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Abstract The instability characteristics of a dielectric fluid layer heated
from below under the influence of a uniform vertical alternating current
(AC) electric field is analyzed for different types of electric potential (con-
stant electric potential/ electric current), velocity (rigid/free) and tempera-
ture boundary conditions (constant temperature/heat flux or a mixed con-
dition at the upper boundary). The resulting eigenvalue problem is solved
numerically using the shooting method for various boundary conditions and
the solution is also found in a simple closed form when the perturbation
heat flux is zero at the boundaries. The possibility of a more precise control
of electrothermal convection (ETC) through various boundary conditions
is emphasized. The effect of increasing AC electric Rayleigh number is to
hasten while that of Biot number is to delay the onset of ETC. The sys-
tem is more stable for rigid-rigid boundaries when compared to rigid-free
and least stable for free-free boundaries. The change of electric potential
boundary condition at the upper boundary from constant electric potential
to constant electric current is found to instill more stability on the system.
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Besides, increase in the AC electric Rayleigh number and the Biot number
is to reduce the size of convection cells.
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Nomenclature

a – overall horizontal wave number (=
√
ℓ2 +m2), m−1

Bi – Biot number (= h d/k)
D – differential operator = d/dz, m−1

d – thickness of the dielectric fluid layer, m
~E – electric field
E0 – root mean square value of the electric field at z = 0, NC−1

~g – gravitational acceleration due
h – heat transfer coefficient, Wm−2K−1

k – thermal conductivity, Wm−1K−1

ℓ,m – horizontal wave numbers in the x and y directions, m−1

p – pressure, Nm−2

Pr – Prandtl number (= ν/κ)
~q – velocity vector (= (u, v, w))
Rae – AC electric Rayleigh number (= γ2ε0E

2
0(∆T )2d2/µκ)

Rat – thermal Rayleigh number (= αg∆Td3/νκ)
t – time, s
T – temperature, K
TL – temperature of the lower boundary, K
TU – temperature of the upper boundary, K
∆T – constant temperature difference (= TL − TU ) , K
V – electric potential, V
u, v, w – velocity components
W – amplitude of vertical component of perturbed velocity, ms−1

(x, y, z) – Cartesian co-ordinates

Greek symbols

α – thermal expansion coefficient, K−1

ε – dielectric constant, Fm−1

ε0 – dielectric constant at reference temperature T = TL, Fm−1

γ (> 0) – thermal expansion coefficient of dielectric constant, Fm−1

κ – thermal diffusivity, Wm−1K−1

ν = µ/ρ0 – kinematic viscosity, m2s−1

µ – fluid viscosity, Kgm−1s−2

ω – growth factor
Φ – amplitude of perturbed electric potential, V
ρ – fluid density, Kgm−3

ρ0 – density at reference temperature T = TL, Kgm−3

ρe – charge density, Cm−3
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Θ – amplitude of perturbed temperature, K
σ – electrical conductivity, sm−1

∇2
h = ∂2/∂x2 + ∂2/∂y2 – horizontal Laplacian operator

∇2 = ∇2
h + ∂2/∂z2 – Laplacian operator

Subscripts

b – basic state
c – critical
0 – reference

1 Introduction

Electrohydrodynamics (EHD) is an interdisciplinary science dealing with
the interaction of fluids and electric fields or charges and it has been found
applications in many areas such as EHD enhanced heat transfer, micro-
electromechanical system (MEMS) and some other industrial processes,
EHD pump, electrospray mass spectrometry, electrospray nanotechnology,
ink-jetting, drug delivery, design of engineering devices ranging from air-
craft and space vehicles to microfluidic devices and some other industrial
processes [1–5].

