
BULLETIN OF THE POLISH ACADEMY OF SCIENCES
TECHNICAL SCIENCES
Vol. 52, No. 1, 2004

A new method for system modelling and pattern classification

L. RUTKOWSKI*

Technical University of Częstochowa, Department of Computer Engineering, 36 Armii Krajowej Ave., 42-200 Częstochowa, Poland

Abstract. In this paper we present a new class of neuro-fuzzy systems designed for system modelling and pattern classification. Our approach
is characterized by automatic determination of fuzzy inference in the process of learning. Moreover, we introduce several flexibility concepts in
the design of neuro-fuzzy systems. The method presented in the paper is characterized by high accuracy which outperforms previous techniques
applied for system modelling and pattern classification.

Keywords: system modelling, pattern classification, neuro-fuzzy systems, flexible parameters, generalized triangular norms.

1. Introduction

Fuzzy sets and fuzzy logic, introduced in 1965 by Lotfi
Zadeh [1], have been used in a wide range of problems,
e.g. process control, image processing, pattern recognition
and classification, management, economics and decision
making. Specific applications include washing-machine
automation, camcorder focusing, TV colour tuning, auto-
mobile transmissions and subway operations [2]. We have
also been witnessing a rapid development in the area of
neural networks (see e.g. [3, 4]). Both fuzzy systems [5,
6] and neural networks, along with probabilistic meth-
ods [7, 8], evolutionary algorithms [9], rough sets [10, 11]
and uncertain variables [12, 13], constitute a consortium
of soft computing techniques [8, 14, 15]. These techniques
are often used in combination. For example, fuzzy infer-
ence systems are frequently converted into connectionist
structures called neuro-fuzzy systems which exhibit ad-
vantages of neural networks and fuzzy systems. In liter-
ature various neuro fuzzy systems have been developed
(see e.g. [16–32]). They combine the natural language de-
scription of fuzzy systems and the learning properties of
neural networks.

In this paper we present a new class of neuro-fuzzy
systems designed for system modelling and pattern classi-
fication. Our approach is characterized by automatic de-
termination of fuzzy inference in the process of learning.
Moreover, we introduce several flexibility concepts in the
design of neuro-fuzzy systems. The method presented in
the paper allows to perfectly represent patterns encoded
in the data. Consequently, we achieve high accuracy of
our method which outperforms previous techniques ap-
plied for system modelling and pattern classification.

2. Fuzzy reasoning and fuzzy implications

In this Section we present the idea of fuzzy reasoning
with various fuzzy implications which will be useful for
construction of neuro-fuzzy systems developed in the
next sections. The basic rule of inference in classical logic

*e-meil: lrutko@kik.pcz.czest.pl

is modus ponens. The compositional rule of inference
describes a composition of a fuzzy set and a fuzzy relation.
Fuzzy rule

IF x is A THEN y is B (1)

is represented by a fuzzy relation R. Having given input
linguistic value A′, we can infer an output fuzzy set B′

by the composition of the fuzzy set A′ and the relation
R. The generalized modus ponens is the extension of the
conventional modus ponens tautology, to allow partial
fulfilment of the premises:

Premise x is A′

Implication IF x is A THEN y is B

Conclusion y is B′

where A, B, A′, B′ are fuzzy sets and x, y are linguistic
variables. Applying the compositional rule of inference
[5], we get

B′ = A′ ◦R = A′ ◦ (A → B) (2)

and

µB′ (y) = µA′◦R (y) = sup
x∈X

{
µA′ (x)

T∗ µR (x, y)
}

(3)

The problem is to determine the membership function of
the fuzzy relation described by

µR (x, y) = µA→B (x, y) (4)

based on the knowledge of µA (x) and µB (y). We denote

µA→B (x, y) = I (µA (x) , µB (y)) (5)

where I(·) is a fuzzy implication given in Definition 1 (see
Fodor [33]).

Definition 1. A fuzzy implication is a function
I : [0, 1]2 → [0, 1] satisfying the following conditions:
(I1) if a1 � a3, then I (a1, a2) � I (a3, a2), for all a1, a2, a3

∈ [0, 1],
(I2) if a2 � a3, then I (a1, a2) � I (a1, a3), for all a1, a2, a3

∈ [0, 1],
(I3) I (0, a2) = 1, for all a2 ∈ [0, 1] (falsity implies any-

thing),

11



L. Rutkowski

(I4) I (a1, 1) = 1, for all a1 ∈ [0, 1] (anything implies
tautology),

(I5) (1, 0) = 0 (Booleanity).
Selected fuzzy implications satisfying all or some of

the above conditions are listed in Table 1.

Table 1
Fuzzy implications

No Name Implication I(a, b)

1 Kleene-Dienes
(binary)

max{1 − a, b}

2 Łukasiewicz min{1, 1 − a + b}
3 Reichenbach 1 − a + a · b

4 Fodor
{

1 if a � b
max{1 − a, b} if a > b

5 Rescher
{ 1 if a � b

0 if a > b

6 Goguen
{ 1 if a = 0

min
{

1, b
a

}
if a > 0

7 Gödel
{ 1 if a � b

b if a > b

8 Yager
{ 1 if a = 0

ba if a > 0
9 Zadeh max{min{a, b}, 1 − a}

10 Willmott min
{

max{1 − a, b},
max{a, 1 − b, min{1 − a, b}}

}

11 Dubois-Prade

{ 1 − a if b = 0
b if a = 1
1 if otherwise

In this table, implications 1–4 are examples of an
S-implication associated with a t-conorm

I(a, b) = S{1 − a, b}. (6)

Neuro-fuzzy systems based on fuzzy implications given in
Table 1 are called logical systems. Implications 6 and 7
belong to a group of R-implications associated with the
t-norm T and given by

I(a, b) = sup
z

{z|T {a, z} � b}, a, b ∈ [0, 1]. (7)

The Zadeh implication belongs to a group of Q-implica-
tions given by

I(a, b) = S{N(a), T {a, b}}, a, b ∈ [0, 1]. (8)

It is easy to verify that S-implications and R-implications
satisfy all the conditions of Definition 1. However, the
Zadeh implication violates conditions I1 and I4, whereas
the Willmott implication violates conditions I1, I2, I3 and
I4. In practice we frequently use Mamdani-type operators
given by

I(a, b) = min{a, b}, a, b ∈ [0, 1] (9)

I(a, b) = a · b, a, b ∈ [0, 1] (10)

or generally

I(a, b) = T {a, b}, a, b ∈ [0, 1]. (11)

It should be noted that operators (9)–(11) do not satisfy
conditions of Definition 1. Operators (9)–(11) are called
“engineering implications” (see [6]).

