Reachability index of the positive 2D general models

T. KACZOREK*
Institute of Control and Industrial Electronics, Warsaw University of Technology, 75 Koszykowa St., 00-662 Warszawa, Poland

Abstract. It is shown that $2(n+1)$ is the upper bound for the reachability index of the n-order positive 2 D general models.
Keywords: reachability index, positive 2D general model, upper bound

1. Introduction

In recent years a growing interest in positive twodimensional (2D) systems has been observed [1-9]. An overview of some recent results in positive systems has been given in the monographs $[1,10]$ and papers [5-9] and on the controllability of 1D and 2D systems in [11]. The asymptotic behaviour of positive 2D systems and their internal stability have been investigated in $[8,9]$. The local reachability of positive 2 D systems described by the second Fornasini-Marchesini models [2-4] has been analyzed in [5]. It was shown that the reachability index of the n-order positive 2 D systems is not bounded by n.

In this note it will be shown that $2(n+1)$ is the upper bound for the reachability index of the n-order positive 2 D systems described by the general model.

2. Problem formulation

Let $R^{n \times m}$ be the set of $n \times m$ real matrices and $R^{n}=$ $R^{n \times 1}$.

Consider the 2D general model

$$
\begin{align*}
x_{i+1, j+1}=A_{0} x_{i j} & +A_{1} x_{i+1, j}+A_{2} x_{i, j+1} \\
& +B_{0} u_{i j}+B_{1} u_{i+1, j}+B_{2} u_{i, j+1} \tag{1a}
\end{align*}
$$

$$
i, j \in Z_{+} \text {(the set of nonnegative integers) }
$$

$$
\begin{equation*}
y_{i j}=C x_{i j}+D u_{i j} \tag{1b}
\end{equation*}
$$

where $x_{i j} \in R^{n}$ is the local state vector at the point (i, j), $u_{i j} \in R^{m}$ and $y_{i j} \in R^{p}$ are the input and output vectors and $A_{k} \in R^{n \times n}, B_{k} \in R^{n \times m}, k=0,1,2, C \in R^{p \times n}$, $D \in R^{p \times m}$.

Boundary conditions for (1a) are given by

$$
\begin{equation*}
x_{i 0}, i \in Z_{+} \quad \text { and } \quad x_{0 j}, j \in Z_{+} \tag{2}
\end{equation*}
$$

Let R_{+}^{n} be the set of n-dimensional vectors with nonnegative components.

Definition 1. The model (1) is called the positive 2D general model (P2DGM) if for all boundary conditions

$$
\begin{equation*}
x_{i 0} \in R_{+}^{n}, i \in Z_{+}, x_{0 j} \in R_{+}^{n}, j \in Z_{+} \tag{3}
\end{equation*}
$$

and every sequence of inputs $u_{i j} \in R_{+}^{m}, i, j \in Z_{+}$we have $x_{i j} \in R_{+}^{n}$ and $y_{i j} \in R_{+}^{p}$ for $i, j \in Z_{+}$.

[^0]Theorem 1 [10]. The model (1) is a P2DGM if and only if
$A_{k} \in R_{+}^{n \times n}, B_{k} \in R_{+}^{n \times m}, k=0,1,2, C \in R_{+}^{p \times n}$,

$$
\begin{equation*}
D \in R_{+}^{p \times m} \tag{4}
\end{equation*}
$$

where $R_{+}^{p \times q}$ is the set of $p \times q$ real matrices with nonnegative entries.

The transition matrix $T_{i j}$ of the model (1) is defined by
$T_{i j}= \begin{cases}I_{n} & \text { (identity matrix) for } i=j=0 \\ A_{0} T_{i-1, j-1}+A_{1} T_{i, j-1}+A_{2} T_{i-1, j} \\ \quad & \text { for } i, j>0(i+j>0) \\ 0 & \text { (zero matrix) for } i<0 \text { or } / \text { and } j<0\end{cases}$
From (5) it follows that for P2DGM (1) $T_{i j} \in R_{+}^{n \times n}$ for $i, j \in Z_{+}$.

