 15‒16 digits of mantissa, which explains 
the problem.

The numerical instability can be additionally affected by 
the relatively small values of the lightning spectrum modulus 
at higher frequencies (Fig. 2b).

It is possible to reduce the numerical issues (to move the 
numerical instability towards higher frequencies) by using (3) 
instead of the transmission-line formula

	 U2 = U1 cosh γ l ¡ IinZ0 sinh γ l .� (15)

5.	 Results

The waveforms of calculated currents and voltages are pre-
sented in Figs. 5‒10. Maximum values of currents and voltages 
are collected in Table 1.

Table 1 
Maximum values of calculated currents and voltages

Quantity Unit Conf. A Conf. B Conf. C

Iin1 kA 2.49 2.49 2.27

Iout1 kA 2.97 3.27 2.86

Iin2 kA – 1.22 0.98

Iout2 kA – 1.22 1.14

Iin3 kA – – 0.32

Iout3 kA – – 0.33

IinOpen1 kA 2.27 2.27 –

IinOpen2 kA 0.82 0.32 –

U1 kV 116.4 116.4 109.3

U2 kV 63.0 47.3 40.9

U3 kV – 25.7 16.3

U4 kV – – 13.2

UT1 kV 196.7 196.7 –

UT2 kV 77.3 – –

UT3 kV – 31.1 –

Additional symbols IinOpen1 and IinOpen2 are used that are not 
shown in Figs. 3a-b for legibility. IinOpen1 stands for the input 
current in the cable on the left that ends with terminator T1. 
IinOpen2 stands for the input current in the cable on the right that 
ends with terminator T2 (Fig. 3a) or terminator T3 (Fig. 3b).

Effects of reflections from the cable ends are visible as 
smooth steps of the current and voltage waveforms. The pres-
ence of terminators and controllers does not affect the propa-
gation of the surges in the cable insulation jackets.

The calculated maximum values of the surge currents in the 
outer conductors of the cables are about 15% of the maximum 
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value of the lightning current and they may appear after some 
reflections from the cable ends (Figs. 5, 6, at t ¼ 55 µs).

The strongest overvoltages related to the lightning current 
injection need not to be observed at the point of strike, due to 
the surge reflections from the cable ends. The maximum value 
of potential of Controller C1 enclosure, which is reached by 
the lightning current, is about 110 kV. However, the highest 
voltage of about 200 kV is not at Controller C1 but at Ter-
minator T1 (Figs. 8, 9), which results from the surge wave 
reflection at the cable open end. On the other hand, the largest 
current value is reached by current Iout1 close to Controller C2 
(Figs. 5‒7).

Reflections from the cable ends cause also changes of po-
larization of currents and voltages.

Due to the linearity of the analyzed networks, it is pos-
sible to estimate the overvoltages caused by the lightning cur-
rent stronger than that analyzed here (20 kA). For example, 
if the lightning current is 100 kA, then all currents and volt-
ages should be multiplied by 5. However, new calculations are 
needed if the model of the lightning current waveform is con-
siderably changed.

The system elements are subject to the threat of electrical 
breakdown at the equipment interfaces and of surge current 
thermal effects. Surge protective devices (SPDs) [1] should be 
installed at both ends of the analyzed cables.

The presented analysis provides much more information on 
the surge waveforms than the results of the simplified approach 
published in [24].

6.	 Conclusion

The presented results of calculations of currents and voltages 
are caused by the model of lightning surge, which parameters 
are close to the average ones. The results may be applied for 
estimation of lightning threat for buried sensor cables used for 
intrusion detection at large areas. The analyzed system is linear, 
so the displayed maximum values may be proportionally in-
creased for a higher lightning current.

The highest overvoltages can appear at points which are 
distant from the point being hit by lightning, due to wave re-
flections from the system components.

The calculated voltages and currents are large. Many cables 
cannot withstand such stress, hence SPDs should be installed 
at both cable ends.

The presented solution is analytical, which can be of value 
for testing accuracy of numerical codes used for computations 
of similar problems.
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