3. Description of fuzzy inference systems

In this paper, we consider multi-input-single-output fuzzy
system mapping X → Y, where X ⊂ R

n and Y ⊂ R. The
system (see Fig. 1) is composed of a fuzzifier, a fuzzy
rule base, a fuzzy inference engine and a defuzzifier. The
fuzzifier performs a mapping from the observed crisp
input space X ⊂ R

n to a fuzzy set defined in X. The
most commonly used fuzzifier is the singleton fuzzifier
which maps x̄ = [x̄1, . . . , x̄n] ∈ X into a fuzzy set A′ ⊆ X

characterized by the membership function

µA′(x) =
{
1 if x = x̄
0 if x �= x̄

. (12)

The fuzzy rule base consists of a collection of N fuzzy
IF-THEN rules, aggregated by the disjunction or the
conjunction, in the form

R(k) :




IF x1 is Ak
1 AND

x2 is Ak
2 AND . . .

xn is Ak
n

THEN y is Bk

(13)

or

R(k) : IF x is Ak THEN y is Bk (14)

where x = [x1, . . . , xn] ∈ X, y ∈ Y, Ak = Ak
1 × Ak

2 ×
. . . × Ak

n, A
k
1 , A

k
2 , . . . , A

k
n are fuzzy sets characterized by

membership functions µAk
i
(xi), i = 1, . . . , n, k = 1, . . . , N ,

whereas Bk are fuzzy sets characterized by membership
functions µBk(y), k = 1, . . . , N . The firing strength of the
k-th rule, k = 1, . . . , N , is defined by

τk (x̄) =
n

T
i=1

{
µAk

i
(x̄i)

}
= µAk (x̄) . (15)

In the paper notations τk and µAk (x̄) will be used
interchangeably.

Fig. 1. Fuzzy inference system

The fuzzy inference engine determines the mapping
from the fuzzy sets in the input space X to the fuzzy sets
in the output space Y. Each of N rules (14) determines
a fuzzy set B̄k ⊆ Y given by the compositional rule of
inference

B̄k = A′ ◦ (
Ak → Bk

)
(16)

where Ak = Ak
1 × Ak

2 × . . . × Ak
n. Fuzzy sets B̄k are

characterized by membership functions expressed by the
sup-star composition

µB̄k (y) = sup
x∈X

{
µA′ (x) ∗ µAk

1 ×...×Ak
n→Bk (x, y)

}
(17)

where ∗ can be any operator in the class of t-norms. It
is easily seen that for a crisp input x = [x1, . . . , xn] ∈ X,

12 Bull. Pol. Ac.: Tech. 52(1) 2004



A new method for system modelling and pattern classification

i.e., the singleton fuzzifier (12), formula (17) becomes

µB̄k (y) = µAk
1 ×...×Ak

n→Bk (x̄, y)

= µAk→Bk (x̄, y)

= I (µAk (x̄) , µBk (y)) (18)

where I(·) is an “engineering implication” given by (11)
or fuzzy implication given in Table 1. More precisely,

I(µAk(x̄), µBk(y)) =



Ieng(µAk(x̄), µBk(y))
for the Mamdani approach
Ifuzzy(µAk(x̄), µBk(y))
for the logical approach

. (19)

As we mentioned in Section 2 (see formula (11)), in the
Mamdani approach

Ieng (µAk (x̄) , µBk (y)) = T {µAk (x̄) , µBk (y)} . (20)

In the logical approach we apply fuzzy implications listed
in Table 1. The Kleene-Dienes, Łukasiewicz, Reichenbach
and Fodor implications are examples of the S-implication
given by

Ifuzzy (µAk(x̄), µBk(y)) = S {1 − µAk(x̄), µBk(y)} . (21)

Obviously, an S-implication can be generated by various
t-conorms. The aggregation operator, applied in order to
obtain the fuzzy set B′ based on fuzzy sets B̄k, is the
t-norm or t-conorm operator, depending on the type of
fuzzy implication. In Table 2 we describe connectives in
the Mamdani approach and logical approach. In case of
the Mamdani approach, the aggregation is carried out by

B′ =
N⋃

k=1

B̄k. (22)

The membership function of B′ is computed by the use
of a t-conorm, that is

µB′ (y) =
N

S
k=1

µB̄k (y) . (23)

When we use the logical model, the aggregation is carried
out by

B̄ =
N⋂

k=1

B̄k. (24)

The membership function of B′ is determined by the use
of a t-norm, i.e.

µB′ (y) =
N

T
k=1

{µB̄k (y)} . (25)

As a result of the fuzzy reasoning we obtain the fuzzy
set B′.

Table 2
Operations in fuzzy inference

System type Aggregation of
antecedents

Implication Aggregation
of rules

Mamdani t-norm “engineering”
– t-norm

t-conorm

Logical t-norm logical t-norm

The defuzzifier performs a mapping from the fuzzy set B′

to a crisp point ȳ in Y ⊂ R. The COA (center of area)
method is defined by the following formula

ȳ =

∫
Y

y · µB′(y)dy∫
Y

µB′(y)dy
(26)

or by

ȳ =

N∑
r=1

ȳr · µB′ (ȳr)

N∑
r=1

µB′ (ȳr)
(27)

in the discrete form, where ȳr are centers of the member-
ship functions µBr (y), i.e., for r = 1, . . . , N

µBr (ȳr) = max
y∈Y

{µBr (y)} (28)

4. Neuro-fuzzy structures for system mod-
elling

In this section we generalize the Mamdani-type and the
logical-type approach, described in Section 3, and derive
neuro-fuzzy structures for system modelling.

4.1. Mamdani-type neuro-fuzzy systems. In this ap-
proach, function I(·) given by (19) is a t-norm (e.g. mini-
mum or algebraic), i.e.

I (µAk (x̄) , µBk (ȳr)) = T {µAk (x̄) , µBk (ȳr)} . (29)

The aggregated output fuzzy set B′ ⊆ Y is given by

µB′ (ȳr) =
N

S
k=1

{µB̄k (ȳr)}

=
N

S
k=1

{T {µAk (x̄) , µBk (ȳr)}} . (30)

Consequently, formula (27) takes the form

ȳ =

N∑
r=1

ȳr · N

S
k=1

{
T

{
n

T
i=1

{
µAk

i
(x̄i)

}
, µBk (ȳr)

}}
N∑

r=1

N

S
k=1

{
T

{
n

T
i=1

{
µAk

i
(x̄i)

}
, µBk (ȳr)

}} . (31)

Obviously, the t-norms used to connect the antecedents
in the rules and in the “engineering implication” do not
have to be the same. Besides, they can be chosen as differ-
entiable functions as e.g. Yager families (see Section 6.2).

4.2. Logical-type neuro-fuzzy systems. In this ap-
proach, function I(·) given by (19) is a fuzzy implication
(see Table 1), i.e.