One aspect of EHD encompasses, for instance, the influence of the con-
ductivity and/or dielectric permittivity of the fluids on the instability as-
pects of the flow. The variation of electrical conductivity of the fluid with
temperature produces free charges in the bulk of the fluid. These free
charges interacting with applied or induced electric field produce a force
that eventually causes fluid motion. On the other hand, when there is
variation in dielectric permittivity and the electric field is intense then the
polarization force which is induced by the non-uniformity of the dielectric
constant causes fluid motion. In either case, convection can occur in a di-
electric fluid layer due to dielectrophoretic forces even if the temperature
gradient is stabilizing and such an instability produced by an electric field
is called electroconvection, which is analogous to Rayleigh-Bénard convec-
tion. In addition, if the applied temperature gradient is also destabilizing
then such an instability problem is called electrothermal convection (ETC).

Incipient interest in theoretical studies of ETC was limited to convection
caused by the dielectrophoretic force due to the variation in the dielectric
constant or dielectric permittivity with the non-homogeneous temperature
gradient in the bulk flow [6-11]. An exhaustive review on this topic has been
given by Jones [12] and Saville [13]. The combined effects of direct current
(DC) electric field and volumetric heat source on the onset of convection in
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a dielectric fluid layer heated from below are investigated by Shivakumara
et al. [14], while the influences of vertical alternating current (AC) electric
field as well as internal heat generation on the onset of ETC in a horizontal
dielectric fluid layer is analyzed by Shivakumara et al. [15].

It is a well established fact that the boundary conditions dominate the
instability characteristics of a fluid dynamical system. It is therefore prag-
matic to analyze the influence of various velocity, temperature and electric
potential boundary conditions on ETC. Such a study has not been initi-
ated to the best of our knowledge despite the findings help in understanding
control of ETC which is important in the contemporary heat transfer re-
search. In the present study, the onset of convection in a horizontal dielec-
tric fluid layer heated from below under the influence of a uniform vertical
AC electric field for various boundary conditions on velocity (rigid/free),
temperature (constant temperature/heat flux or a mixed condition at the
upper boundary) and electric potential (constant electric potential/electric
current). The resulting eigenvalue problem is solved numerically using the
shooting method with the thermal Rayleigh number as the eigenvalue. The
existing results are obtained as particular cases from the present study.

2 Mathematical formulation

We consider a dielectric fluid layer of thickness d with a uniform vertical AC
electric field applied across the layer. The lower and upper boundaries of
the layer are maintained at uniform, but different temperatures TL and TU

(TU < TL) respectively, and thus a constant temperature difference ∆T =
TL − TU is maintained between the boundaries. A Cartesian coordinate
system (x, y, z) is chosen with the origin at the bottom of the fluid layer and
the z-axis normal to the fluid layer in the gravitational field. The relevant
basic equations under the Oberbeck-Boussinesq approximation are [12]:

∇ · ~q = 0 , (1)

ρ0

[
∂~q

∂t
+ (~q · ∇) ~q

]
= ρe

~E − 1
2
~E · ~E ∇ε

−∇
(
p− 1

2 ρ
∂ε

∂ρ
~E · ~E

)
+ ρ0{1 − α(T − TL)}~g + µ∇2~q , (2)

∂T

∂t
+ (~q · ∇)T = κ∇2T , (3)
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∇ × ~E = 0 , (4a)

∇ · (ε ~E) = 0 , (4b)