Definition 2. The P2DGM (1) is called reachable at the point $(h, k) \in Z_{+} \times Z_{+}$if for zero boundary conditions (ZBC) (2) and every vector $x_{f} \in R_{+}^{n}$ there exists a sequence of inputs $u_{i j} \in R_{+}^{m}$ for $(i, j) \in D_{h k}$ such that $x_{h k}=x_{f}$, where

$$
\begin{align*}
D_{h k}=\left\{(i, j) \in Z_{+} \times Z_{+}:\right. & 0 \leqslant i \leqslant h, \\
& 0 \leqslant j \leqslant k, i+j \neq h+k\} . \tag{6}
\end{align*}
$$

Definition 3. The P2DGM (1) is called reachable for ZBC if it is reachable at any point $(h, k) \in Z_{+} \times Z_{+}$. If $x_{f} \in R_{+}^{n}$ is reachable at the point (h, k) then it will be said that the state x_{f} is reached in $h+k$ steps. The number $h+k$ steps is called the reachability index of (1) and it will be denoted by I_{R}, i.e. $I_{R}=h+k$.

Theorem 2 [10]. The P2DGM (1) is reachable for ZBC if and only if the reachability matrix

$$
\begin{gather*}
R_{h k}:=\left[M_{0}, M_{i}^{1}, 1 \leqslant i \leqslant h ; M_{j}^{2}, 1 \leqslant j \leqslant k ;\right. \\
\left.\quad M_{i j}, 1 \leqslant i \leqslant h ; 1 \leqslant j \leqslant k ; i+j \neq h+k\right] \tag{7}\\
M_{0}=T_{h-1, k-1} B_{0}, M_{i}^{1}=T_{h-i, k-1} B_{1}+T_{h-i-1, k-1} B_{0} \\
\quad i=1, \ldots, h \\
M_{j}^{2}=T_{h-1, k-j} B_{2}+T_{h-1, k-j-1} B_{0}, j=1, \ldots, k \\
M_{i j}=T_{h-i-1, k-j-1} B_{0}+T_{h-i, k-j-1} B_{1}+T_{h-i-1, k-j} \\
\quad B_{2}, i=1, \ldots, h ; j=1, \ldots, k, i+j \neq h+k
\end{gather*}
$$

contains an $n \times n$ monomial matrix (in each of its rows and in each of its columns only one entry is positive and the remaining entries are zero).

For standard 1D n-order linear systems the reachability index is equal to n.

It is also known [5] that for standard (i.e. not necessarily positive) 2 D general models the reachability index is equal to $n\left(I_{R}=n\right)$ i.e. any local state of (1) starting from ZBC can be reached in $h+k$ steps for $h+k \leqslant n$.

For P2DGM (1) the set X_{h+k}^{+}of all local states that can be reached in $h+k$ steps starting from ZBC by means of an input sequence $u_{i j} \in R_{+}^{m}$ coincides with the set of all nonnegative combinations of the columns of the matrix (7), i.e. $X_{h+k}^{+}=$cone $R_{h k}$.

It is known [5] that the reachability index I_{R} of a positive 2D linear systems is not bounded by n.

In [5] it was shown that the reachability index of the system (1) with $A_{0}=0, B_{0}=B_{1}=0$ and

$$
\begin{align*}
& A_{1}=\left[\begin{array}{lllllll}
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right],\left[\begin{array}{lllllll}
0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0
\end{array}\right], \quad B_{2}=\left[\begin{array}{l}
1 \\
0 \\
0 \\
1 \\
0 \\
0 \\
0
\end{array}\right]
\end{align*}
$$

is equal to $I_{R}=13$ (for $n=7$). In [5] the conjecture was also given that $n^{2} / 4$ represents an upper bound for the reachability index of every 2 D positive system.

In this paper it will be shown that $2(n+1)$ is the upper bound for the reachability index of the P2DGM.