I (µAk(x̄), µBk(ȳr)) = Ifuzzy (µAk(x̄), µBk(ȳr)) . (32)

The aggregated output fuzzy set B′ ⊆ Y is given by

µB′ (ȳr) =
N

T
k=1

{µB̄k (ȳr)}

=
N

T
k=1

{Ifuzzy (µAk (x̄) , µBk (ȳr))} (33)

Bull. Pol. Ac.: Tech. 52(1) 2004 13



L. Rutkowski

and formula (27) becomes

ȳ =

N∑
r=1

ȳr · N

T
k=1

{
Ifuzzy

(
n

T
i=1

{
µAk

i
(x̄i)

}
, µBk (ȳr)

)}
N∑

r=1

N

T
k=1

{
Ifuzzy

(
n

T
i=1

{
µAk

i
(x̄i)

}
, µBk (ȳr)

)} .

(34)
Now, we generalize both approaches described in points
a) and b) and propose a general architecture of fuzzy
systems. It is easily seen that systems (31) and (34) can
be presented in the form

ȳ = f (x̄) =

N∑
r=1

ȳr · agrr (x̄, ȳr)

N∑
r=1

agrr (x̄, ȳr)
(35)

where

agrr (x̄, ȳ
r)

=




N

S
k=1

{Ik,r (x̄, ȳr)} for the Mamdani approach

N

T
k=1

{Ik,r (x̄, ȳr)} for the logical approach
(36)

Ik,r (x̄, ȳr)

=



T {τk (x̄) , µBk (ȳr)}

for the Mamdani approach
Ifuzzy (τk (x̄) , µBk (ȳr))

for the logical approach

. (37)

Moreover, the firing strength of rules has already been
defined by

τk (x̄) =
n

T
i=1

{
µAk

i
(x̄i)

}
.

The general architecture of system (35) is depicted in
Fig. 2.

Fig. 2. General architecture of fuzzy systems studied

in the paper (flexible and nonflexible)

Remark 1. If an S-implication is used, i.e.

Ik,r (x̄, ȳr) = S {N (µAk (x̄)) , µBk (ȳr)} (38)

then the aggregated output fuzzy set B′ ⊆ Y is given by

µB′ (ȳr) =
N

T
k=1

{µB̄k (ȳr)}

=
N

T
k=1

{S {N (µAk (x̄)) , µBk (ȳr)}} . (39)

Consequently, formula (35) becomes

ȳ =

N∑
r=1

ȳr · N

T
k=1

{
S

{
N

(
n

T
i=1

{µAk
i
(x̄i)}

)
, µBk (ȳr)

}}
N∑

r=1

N

T
k=1

{
S

{
N

(
n

T
i=1

{µAk
i
(x̄i)}

)
, µBk (ȳr)

}} .

(40)

Remark 2. It should be emphasized that formula (35)
and the scheme depicted in Fig. 2 are applicable to all
the systems, flexible and nonflexible, studied in this paper
with different definitions of agrr (x̄, ȳ

r) and Ik,r (x̄, ȳr).
The nonflexible systems are described by (35), (36),
(37) and (15), whereas the flexible systems by (35) and
agrr (x̄, ȳ

r), Ik,r (x̄, ȳr), τk (x̄) defined in Section 7.

5. Neuro-fuzzy structures for pattern clas-
sification

We will explain how to modify formula (35) and structure
depicted in Fig. 2 to solve multi-classification problems.
Let [x1, ..., xn] be the vector of features of an object ν.
Let Ω = {ω1, ..., ωM} be a set of classes. The knowledge
is represented by a set of N rules in the form

R(k) :




IF x1 is Ak
1 AND

x2 is Ak
2 AND . . .

xn is Ak
n

THEN ν ∈ ω1
(
zk

1

)
,

ν ∈ ω2
(
zk

2

)
, . . . ,

ν ∈ ωM

(
zk

M

)
,

(41)

where zk
j , j = 1, ...,M , k = 1, ..., N , are interpreted

as “support” for class ωj given by rule R(k). We will
now redefine description (35). Let us introduce vector
z = [z1, ..., zM ], where zj, j = 1, ...,M , is the “support”
for class ωj given by allM rules. We can scale the support
values to the interval [0, 1], so that zj is the membership
degree of an object ν to class ωj according to all M rules.

The rules are represented by

R(k) :




IF x1 is Ak
1 AND

x2 is Ak
2 AND . . .

xn is Ak
n

THEN z1 is Bk
1 AND

z2 is Bk
2 AND . . .

zM is Bk
M

(42)

and formula (35) adopted for classification takes the form

z̄j =

N∑
r=1

z̄r
jagrr

(
x̄, z̄r

j

)
N∑

r=1
agrr

(
x̄, z̄r

j

) (43)

14 Bull. Pol. Ac.: Tech. 52(1) 2004



A new method for system modelling and pattern classification

where z̄r
j are centers of fuzzy sets Br

j , j = 1, ...,M ,
r = 1, .., N .

6. Flexibility in fuzzy systems

In the previous works on neuro-fuzzy systems it was
assumed that fuzzy inference (Mamdani or logical) was
fixed in advance and during the design process only the
parameters of the membership functions were optimized
to meet the design requirements. On the other hand it is
well known that introducing additional parameters to be
tuned in the system usually improves its performance. The
system is able to better represent the patterns encoded
in the data. In this section we present various concepts
leading to the designing flexible neuro-fuzzy systems,
characterized by many parameters determined in the
process of learning.

6.1 Weighted triangular norms. In this paper we
propose the weighted t-norm

T ∗ {a1, . . . , an;wτ
1 , . . . , w

τ
n} =

n

T
i=1

{1 − wτ
i (1 − ai)} (44)

to connect the antecedents in each rule, k = 1, . . . , N , and
the weighted t-norm and t-conorm:

T ∗ {a1, . . . , aN ;wagr
1 , . . . , wagr

N }
=

N

T
k=1

{1 − wagr
k (1 − ak)} (45)

S∗ {a1, . . . , aN ;wagr
1 , . . . , wagr

N } =
N

S
k=1

{wagr
k ak} (46)

to aggregate the individual rules in the logical and Mam-
dani models, respectively. It is easily seen that formula
(44) can be applied to the evaluation of an importance
of input linguistic values, and the weighted t-norm (45)
or t-conorm (46) to a selection of important rules. The
results will be depicted in the form of diagrams.

Fig. 3. Exemplary weights representation in a fuzzy system with
four rules and two inputs (dark areas correspond to low values of

weights and vice versa)

In Fig. 3 we show an example of a diagram for a fuzzy
system having four rules (N = 4) and two inputs (n = 2)
described by:

R1 :
[
IFx1isA1

1

(
wτ

1,1

)
ANDx2isA1

2

(
wτ

2,1

)
THENyisB1

]
w

agr
1

R2 :
[
IFx1isA2

1

(
wτ

1,2

)
ANDx2isA2

2

(
wτ

2,2

)
THENyisB2

]
w

agr
2

R3 :
[
IFx1isA3

1

(
wτ

1,3

)
ANDx2isA3

2

(
wτ

2,3

)
THENyisB3

]
w

agr
3

R4 :
[
IFx1isA4

1

(
wτ

1,4

)
ANDx2isA4

2

(
wτ

2,4

)
THENyisB4

]
w

agr
4 .