where ~q is the velocity vector, T is the temperature, p is the pressure,
κ is the thermal diffusivity, µ is the fluid viscosity, ~g is the gravitational
acceleration, α is the thermal expansion coefficient, ρ is the fluid density,
ρ0 is the density at reference temperature T = TL , ~E is the electric field,
ρe is the charge density and ε is the dielectric constant. The first term
on the right hand side (Eq. (2)) is the Coulomb force due to a free charge
and the second term depends on the gradient of ε. The electrical force
will have no effect on the bulk of the dielectric fluid if both the dielectric
constant, ε, and the electrical conductivity, σ, are homogeneous. Since ε
and σ are functions of temperature, a temperature gradient applied to a
dielectric fluid produces a gradient in ε and σ. The application of a DC
electric field then results in the accumulation of free charge in the liquid.
The free charge increases exponentially in time with a time constant ε/σ,
which is known as the electrical relaxation time. If an AC electric field
is applied at a frequency much higher than the reciprocal of the electrical
relaxation time, the free charge does not have time to accumulate. More-
over, the electrical relaxation times of most dielectric liquids appear to be
sufficiently long to prevent the buildup of free charge at standard power
line frequencies. At the same time, dielectric loss at these frequencies is so
low that it makes no significant contribution to the temperature field [12].
Under the circumstances, only the force induced by non-uniformity of the
dielectric constant is considered. Furthermore, since the body force of elec-
trical origin depends on ~E · ~E rather than ~E which varies rapidly, the root
mean square value of ~E is assumed as the effective value. In other words,
the AC electric field is treated as the DC electric field whose strength is
equal to the root mean square value of the AC electric field. Hence, the
electric field does not involve time t.

In view of Eq. (4a), ~E can be expressed as

~E = −∇V , (5)

where V is the electric potential. The dielectric constant is assumed to be
a linear function of temperature in the form

ε = ε0
[
1 − γ(T − TL)

]
, (6)
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where γ (>0) is the thermal expansion coefficient of dielectric constant.
The basic state is quiescent and given by

Tb − TL = −DT z/d, Ebz =
E0

1 +DT z/d

or

Vb(z) = − E0d

γDT
log(1 + γDTz/d) , (7)

where

E0 = − V1γDT/d

log(1 + γDT )
(8)

is the externally applied electric field at z = 0 and the subscript b denotes
the basic state and D = d

dz . To study the stability of the basic state, we

superimpose infinitesimally small perturbations
(
~q′, p′, ~E′, T ′, ρ′, ε′

)
on the

basic state in the form

~q = ~q′, p = pb +p′, ~E = ~Eb + ~E′, T = Tb +T ′, ρ = ρb +ρ′, ε = εb +ε′ . (9)

Substituting Eq. (9) into Eqs. (1)–(4), linearizing the equations by ne-
glecting the products of primed quantities, eliminating the pressure from
the momentum equation by operating curl twice and retaining the vertical
component and non-dimensionalizing the resulting equations by scaling (x,
y, z) by d, t by d2/κ, ~q′ by κ/d, T ′ by ∆T , and V ′ by γE0∆Td, we obtain
the stability equations (after neglecting the primes for simplicity) in the
form (

1

Pr

∂

∂t
− ∇2

)
∇2w = Rat∇2

hT + Rae∇2
h

(
T − ∂V

∂z

)
, (10)

(
∂

∂t
− ∇2

)
T = w , (11)

∇2V =
∂T

∂z
, (12)

where Rat = αg∆Td3/νκ is the thermal Rayleigh number, Rae = γ2ε0E
2
0

(∆T )2 d2/µκ is the AC electric Rayleigh number, Pr = ν/κ is the Prandtl
number, ∇2

h = ∂2/∂x2 + ∂2/∂y2 is the horizontal Laplacian operator and
∇2 = ∇2

h + ∂2/∂z2 is the Laplacian operator. The normal mode analysis
procedure is employed in which we look for the solution of the form

(w, T, V ) = (W,Θ,Φ)(z) exp
{
i(ℓx+my) + ωt

}
, (13)
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where ℓ and m are the horizontal wave numbers in the x and y directions,
respectively, and ω is the growth factor. In general, ω = ωr + i ωi, is a
complex quantity, where i is the imaginary unit, and the subscript r and i
denote real and imaginary part, relatively. Substituting Eq. (13) into Eqs.
(10)–(12), and noting that the principle of exchange of stability is valid (see
Shivakumara et al. [16]) the governing stability equations become

(D2 − a2)2W = Rat a
2Θ + Rae a

2(Θ −DΦ) , (14)

(D2 − a2) Θ +W = 0 , (15)

(D2 − a2)Φ = DΘ , (16)

where D = d/dz and a =
√
ℓ2 +m2 is the horizontal wave number. The

above equations are to be solved subject to four boundary conditions at
lower and upper boundaries; two on velocity and one each on the temper-
ature and electric potential. The boundary conditions considered are:

(i) velocity: W = 0 (vanishing of normal velocity), DW = 0 (vanish-
ing of tangential velocity-rigid boundary) or D2W = 0 (vanishing of
shear stress-free boundary).