3. Problem solution

Solution of the problem is based on the following lemma
Lemma. Let

$$
\begin{align*}
& \operatorname{det}\left[I_{n} z_{1} z_{2}-A_{0}-A_{1} z_{1}-A_{2} z_{2}\right] \\
&=z_{1}^{n} z_{2}^{n}-\sum_{\substack{i=0 \\
i+j \neq 2 n}}^{n} \sum_{i=0}^{n} d_{i j} z_{1}^{i} z_{2}^{j} . \tag{9}
\end{align*}
$$

Then the transition matrices $T_{i j}$ (defined by (5)) satisfy the equations

$$
\begin{align*}
& T_{n+k, 0}=A_{2}^{n+k}=\sum_{i=0}^{n-1} d_{i 0}^{k} A_{2}^{i}, k=0,1, \ldots \tag{10a}\\
& T_{0, n+l}=A_{1}^{n+l}=\sum_{j=0}^{n-1} d_{0 j}^{l} A_{1}^{j}, l=0,1, \ldots \tag{10b}
\end{align*}
$$

$$
T_{n+k, n+l}=\sum_{\substack{i=0 \\ i+j \neq 2 n}}^{n} \sum_{j=0}^{n} d_{i j} T_{i+k, j+k} \text { for } k, l=1,2 \quad(10 \mathrm{c})
$$

Proof. The relations (10a) and (10b) follow from the Cayley-Hamilton theorem applied to A_{2} and A_{1}, respectively.

Taking into account that

$$
\begin{align*}
& {\left[I_{n} z_{1} z_{2}-A_{0}-A_{1} z_{1}-A_{2} z_{2}\right]^{-1}} \\
& \quad=\sum_{i=0}^{\infty} \sum_{j=0}^{\infty} T_{i j} z_{1}^{-(i+1)} z_{2}^{-(j+1)} \tag{11}
\end{align*}
$$

we may write

$$
\begin{align*}
\sum_{i=0}^{n} \sum_{j=0}^{n} H_{i j} z_{1}^{i} z_{2}^{j}=(& \left.z_{1}^{n} z_{2}^{n}-\sum_{\substack{i=0 \\
i+j \neq 2 n}}^{n} \sum_{i=0}^{n} d_{i j} z_{1}^{i} z_{2}^{j}\right) \\
& \cdot\left(\sum_{i=0}^{\infty} \sum_{j=0}^{\infty} T_{i j} z_{1}^{-(i+1)} z_{2}^{-(j+1)}\right) \tag{12}
\end{align*}
$$

where $\sum_{i=0}^{n} \sum_{j=0}^{n} H_{i j} z_{1}^{i} z_{2}^{j}$ is the adjoint matrix to the matrix $\left[I_{n} z_{1} z_{2}-A_{0}-A_{1} z_{1}-A_{2} z_{2}\right]$.

From comparison of the matrix coefficients at the same powers of $z_{1}^{-k} z_{2}^{-l}$ for $k, l=0,-1,-2, \ldots, k+l<0$ of the equality (12) we obtain (10c).

Theorem 3. If the P2DGM (1) is reachable then it is reachable in at most $2(n+1)$ steps $(h \leqslant n, k \leqslant n)$, i.e.

$$
\begin{equation*}
I_{R} \leqslant 2(n+1) \quad(h \leqslant n, k \leqslant n) \tag{13}
\end{equation*}
$$

Proof. If the P2DGM (1) is reachable then by Theorem 2 the reachablity matrix (7) contains an $n \times n$ monomial matrix for $h+k \leqslant 2(n+1)$ since by the equation (10) the columns M_{i}^{1}, M_{j}^{2} and $M_{i j}$ of (7) for $h+k \leqslant 2(n+1)(h \geqslant n, k \geqslant n)$ are linear combinations of the columns of the matrix $R_{h k}$ for $h+k \leqslant 2(n+1)$ $(h \leqslant n, k \leqslant n)$.