Observe that the third rule is “weaker” than the others
and the linguistic value A4

2 corresponds to a low value
of wτ

2,4. The designing of neuro-fuzzy systems should be
a compromise between the accuracy of the model and its
transparency.

Example 1. (An example of algebraic triangular norms
with weighted arguments) The algebraic triangular norms
with weighted arguments are based on classical algebraic
triangular norms (see e.g. [6]). The algebraic t-norm with
weighted arguments is described as follows

T ∗ {a1, a2;w1, w2}
= (1 − w1 (1 − a1)) (1 − w2 (1 − a2)) . (47)

The 3D plots of function (47) are depicted in Fig. 4. The
algebraic t-conorm with weighted arguments is given by

S∗ {a1, a2;w1, w2} = w1a1 + w2a2 − w1a1w2a2. (48)

The 3D plots of function (48) are presented in Fig. 5.

Fig. 4. 3D plots of function (47) for w1 = 0.50 and a) w2 = 0.00,

b) w2 = 0.25, c) w2 = 0.50, d) w2 = 0.75, e) w2 = 1.00

Bull. Pol. Ac.: Tech. 52(1) 2004 15



L. Rutkowski

Fig. 5. 3D plots of function (48) for w1 = 0.50 and a) w2 = 0.00,

b) w2 = 0.25, c) w2 = 0.50, d) w2 = 0.75, e) w2 = 1.00

6.2. Parameterized triangular norms. It is well
known that any construction of fuzzy systems relies on
triangular norms. Most fuzzy inference structures stud-
ied in literature employ the standard triangular norms
as min/max or product. There is only a little knowledge
within the engineering community about the so-called
parameterized families of t-norm and t-conorms. They
include the Dombi, Hamacher, Yager, Frank, Weber I,
Weber II, Dubois-Prade and other families [34]. We use

notation
↔
T{a1, a2, . . . , an; p} and

↔
S{a1, a2, . . . , an; p} for

parameterized triangular norms. The hyperplanes cor-
responding to them can be adjusted in the process of
learning of parameter p. As an example we present the
Yager family of parameterized triangular norms. The
t-norm and t-conorm are given as follows:

The Yager t-norm

↔
T {a; p}

=



drastic t− norm for p = 0

max

{
0, 1 −

(
n∑

i=1
(1 − ai)

p

) 1
p

}
for p ∈ (0,∞)

Zadeh t− norm for p = ∞
(49)

where
↔
T stands for a t-norm of the Yager family parame-

terized by p.

The Yager t-conorm

↔
S {a; p} =



drastic t− conorm for p = 0

min

{
1,

(
n∑

i=1
ap

i

) 1
p

}
for p ∈ (0,∞)

Zadeh t− conorm for p = ∞
(50)

where
↔
S stands for a t-conorm of the Yager family

parameterized by p.
Obviously formula (49) defines the “engineering impli-

cation” for n = 2. Combining the S-implication and (50)
we get the fuzzy S-implication generated by the Yager
family

↔
I (a, b; p) = min

{
1, ((1 − a)p + bp)

1
p

}
. (51)

6.3. Soft fuzzy norms. In this sections we recall a con-
cept of soft fuzzy norms proposed by Yager and Filev [31].
Let a1, . . . , an be numbers in the unit interval that are
to be aggregated. The soft version of triangular norms
suggested by Yager and Filev is defined by

T̃ {a;α} = (1 − α)
1
n

n∑
i=1

ai + α
n

T
i=1

{ai} (52)

and

S̃ {a;α} = (1 − α)
1
n

n∑
i=1

ai + α
n

S
i=1

{ai} (53)

where α ∈ [0, 1]. They allow to balance between the
arithmetic average aggregator and the triangular norm
aggregator depending on parameter α.

Fig. 6. 3D plots of function (54) for a) α = 0.00,

b) α = 0.25, c) α = 0.50, d) α = 0.75, e) α = 1.00

16 Bull. Pol. Ac.: Tech. 52(1) 2004



A new method for system modelling and pattern classification

Example 2. (An example of soft algebraic triangular
norms) The soft algebraic triangular norms are based on
classical algebraic triangular norms (see e.g. [6]). The soft
algebraic t-norm is described as follows

T̃ {a1, a2;α} = (1 − α)
1
2
(a1 + a2) + αa1a2. (54)

The 3D plots of function (54) are depicted in Fig. 6.
The soft algebraic t-conorm is given by

S̃ {a1, a2;α}
= (1 − α)

1
2
(a1 + a2) + α (a1 + a2−a1a2) . (55)

The 3D plots of function (55) are presented in Fig. 7.

Fig. 7. 3D plots of function (55) for a) α = 0.00,

b) α = 0.25, c) α = 0.50, d) α = 0.75, e) α = 1.00

6.4. Design of flexible neuro fuzzy systems. In Sec-
tions 6.1, 6.2 and 6.3 we introduced the following flexibil-
ity concepts in the design of neuro-fuzzy systems:

— softness to fuzzy implication operators, to the
aggregation of rules and to the connectives of antecedents,

— certainty weights to the aggregation of rules and to
the connectives of antecedents,

— parameterized families of t-norms and t-conorms to
fuzzy implication operators, to the aggregation of rules
and to the connectives of antecedents.

In Fig. 8 we show a design process of flexible neuro-
fuzzy systems developed in this paper. The design process
includes the automatic determination of fuzzy inference
which will be explained in Sections 7 and 8 and simulated
in Section 9.

Fig. 8. Design of flexible fuzzy system

7. Generalized triangular norms
We start with a definition which is a generalization of
a strong negation (see [34]).

Definition 2. (Compromise operator) Function

Ñν : [0, 1] → [0, 1] (56)

given by

Ñν(a) = (1 − ν)N(a) + νN(N(a))

= (1 − ν)N(a) + νa (57)

is called a compromise operator where ν ∈ [0, 1] and
N(a) = Ñ0(a) = 1 − a.

Observe that

Ñν(a) =



N(a) for ν = 0

1
2 for ν = 1

2
a for ν = 1

(58)

Obviously function Ñν is a strong negation for ν = 0. The
3D plot of function (57) is depicted in Fig. 9.

Fig. 9. 3D plot of function (57)

Bull. Pol. Ac.: Tech. 52(1) 2004 17



L. Rutkowski

Definition 3. (H-function) Function

H : [0, 1]n → [0, 1] (59)

given by

H (a; ν) = Ñν

(
n

S
i=1

{
Ñν (ai)

})

= Ñ1−ν

(
n

T
i=1

{
Ñ1−ν (ai)

})
(60)

is called an H-function where ν ∈ [0, 1].