(ii) temperature: Θ = 0 (isothermal) or DΘ = 0 (perturbation heat
flux is zero, i.e. the boundaries are insulating with respect to temper-
ature perturbations) or DΘ + BiΘ = 0 which encompasses the above
two types of temperature boundary conditions as particular cases,
where Bi = hd/k is the Biot number.

(iii) electric potential: Φ = 0 (constant electric potential) or DΦ = 0
(constant normal electric field).

3 Method of solution

Equations (14)–(16) together with the chosen boundary conditions consti-
tute a Sturm-Liouville’s problem with Rat or Rae as an eigenvalue and other
physical parameters as given. The eigenvalue problem is solved numeri-
cally using the shooting method which is based on Runge-Kutta-Fehlberg
(RKF45) and Newton-Raphson methods. The problem is solved for differ-
ent velocity, temperature, electric potential boundary conditions and for
various values of Rae and Bi as an initial value problem with the condi-
tions at z = 0 and satisfying the required conditions at z = 1. To validate
the numerical procedure used, critical thermal Rayleigh number, Ratc, and
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the corresponding critical wave number, ac, computed for different values of
Rae and Bi are compared with those of Maekawa et al. [10] in Tab. 1 for the
following set of boundary conditions lower rigid and upper free boundaries:

W (0) = 0 = DW (0), W (1) = 0 = D2W (1) ,

Θ(0) = 0 = DΘ(1) +BiΘ(1), Φ(0) = 0 = Φ(1) .

From Tab. 1 it is seen that our numerical results are in excellent agreement
with the published ones and thus verifies the accuracy of the method used.

Table 1: Comparison of critical stability parameters with the earlier works for rigid-free
boundaries when Φ = 0 at free boundary.

Rae Bi
Maekawa et al. [10] Present study

Ratc ac Ratc ac

0

0 668.9983 2.086 668.999 2.086

0.1 682.3602 2.116 682.361 2.116

1 770.5697 2.293 770.570 2.293

10 989.4917 2.589 989.491 2.589

100 1085.898 2.672 1085.897 2.672

1000 1099.124 2.681 1099.120 2.681

∞ 1100.650 2.682 1100.650 2.682

100

0 580.8635 2.090 580.864 2.090

0.1 594.3658 2.120 594.366 2.120

1 683.6306 2.297 683.631 2.297

10 905.9162 2.594 905.916 2.594

100 1004.069 2.677 1004.070 2.677

1000 1017.545 2.686 1017.546 2.686

∞ 1019.100 2.687 1019.100 2.687

500

0 228.2693 2.106 228.2696 2.106

0.1 242.3281 2.136 242.328 2.136

1 335.7752 2.314 335.775 2.314

10 571.4484 2.613 571.448 2.613

100 676.5912 2.696 676.591 2.696

1000 691.0723 2.706 691.072 2.706

∞ 692.7436 2.707 692.744 2.707
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4 Results and discussion

The effect of various types of velocity, temperature and electric potential
boundary conditions on the onset of electrothermo convection (ETC) is
investigated to understand their influence on control of ETC. The resulting
eigenvalue problem is solved using the shooting method with RKF45 and
Newton-Raphson methods. The stability parameters extracted for various
types of boundary conditions are illustrated graphically and also tabulated
in Tab. 2.