Example. Consider the P2DGM with

$$
\begin{gather*}
A_{0}=0, A_{1}=\left[\begin{array}{llll}
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right], A_{2}=\left[\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right], \\
B_{0}=0, B_{1}=\left[\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right], B_{2}=0 . \tag{14}
\end{gather*}
$$

Using (5) and (7) we obtain

$$
T_{i 0}=\left\{\begin{array}{ll}
A_{2} & \text { for } i=1 \\
0 & \text { for } i>2
\end{array}, T_{20}=\left[\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0
\end{array}\right]\right.
$$

www.journals.pan.pl

Reachability index of the positive 2D general models

$$
\begin{gathered}
T_{0 j}=\left\{\begin{array}{ll}
A_{1} & \text { for } j=1 \\
0 & \text { for } j>2
\end{array}, T_{02}=\left[\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right],\right. \\
T_{11}=\left[\begin{array}{llll}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right], T_{12}=\left[\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right], \\
T_{21}=\left[\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right], T_{22}=I_{4}, T_{23}=A_{1}, \\
T_{24}=\left[\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] \\
T_{31}=0, T_{32}=A_{2}, T_{33}=T_{11}, T_{34}=\left[\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right] \\
T_{41}=0, T_{42}=T_{20}, T_{43}=T_{21}, T_{44}=I_{4}
\end{gathered}
$$

and

$$
\begin{aligned}
R_{13} & =\left[M_{0}, M_{1}^{1}, M_{1}^{2}, M_{2}^{2}, M_{3}^{2}, M_{11}, M_{12}\right] \\
& =\left[\begin{array}{lllllll}
0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right], \\
R_{31} & =\left[\begin{array}{lllllll}
M_{0}, M_{1}^{1}, M_{2}^{1}, M_{3}^{1}, M_{1}^{2}, M_{11}, M_{21}
\end{array}\right] \\
& =\left[\begin{array}{lllllll}
0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right], \\
R_{22}= & {\left[M_{0}, M_{1}^{1}, M_{2}^{1}, M_{1}^{2}, M_{2}^{2}, M_{11}, M_{12}, M_{21}\right] } \\
& =\left[\begin{array}{llllllll}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right],
\end{aligned}
$$

$$
\begin{aligned}
R_{33}= & {\left[M_{0}, M_{1}^{1}, M_{2}^{1}, M_{3}^{1}, M_{1}^{2}, M_{2}^{2}, M_{3}^{2}, M_{11}, M_{12},\right.} \\
& =\left[\begin{array}{lllllllllllllll}
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right] .
\end{aligned}
$$

From Theorem 2 it follows that the P2DGM with (14) is not reachable for $h+h \leqslant n=4$ and it is reachable for $h+k=6>n^{2} / 4$. The reachability index of the system satisfies the condition (13), i.e. $I_{R}=h+k=6<$ $2(n+1)=10$.

References

[1] L. Farina and S. Rinaldi, Positive Linear Systems. Theory and Applications, New York: Wiley, 2000.
[2] E. Fornasini and G. Marchesini, "Doubly indexed dynamical systems", Math. Sys. Theory 12, 59-72 (1978).
[3] E. Fornasini and M. E. Valcher, "On the spectral and combinatorial structure of 2D positive systems", Lin. Alg. \& Appl., 245, 223-258 (1996).
[4] E. Fornasini and M. E. Valcher, "Primitivity of positive matrix pairs: algebraic characterization, graph-theoretic description, 2D systems interpretation", SIAM J. Matrix Analysis \& Appl., 19 (1), 71-88 (1998).
[5] E. Fornasini and M. E. Valcher, "On the positive reachability of 2D positive systems", Positive Systems LNCIS 294, 297-304 (2003).
[6] J. Klamka, "Constrained controllability of positive 2-D systems", Bull. Pol. Ac.: Tech. 46(1), 95-104 (1998).
[7] J. Klamka, "Controllability of 2-D systems: a survey", Appl. Math. and Comp. Sci. 7(4), 101-120 (1997).
[8] M. E. Valcher and E. Fornasini, "State models and asymptotic behaviour of 2D positive systems", IMA J. Math. Control and Information 12, 17-36 (1995).
[9] M. E. Valcher, "On the internal stability and asymptotic behavior of 2-D positive systems", IEEE Trans. Circ. and Syst. 44(7), 602-613 (1997).
[10] T. Kaczorek, Positive 1D and 2D systems, Berlin: SpringerVerlag, 2002.
[11] J. Klamka, Controllability of Dynamical Systems, Dordrecht: Kluwer Academic Publ., 1991.

[^0]: * e-mail: kaczorek@isep.pw.edu.pl