Theorem 1. Let T and S be dual triangular norms.
Function H defined by (60) varies between a t-norm and
a t-conorm as ν goes from 0 to 1.

P r o o f . From the assumption it follows that

T {a} = N (S {N (a1) , N (a2) , . . . , N (an)}) (61)

For ν = 0 formula (61) can be rewritten with the notation
of the compromise operator (57)

T {a} = Ñ0

(
S

{
Ñ0 (a1) , Ñ0 (a2) , . . . , Ñ0 (an)

})
. (62)

Apparently

S {a} = Ñ1

(
S

{
Ñ1 (a1) , Ñ1 (a2) , . . . , Ñ1 (an)

})
(63)

for ν = 1.
The right-hand sides of (62) and (63) can be written

as follows

H (a; ν) = Ñν

(
n

S
i=1

{
Ñν (ai)

})
(64)

for ν = 0 and ν = 1, respectively. If parameter ν changes
from 0 to 1, then the result is established.

Remark 3. Observe that

H (a; ν) =



T {a} for ν = 0
1
2 for ν = 1

2
S {a} for ν = 1.

(65)

It is easily seen, that for 0 < ν < 0.5 the H-function
resembles a t-norm and for 0.5 < ν < 1 the H-function
resembles a t-conorm.

Example 3. (An example of the H-function generated
by the algebraic triangular norms) We will apply Theorem
1 to illustrate (for n = 2) how to switch between the
algebraic t-norm

T {a1, a2} = H (a1, a2; 0) = a1a2 (66)

and the algebraic t-conorm

S {a1, a2} = H (a1, a2; 1) = a1 + a2 − a1a2. (67)

The H-function generated by formulas (66) or (67) takes
the form

H (a1, a2; ν) = Ñ1−ν

(
Ñ1−ν (a1) Ñ1−ν (a1)

)
= Ñν

(
1 −

(
1 − Ñν (a1)

) (
1 − Ñν (a1)

))
(68)

and varies from (66) to (67) as ν goes from zero to one. In
Fig. 10, we illustrate function (68) for ν = 0.00, ν = 0.15,
ν = 0.50, ν = 0.85, ν = 1.00.

Fig. 10. 3D plots of function (68) for a) ν = 0.00,

b) ν = 0.15, c) ν = 0.50, d) ν = 0.85, e) ν = 1.00

Theorem 2. Let T and S be dual triangular norms.
Then

I (a, b; ν) = H
(
Ñ1−ν (a) , b; ν

)
(69)

switches between an “engineering implication”

Ieng (a, b) = I (a, b; 0) = T {a, b} (70)

and an S-implication

Ifuzzy (a, b) = I (a, b; 1) = S {1 − a, b} (71)

P r o o f . Theorem 2 is a straightforward consequence
of Theorem 1.

Example 4. (An example of the H-implication gener-
ated by the algebraic triangular norms) We will define
the H-implication generated by the algebraic triangular
norms and based on formula (24). Let

Ieng (a, b) = H (a, b; 0)

= T {a, b}
= ab (72)

and

Ifuzzy (a, b) = H
(
Ñ0 (a) , b; 1

)
= S {N (a) , b}
= 1 − a+ ab. (73)

18 Bull. Pol. Ac.: Tech. 52(1) 2004



A new method for system modelling and pattern classification

Then
I (a, b; ν) = H

(
Ñ1−ν (a) , b; ν

)
(74)

goes from (72) to (73) as ν varies from 0 to 1. The 3D
plots of function (74) are depicted in Fig. 11.

Fig. 11. 3D plots of function (74) for a) ν = 0.00,

b) ν = 0.15, c) ν = 0.50, d) ν = 0.85, e) ν = 1.00

8. Flexible neuro-fuzzy systems

In this section we incorporate flexibility parameters given
in Section 6 to design neuro-fuzzy systems defined by
formula (35). By using the concept of generalized trian-
gular norms introduced in Section 7, we get the flexible
neuro-fuzzy systems given by:

τk (x̄)

=


 (1 − ατ ) avg

(
µAk

1
(x̄1) , . . . , µAk

n
(x̄n)

)
+

+ατ
↔
H

∗ (
µAk

1
(x̄1) , . . . , µAk

n
(x̄n) ;

wτ
1,k, . . . , w

τ
n,k, p

τ , 0

)

 (75)

Ik,r (x̄, ȳr)

=




(
1 − αI

)
avg

(
Ñ1−ν (τk (x̄)) , µBk (ȳr)

)
+

+αI
↔
H

(
Ñ1−ν (τk (x̄)) , µBk (ȳr) ;

pI , ν

)

 (76)

agrr (x̄, ȳ
r)

=


 (1 − αagr) avg (I1,r (x̄, ȳr) , . . . , IN,r (x̄, ȳr))+

+αagr
↔
H

∗ (
I1,r (x̄, ȳr) , . . . , IN,r (x̄, ȳr) ;
wagr

1 , . . . , wagr
N , pagr, 1 − ν

) 
 .

(77)

In the above system we use parameterised families
↔
H (·)

and parameterised families with weights
↔
H

∗
(·) analo-

gously to formula (44) and (49). More specifically, in (75)
and (77) we use the following definition

↔
H

∗ (
a1, . . . , an;

w1, . . . , wn, p, ν

)

=
↔
H

(
arg1 (a1, w1, ν) , . . . , argn (an, wn, ν) ;

p, ν

)
(78)

where
argi (ai, wi, ν)

= (1 − ν) (1 − wi (1 − ai)) + νwiai. (79)

It is well known that the basic concept of the back-
propagation algorithm, commonly used to train neural
networks, can also be applied to any feedforward net-
work. Let x̄(t) ∈ Rn and d(t) ∈ R be a sequence of inputs
and desirable output signals, respectively.

Based on the learning sequence (x̄(1), d(1)), (x̄(2),
d(2)), . . . we wish to determine all parameters (including
the system’s type ν) and weights of neuro-fuzzy systems
such that

e(t) =
1
2
[f (x̄(t)) − d(t)]2 (80)

is minimized, where f(·) is given (35). The steepest
descent optimization algorithm can be applied to solve
this problem. For instance, parameters ȳr, r = 1, . . . , N ,
are trained by the iterative procedure

ȳr (t+ 1) = ȳr(t) − η
∂e(t)
∂ȳr(t)

. (81)

Directly calculating partial derivatives in recursion (81) is
rather complicated. Therefore, we recall that our system
has a layered architecture (see Fig. 2) and apply the idea
of the backpropagation method to train the system. The
exact recursions are not shown here, however they can be
derived analogously to the method given in [24]. We can
apply the gradient optimization with constraints in order
to optimize:

— ν ∈ [0, 1],
— ατ ∈ [0, 1], αI ∈ [0, 1], αagr ∈ [0, 1],
— pτ ∈ [0,∞), pI ∈ [0,∞), pagr ∈ [0,∞),
— wτ

i,k ∈ [0, 1], i = 1, . . . , n, k = 1, . . . , N ,
— wagr

k ∈ [0, 1], k = 1, . . . , N .
The same technique can be used in order to find in
the process of learning parameters of the membership
functions µAk

i
(xi) and µBk(y), i = 1, . . . , n, k = 1, . . . , N :

— pA
u,i,k, u = 1, . . . , PA, i = 1, . . . , n, k = 1, . . . , N ,

— pB
u,k, u = 2, . . . , PB, k = 1, . . . , N ,

— pB
1,k = ȳk, k = 1, . . . , N .