Table 2: Values of critical Rayleigh number, Ratc, and corresponding wave number, ac,
for different values of Biot number, Bi, for different electric boundary conditions
and for two values of Rae for rigid boundaries.

Rae Bi
Φ(0)=DΦ(1)=0 DΦ(0)=DΦ(1)=0 Φ(0)=Φ(1)=0 DΦ(0) = Φ(1) = 0

100

Ratc ac Ratc ac Ratc ac Ratc ac

0 1240.177 2.590 1239.483 2.590 1207.560 2.550 1206.624 2.550

0.1 1253.476 2.619 1252.776 2.619 1221.597 2.580 1220.666 2.580

1 1339.884 2.782 1339.151 2.782 1312.291 2.751 1311.391 2.751

101 1544.697 3.053 1543.904 3.053 1525.008 3.033 1524.143 3.032

102 1631.208 3.129 1630.393 3.129 1614.277 3.111 1613.417 3.111

103 1642.931 3.137 1642.113 3.137 1626.354 3.120 1625.494 3.120

104 1644.145 3.138 1643.327 3.138 1627.606 3.121 1626.746 3.121

105 1644.267 3.138 1643.449 3.138 1627.731 3.121 1626.871 3.121

200

0 1183.978 2.628 1182.578 2.628 1119.336 2.549 1117.462 2.547

0.1 1196.833 2.655 1195.422 2.655 1133.642 2.579 1131.779 2.578

1 1280.811 2.813 1279.337 2.813 1226.064 2.752 1224.264 2.751

101 1481.982 3.077 1480.394 3.077 1442.883 3.037 1441.155 3.036

102 1567.569 3.151 1565.937 3.151 1533.947 3.116 1532.228 3.115

103 1579.188 3.159 1577.551 3.159 1546.272 3.125 1544.554 3.125

104 1580.392 3.160 1578.754 3.160 1547.549 3.126 1545.831 3.125

105 1580.513 3.160 1578.875 3.160 1547.677 3.126 1545.959 3.126

Figures 1 and 2 respectively exhibit the variation of critical thermal Rayleigh
number, Ratc, and the corresponding critical wave number, ac, as a func-
tion of Biot number, Bi, for different velocity and temperature boundary
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conditions. The result for Bi = 0 corresponds to zero perturbation heat
flux case while for Bi → ∞ corresponds to isothermal case.

Figure 1: Variation of critical Rayleigh number, Ratc, as a function of Biot number, Bi,
for different values of Raewith different boundary conditions.

Figure 1 shows that the values of Ratc increase steadily with increasing Bi
but remain invariant at higher values of Bi. This is because the temperature
perturbations are suppressed with an increase in the value of Bi and hence
higher values of Ratc are needed for the onset of ETC. Also, increasing the
alternating current electric Rayleigh number amounts to decrease in Ratc

and thereby hastens the onset of convection. This may be attributed to
the fact that the destabilizing electric body force induced by the gradient
of dielectric constant arising due to variations in temperature under the
action of electric field drives an upward fluid motion. In other words, the
presence of AC electric field is to augment the heat transfer and to hasten
the onset of convection in a dielectric fluid layer heated from below. This
is so irrespective of the velocity boundary conditions considered. From
the figure it is also evident that the results for different velocity bound-
ary conditions differ only quantitatively and the rigid-rigid boundaries are
found to be more stable followed by rigid-free boundaries and the least
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stable is free-free boundaries. Moreover, the system is more unstable when
both boundaries are insulating with respect to temperature perturbations
as compared to isothermal ones.

Figure 2: Variation of critical wave number, ac, as a function of Biot number, Bi, for
different values of Rae with different boundary conditions.