9. Simulation results

In this section we present simulations of neuro-fuzzy
systems derived in this paper. All the simulations are de-
signed in the same fashion. We will gradually incorporate
flexibility parameters in experiments (i)–(iv):

Bull. Pol. Ac.: Tech. 52(1) 2004 19



L. Rutkowski

Table 3
Experimental results

Fuzzy systems with non-parametrised H-functions
(Glass Classification Problem)

Final values
after learning

Mistakes [%]
(learning sequence)

Mistakes [%]
(testing sequence)Experiment

number

Name of
flexibility
parameter

Initial
values Zadeh

H-function
Algebraic
H-function

Zadeh
H-function

Algebraic
H-function

Zadeh
H-function

Algebraic
H-function

i ν 0.5 1.0000 1.0000 3.33 3.33 3.13 3.13

ii ν 0 — — 4.00 4.67 3.13 3.13

ν 0.5 1.0000 1.0000

ατ 1 0.0163 0.0019
iii 2.67 2.67 3.13 3.13

αI 1 0.9939 0.9970

αagr 1 0.9554 0.9912

ν 0.5 1.0000 1.0000

ατ 1 0.0038 0.0137

αI 1 0.9858 0.9937
iv 2.67 2.67 1.56 1.56

αagr 1 0.8674 0.9693

wτ 1 Fig. 12-a Fig. 12-b

wagr 1 Fig. 12-a Fig. 12-b

Table 4
Experimental results

Fuzzy systems with parametrised H-functions
(Glass Classification Problem)

Final values
after learning

Mistakes [%]
(learning sequence)

Mistakes [%]
(testing sequence)Experiment

number

Name of
flexibility
parameter

Initial
values Dombi

H-function
Yager

H-function
Dombi

H-function
Yager

H-function
Dombi

H-function
Yager

H-function

i ν 0.5 1.0000 1.0000 3.33 3.33 3.13 3.13

ii ν 0 - - 4.00 4.67 3.13 3.13

ν 0.5 1.0000 1.0000

pτ 10 9.7496 12.5239

pI 10 10.0006 9.9965

iii pagr 10 9.9999 9.9920 2.67 2.67 1.56 1.56

ατ 1 0.0302 0.1122

αI 1 0.9173 0.9413

αagr 1 0.9934 0.9973

ν 0.5 1.0000 1.0000

pτ 10 9.1328 12.1261

pI 10 10.0601 9.8597

pagr 10 10.3097 9.9544

iv ατ 1 0.0948 0.1280 2.00 2.00 1.56 1.56

αI 1 0.8896 0.9349

αagr 1 0.9600 0.9695

wτ 1 Fig. 13-a Fig. 13-b

wagr 1 Fig. 13-a Fig. 13-b

20 Bull. Pol. Ac.: Tech. 52(1) 2004



A new method for system modelling and pattern classification

— In the first experiment (i), based on the input-
output data, we learn the parameters of the membership
functions and a system type ν ∈ [0, 1] assuming that
there are no other flexibility parameters in the system
description. It will be seen that the optimal values of ν,
determined by a gradient procedure, are either zero or
one.

— In the second experiment (ii), we learn the param-
eters of the membership functions choosing value ν as
opposite to that obtained in experiment (i). Obviously,
we expect a worse performance of the neuro-fuzzy system
comparing with experiment (i).

— In the third experiment (iii), we learn the param-
eters of the membership functions, system type ν ∈ [0, 1]
and soft parameters ατ ∈ [0, 1], αI ∈ [0, 1], αagr ∈ [0, 1]
of the flexible system assuming that classical (not-
parameterised) triangular norms are applied.

— In the fourth experiment (iv), we learn the same
parameters as in the third experiment and, moreover,
the weights wτ

i,k ∈ [0, 1], i = 1, . . . , n, k = 1, . . . , N ,
in the antecedents of rules and weights warg

i,k ∈ [0, 1],
k = 1, . . . , N , of the aggregation operator of rules. In
all diagrams (weights representation) we separate wτ

i,k ∈
[0, 1], i = 1, . . . , n, k = 1, . . . , N , from warg

i,k ∈ [0, 1],
k = 1, . . . , N , by a vertical dashed line.

In each of the above simulations we apply the Zadeh
H-implication (generated by the min/max triangular
norms) and the algebraic H-implication (generated by
the algebraic triangular norms). In separate experiments
we repeat simulations (i)–(iv) replacing the Zadeh H-
implication and the algebraic H-implication by quasi-
implications generated by parameterised triangular norms:
the Dombi H-implication and the Yager H-implication. In
these simulations we additionally incorporate parameters
pτ ∈ [0,∞), pI ∈ [0,∞), pagr ∈ [0,∞).

9.1. Glass classification problem. The Glass Classifi-
cation problem contains 214 instances and each instance
is described by nine attributes (RI: refractive index, Na:
sodium, Mg: magnesium, Al: aluminium, Si: silicon, K:
potassium, Ca: calcium, Ba: barium, Fe: iron). All at-
tributes are continuous. There are two classes: the win-
dow glass and the non-window glass. In our experiments,
all sets are divided into a learning sequence (150 sets) and
a testing sequence (64 sets). The study of the classifica-
tion of the types of glass was motivated by criminological
investigation. At the scene of the crime, the glass left
can be used as evidence if it is correctly identified. The
experimental results for the Glass Classification problem
are depicted in Tables 3 and 4 for the not-parameterised
(Zadeh and algebraic) and parameterised (Dombi and
Yager) H-functions, respectively. For experiment (iv) the
final values (after learning) of weights wτ

i,k ∈ [0, 1] and
wagr

k ∈ [0, 1], i = 1, . . . , 9, k = 1, . . . , 2, are shown in
Fig. 12 (Zadeh and algebraic H-functions) and Fig. 13
(Dombi and Yager H-functions).

Fig. 12. Weights representation in the Glass Classification

Problem a) Zadeh H-function, b) algebraic H-function

Fig. 13. Weights representation in the Glass Classification

Problem a) Dombi H-function, b) Yager H-function

The comparison table for the Glass Classification
Problem is shown in Table 5.

Table 5
Comparison table (Glass Classification Problem)

Glass Classification Problem

Method Testing Accuracy

Dong and Kothari (IG) [35] 92.86

Dong and Kothari (IG+LA) [35] 93.09

Dong and Kothari (GR) [35] 92.86

Dong and Kothari (GR+LA) [35] 93.10

Rutkowski and Cpałka [27] 93.75

our result (N=2) 98.44

9.2. Nonlinear dynamic plant identification Prob-
lem. We consider the second-order nonlinear plant de-
scribed by

y(k) = g (y(k − 1), y(k − 2)) + u(k) (82)

with

g (y(k − 1), y(k − 2))

=
y(k − 1)y(k − 2) (y(k − 1) − 0.5)

1 + y2(k − 1) + y2(k − 2)
. (83)

The goal is to approximate the nonlinear component
g(y(k− 1), y(k− 2)) of the plant (82) with a fuzzy model.

Bull. Pol. Ac.: Tech. 52(1) 2004 21



L. Rutkowski

Table 6
Experimental results

Fuzzy systems with non-parametrised H-functions
(Nonlinear Dynamic Plant Identification Problem)

Final values
after learning

RMSE
(learning sequence)

RMSE
(testing sequence)Experiment

number

Name of
flexibility
parameter

Initial
values Zadeh

H-function
Algebraic
H-function

Zadeh
H-function

Algebraic
H-function

Zadeh
H-function

Algebraic
H-function

i ν 0.5 0.0000 0.0000 0.0445 0.0238 0.0309 0.0133

ii ν 1 — — 0.0490 0.0316 0.0313 0.0201

ν 0.5 0.0000 0.0000

ατ 1 0.8080 0.9969
iii 0.0341 0.0236 0.0255 0.0123

αI 1 0.7294 0.9904

αagr 1 0.9990 0.9752

ν 0.5 0.0000 0.0000

ατ 1 0.7626 0.9720

αI 1 0.6769 0.9385
iv 0.0305 0.0198 0.0196 0.0107

αagr 1 0.9605 0.9219

wτ 1 Fig. 14-a Fig. 14-b

wagr 1 Fig. 14-a Fig. 14-b

Table 7
Experimental results

Fuzzy systems with parametrised H-functions
(Nonlinear Dynamic Plant Identification Problem)

Final values
after learning

RMSE
(learning sequence)

RMSE
(testing sequence)Experiment

number

Name of
flexibility
parameter

Initial
values Dombi

H-function
Yager

H-function
Dombi

H-function
Yager

H-function
Dombi

H-function
Yager

H-function

i ν 0.5 0.0000 0.0000 0.0448 0.0259 0.0264 0.0160

ii ν 1 — — 0.0531 0.0435 0.0298 0.0259

ν 0.5 0.0000 0.0000

pτ 10 10.0065 6.7442

pI 10 9.9802 11.6769

iii pagr 10 10.0823 4.2762 0.0348 0.0249 0.0194 0.0147

ατ 1 0.8634 0.8990

αI 1 0.1743 0.9999

αagr 1 0.9955 0.9998

ν 0.5 0.0000 0.0000

pτ 10 9.3823 5.1690

pI 10 8.9950 7.9606

pagr 10 12.5209 0.2942

iv ατ 1 0.8568 0.8420 0.0291 0.0225 0.0185 0.0129

αI 1 0.1285 0.9974

αagr 1 0.9692 0.9767

wτ 1 Fig. 15-a Fig. 15-b

wagr 1 Fig. 15-a Fig. 15-b

22 Bull. Pol. Ac.: Tech. 52(1) 2004



A new method for system modelling and pattern classification

In [30] 400 simulated data were generated from the plant
model (82). Starting from the equilibrium state (0,0),
200 samples of the identification data were obtained
with a random input signal u(k) uniformly distributed in
[−1.5, 1.5], followed by 200 samples of evaluation data ob-
tained using a sinusoidal input signal u(k) = sin(2πk/25).

The experimental results for the Nonlinear Dynamic
Plant Identification Problem are depicted in Tables 6
and 7 for the not-parameterised (Zadeh and algebraic) and
parameterised (Dombi and Yager) H-functions, respec-
tively. For experiment (iv) the final values (after learning)
of weights wτ

i,k ∈ [0, 1] and wagr
k ∈ [0, 1], i = 1, . . . , 2,

k = 1, . . . , 6, are shown in Fig. 14 (Zadeh and algebraic
H-functions) and Fig. 15 (Dombi and Yager H-functions).

Fig. 14. Weights representation in the Nonlinear Dynamic Plant

Identification Problem a) Zadeh H-function, b) algebraic H-function

Fig. 15. Weights representation in the Nonlinear Dynamic Plant

Identification Problem a) Dombi H-function, b) Yager H-function

The comparison table for the Nonlinear Dynamic
Plant Identification Problem is shown Table 8.

10. Final remarks

In the paper a new method for system modelling and pat-
tern classification has been proposed. The method is based
on the concept of flexible parameters incorporated into
construction of neuro-fuzzy systems. Obviously, the com-
putational burden of flexible neuro-fuzzy systems is much
higher comparing with traditional fuzzy modelling. The
main advantage of our approach is remarkable accuracy of
new algorithms in various problems of system modelling
and classification as shown in Section 9. A similar prop-

Table 8
Comparison table

(Nonlinear Dynamic Plant Identification Problem)

Nonlinear Dynamic Plant Identification Problem

Method No of
rules

Training
RMSE

Testing
RMSE

Wang and Yen [30] 40 0.0182 0.0263

Wang and Yen [30] 28 0.0182 0.0245

Wang and Yen [29] 36 0.0053 0.0714

Wang and Yen [29] 23 0.0057 0.0436

Wang and Yen [29] 36 0.0014 0.0539

Wang and Yen [29] 24 0.0014 0.0253

Yen and Wang [32] 25 0.0152 0.0202

Yen and Wang [32] 20 0.0261 0.0155

Setnes and Roubos [28] 7 0.1265 0.0346

Setnes and Roubos [28] 7 0.0548 0.0221

Setnes and Roubos [28] 5 0.0762 0.0500

Setnes and Roubos [28] 5 0.0274 0.0187

Setnes and Roubos [28] 4 0.0346 0.0217

Roubos and Setnes [21] 5 0.0700 0.0539

Roubos and Setnes [21] 5 0.0374 0.0243

Roubos and Setnes [21] 5 0.0288 0.0187

Rutkowski and Cpałka [27] 5 0.0328 0.0211

our result (N=6) 6 0.0196 0.0107

erty is possessed by probabilistic neural networks [36–38],
[8, 39, 40] applied to system modelling and classification.
In the future research it would be interesting to investi-
gate relations between flexible neuro-fuzzy systems and
probabilistic neural networks. Moreover, the evolution-
ary techniques [16] should be combined with the gradient
methods in order to further improve the optimization
process.