Figure 2 reveals that increase in Bi is to increase ac but assumes constant
value at higher values of Bi. Thus the effect of Bi is to reduce the size of
convection cells. Although the parameter Rae shows no traceable effect on
ac in the case of rigid-rigid boundaries, its effect is found to be significant
in the case of free-free and lower rigid-upper free boundaries and note that
increasing Rae is to increase ac indicating its effect is to diminish the size
of convection cells. Also, it is noted that

(ac)rigid − rigid > ( ac)rigid − free > ( ac)free − free

in the case of isothermal lower boundary while for adiabatic lower boundary
a mixed type of behavior could be seen. At lower values of Bi, say
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Bi < 10−2, it is observed that

(ac)rigid − rigid < ( ac)rigid − free < ( ac)free − free ,

while for values of Bi beyond this range an opposite trend prevails. Further,
the critical wave number is higher in the case of isothermal lower boundary
as compared to both boundaries insulating with respect to temperature
perturbations.

The critical stability parameters, Rat c, ac, computed for different com-
binations of electric potential boundary conditions are tabulated in Tab. 2.
The results are presented for a representative case of rigid – rigid bound-
aries with Θ(0) = 0 = DΘ(1) + BiΘ(1). From this table we observe that
the system is more stabilizing for the case of Φ(0) = 0 = DΦ(1) followed
by DΦ(0) = 0 = DΦ(1), then Φ(0) = 0 = Φ(1) and the least stable for
the boundary conditions of the type DΦ(0) = 0 = Φ(1). It is seen that the
deviation in the critical stability parameters between the first two and the
last two types of electric potential boundary conditions is not so significant.
But the change in the boundary condition from Φ(1) = 0 to DΦ(1) = 0 is
to delay the onset of ETC the most. Thus it is possible to control (sup-
press/augment) ETC by imposing appropriate electric potential boundary
conditions.

It is observed that the critical wave number is exceedingly small when
the boundaries are insulated with respect to temperature perturbations
(Nield [17,18]) and this fact is exploited to obtain an analytic expression for
the critical thermal Rayleigh number using regular perturbation technique
with wave number as a perturbation parameter. Accordingly, we expand
W, Θ, and Φ in powers of a2 as

(W, Θ, Φ) = (W0, Θ0, Φ0) + a2(W1, Θ1, Φ1) + . . . (17)

Substituting Eq. (17) into Eqs. (14)–(16) and in the boundary conditions
and collecting the terms of zeroth order in a2, we obtain:

D4W0 = 0 , (18a)

D2Θ0 = −W0 , (18b)

D2Φ0 = DΘ0 . (18c)

The boundary conditions considered are:
(i) rigid-rigid boundaries

W0 = DW0 = DΘ0 = Φ0 = 0 at z = 0, 1 , (19a)
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(ii) lower rigid-upper free boundaries

W0 = DW0 = DΘ0 = Φ0 = 0 at z = 0 , (19b)

W0 = D2W0 = DΘ0 = DΦ0 = 0 at z = 1 , (19c)

(iii) free-free boundaries

W0 = D2W0 = DΘ0 = DΦ0 = 0 at z = 0, 1 . (19d)

The solution to the zeroth order equations are W0 = 0, Θ0 = 1 and Φ0 = 0
for rigid-rigid as well a rigid-free boundaries, while W0 = 0, Θ0 = 1 and
Φ0 = 1 for free-free boundaries case.

The first order equations in a2 are then:

D4W1 = Rat + Rae , (20a)

D2Θ1 = 1 −W1 , (20b)

D2Φ1 = DΘ1 (20c)

for rigid-rigid/lower rigid-upper free boundaries while for free-free bound-
aries, Eq. (20c) has to be replaced with

D2Φ1 = DΘ1 + 1 . (20d)

The corresponding boundary conditions are: W1 = DW1 = DΘ1 = Φ1 = 0
on the rigid boundary, and W1 = D2W1 = DΘ1 = DΦ1 = 0 on the free
boundary.

The general solution of Eq. (20a) is

W1 =
1

24
(Rat + Rae) z4 + c1 + c2z + c3z

2 + c4z
3 , (21)

where c1, c2, c3, and c4 are arbitrary constants determined using the bound-
ary conditions W1 = DW1 = DΘ1 = Φ1 = 0 on the rigid boundary and
W1 = D2W1 = DΘ1 = DΦ1 = 0 on the free boundary. They are given by

(i) rigid-rigid boundaries

c1 = 0, c2 = 0, c3 =
1

24
(Rat + Rae) , c4 = − 1

12
(Rat + Rae) ; (22)

(ii) lower rigid- upper free boundaries

c1 = 0, c2 = 0, c3 =
1

16
(Rat + Rae) , c4 = − 5

48
(Rat + Rae) ; (23)
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(iii) free-free boundaries

c1 = 0, c2 =
1

24
(Rat + Rae) , c3 = 0, c4 = − 1

12
(Rat + Rae) . (24)

Integrating Eq. (20b) between z = 0 and 1, and using the boundary con-
ditions on temperature, it follows that

∫ 1

0
W1dz = 1 . (25)

Substituting for W1 from Eq. (21) into Eq. (25) and carrying out the
integration leads to an expression for critical Rayleigh numbers for rigid-
rigid, lower rigid-upper free and free-free boundaries, respectively, in the
following form:

Ratc = 720 − Rae , (26)

Ratc = 320 − Rae , (27)

Ratc = 120 − Rae . (28)

In case of the critical thermal Rayleigh number is Rae = 0, Ratc = 720, 320,
and 120, respectively, which are the known exact values for the ordinary
viscous fluid case [19,20].

Table 3: Comparison of critical Rayleigh number, Ratc, obtained from the shooting
method and regular perturbation techniques.

Rae

Shooting method Regular perturbation method

rigid-rigid rigid-free free-free rigid-rigid rigid-free free-free

Ratc Ratc Ratc Ratc Ratc Ratc

0 720 320 120 720 320 120

10 710 310 110 710 310 110

20 700 300 100 700 300 100

30 690 290 90 690 290 90

40 680 280 80 680 280 80

50 670 270 70 670 270 70

The numerically computed values of Ratc for different values of Rae with
Bi = 0 are tabulated in Tab. 3 and note that the results obtained from the
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simple regular perturbation technique coincide exactly with those obtained
from time consuming numerical methods. The study provides a justification
for the analytically obtained results for prescribed heat flux condition at
the boundaries. In other words, the solutions obtained analytically for the
case of insulating boundaries with respect to temperature perturbations
are exact. As noticed earlier, an increase in the value of Rae is to decrease
Rat c and hence its effect is to hasten the onset of convection.

5 Conclusions

The influence of different types of velocity (rigid or free), temperature
(isothermal or constant heat flux or a general thermal condition at the up-
per boundary) and electric potential (constant electric potential or electric
current) boundary conditions on the onset of electrothermal convection in a
dielectric fluid layer has been analyzed. The resulting eigenvalue problem is
solved numerically using the shooting method and also closed form solution
is obtained using a regular perturbation method when the perturbed heat
flux is zero at the boundaries. The various boundary conditions considered
exhibit significant effects on the instability characteristics of the system and
a more precise control of electrothermal convection is found to be possible
for a certain choice of boundary conditions. Increase in the strength of
vertical alternating current electric field is to facilitate heat transfer and
to hasten the onset of convection while increase in the Biot number delays
the onset of ETC. The results for different velocity boundary conditions are
found to differ only quantitatively and the system is found to be more stable
when both boundaries are rigid, while the free boundaries are the least sta-
ble. Also, the isothermal boundaries induct more stability when compared
to both boundaries insulating with respect to temperature perturbations.
The change in the electric potential boundary condition from constant elec-
tric potential to constant electric current condition at the upper boundary
is to delay the onset of electrothermal convection the most. The effect of
increase in the electric Rayleigh and Biot numbers is to decrease the size
of convection cells.
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