References

[1] L. A. Zadeh, “Fuzzy sets”, Information and Control 8(3),
338–353 (1965).

[2] K. Hirota, Industrial Applications of Fuzzy Technology,
Berlin: Springer Verlag, 1993.

[3] R. Tadeusiewicz, Neural Networks, Warsaw: RM Academic
Publishing House, 1993 (in Polish).

[4] R. Tadeusiewicz, Elementary introduction to neural networks
with computer programs, Warsaw: Academic Publishing House, 1998
(in Polish).

[5] J. Kacprzyk, Multistage Fuzzy Control, Chichester: John
Wiley & Sons, 1997.

[6] L. Rutkowski, Flexible Neuro-Fuzzy Systems, Dordrecht:
Kluwer Academic Publishers, 2004.

[7] R. L. Eubank, Nonparametric Regression and Spline Smooth-
ing, New York: Marcel Dekker, 1999.

[8] L. Rutkowski, New Soft Computing Techniques for Sys-
tem Modeling, Pattern Classification and Image Processing, Berlin:
Springer-Verlag, 2004.

[9] Z. Michalewicz, Genetic Algorithms + Data Structures =
Evolution Programs, Berlin: Springer-Verlag, 1992.

Bull. Pol. Ac.: Tech. 52(1) 2004 23



L. Rutkowski

[10] Z. Pawlak, “Rough sets”, Intern. Journal of Information
and Computer Science 11, 341 (1982).

[11] Z. Pawlak, Rough Sets. Theoretical Aspects of Reasoning
About Data, Dordrecht: Kluwer Academic Publishers, 1991.

[12] Z. Bubnicki, “Uncertain variables and their application to
decision making”, IEEE Trans. on SMC, Part A: Systems and
Humans 31, 587–596 (2001).

[13] Z. Bubnicki, Uncertain Logics, Variables and Systems, Berlin:
Springer-Verlag, 2002.

[14] R. A. Aliev and R. R. Aliev, Soft Computing and its
Applications, Singapore: World Scientific Publishing, 2001.

[15] V. Kecman, Learning and Soft Computing, MIT, Cambridge
2001.

[16] M. Y. Chen and D. A. Linkens, “A systematic neuro-
fuzzy modeling framework with application to material property
prediction”, IEEE Trans. on Fuzzy Systems 31, 781–790 (2001).

[17] González and R. Pérez, “SLAVE: a genetic learning system
based on an iterative approach”, IEEE Trans. on Fuzzy Systems 7,
176–191 (1999).

[18] J. S. Jang, C. T. Sun and E. Mizutani, Neuro-Fuzzy and
Soft Computing, London: Prentice Hall, 1997.

[19] N. Kasabov, “DENFIS: dynamic evolving neural-fuzzy in-
ference system and its application for time-series prediction”, IEEE
Trans. on Fuzzy Systems 10, 144–154 (2002).

[20] E. Kim, M. Park, S. Ji and M. Park, “A new approach to
fuzzy modeling”, IEEE Trans. on Fuzzy Systems 5, 328–337 (1997).

[21] H. Roubos H. and M. Setnes, “Compact and transparent
fuzzy models and classifiers through iterative complexity reduction”,
IEEE Trans. on Fuzzy Systems 9, 516–524 (2001).

[22] L. Rutkowski and K. Cpałka, “Flexible structures of neuro-
fuzzy systems”, Quo Vadis Computational Intelligence, Studies in
Fuzziness and Soft Computing, Berlin: Springer-Verlag, Vol. 54,
479–484 (2000).

[23] L. Rutkowski and K. Cpałka, “A general approach to
neuro-fuzzy systems”, The 10th IEEE Intern. Conference on Fuzzy
Systems, Melbourne, 2001.

[24] L. Rutkowski and K. Cpałka, “Designing and learning of
adjustable quasi-triangular norms with applications to neuro-fuzzy
systems”, Technical Report, Department of Computer Engineering,
Technical University of Czestochowa, Częstochowa 2002.

[25] L. Rutkowski and K. Cpałka, “A neuro-fuzzy controller
with a compromise fuzzy reasoning”, Control and Cybernetics 31(2),

297–308 (2002).
[26] L. Rutkowski and K. Cpałka, “Flexible weighted neuro-fuzzy

systems”, 9th Intern. Conference on Neural Information Processing
(ICONIP’02), Orchid Country Club, Singapore, 2002.

[27] L. Rutkowski and K. Cpałka, “Flexible neuro-fuzzy sys-
tems”, IEEE Trans. Neural Networks 14, 554–574 (2003).

[28] M. Setnes and H. Roubos, “GA-fuzzy modeling and classifi-
cation complexity and performance”, IEEE Trans. on Fuzzy Systems
8, 509–521 (2000).

[29] L. Wang and J. Yen, “Application of statistical information
criteria for optimal fuzzy model construction”, IEEE Trans. on Fuzzy
Systems 6, 362–371 (1998).

[30] L. Wang and J. Yen, “Extracting fuzzy rules for system
modeling using a hybrid of genetic algorithms and Kalman filter”,
Fuzzy Sets and Systems 101, 353–362 (1999).

[31] R. R. Yager and D. P. Filev, Essentials of Fuzzy Modeling
and Control, New York: John Wiley & Sons, 1994.

[32] J. Yen and L. Wang, “Simplifying fuzzy rule based models
using orthogonal transformation methods”, IEEE Trans. Syst. Man
Cybern. 29, 13–24 (1999).

[33] J. C. Fodor, “On fuzzy implication operators”, Fuzzy Sets
and Systems 42, 293–300 (1991).

[34] E. P. Klement, R. Mesiar and E. Pap, Triangular Norms,
Dordrecht: Kluwer Academic Publishers, 2000.

[35] M. Dong and R. Kothari, “Look-ahead based fuzzy decision
tree induction”, IEEE Trans. on Fuzzy Systems 9, 461–468 (2001).

[36] L. Rutkowski and E. Rafajłowicz, “On global rate of
convergence of some nonparametric identification procedures”, IEEE
Trans. on Automatic Control AC-34(10), 1089–1091 (1989).

[37] L. Rutkowski, “Identification of MISO nonlinear regressions
in the presence of a wide class of disturbances”, IEEE Trans. on
Information Theory IT-37, 214–216 (1991).

[38] L. Rutkowski, “Multiple Fourier series procedures for ex-
traction of nonlinear regressions from noisy data”, IEEE Trans. on
Signal Processing 41, 3062–3065 (1993).

[39] L. Rutkowski, “Adaptive probabilistic neural networks for
pattern classification in time-varying environment”, IEEE Trans. on
Neural Networks 15 (2004).

[40] L. Rutkowski, “Generalized regression neural networks in
time-varying environment”, IEEE Trans. on Neural Networks 15,
(2004).

24 Bull. Pol. Ac.: Tech. 52(1) 2004


