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Abstract Transverse effective thermal conductivity of the random uni-
directional fibre-reinforced composite was studied. The geometry was circu-
lar with random patterns formed using random sequential addition method.
Composite geometries for different volume fraction and fibre radii were gen-
erated and their effective thermal conductivities (ETC) were calculated.
Influence of fibre-matrix conductivity ratio on composite ETC was investi-
gated for high and low values. Patterns were described by a set of coordina-
tion numbers (CN) and correlations between ETC and CN were constructed.
The correlations were compared with available formulae presented in liter-
ature. Additionally, symmetry of the conductivity tensor for the studied
geometries of fibres was analysed.
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Nomenclature
a —  fibre radius, m
A ~  area, m®
a/R — ratio of fibre radius to matrix radius
cp — specific heat capacity, J/(kg K)
CN - coordination number
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d — number of dimensions or fibre diameter

ETC — effective thermal conductivity, W/(m K)

f —  volume fraction

fo —  matrix volume fraction

fi —  fibre volume fraction

I —  unit tensor

K — thermal conductivity tensor

k1 — fibre thermal conductivity, W/(m K)

ko —  matrix thermal conductivity, W/(m K)

kefy — effective thermal conductivity (ETC), W/(m K)

kij — thermal conductivity tensor components i,j = x,y, z in any frame of

reference and 4,7 = 1,2,3 in principal frame of reference, W/(m K)

L — composite length, m

N — number of particles/fibres

n — number of element

7 — normal vector

q —  heat flux vector

Gn —  mnormal heat flux ¢, = ¢- 7, W/(m? K)

T — radius, m

R — composite radius, m

RMSE - root mean squared error

RSD — relative standard deviation

T — temperature, K

1% —  volume, m?

Z — coordination number (CN)

Zs — CN calculated for constant neighbourhood regions radius

Za — N calculated for neighbourhood radius equal pair distribution func-
tions’ function first minima

<> —  volume averaging

() or © - modified parameter

Greek symbols

B8 — Bergman’s contrast parameter

(2 — three-point parameter

A — conductivity tensor in principal frame of reference
p — density, kg/m?

o — standard deviation (SD)

1 Introduction

Composite materials are the backbone of modern engineering. Those mate-
rials create plenty of opportunities in many engineering fields by enhancing
mechanical, electromagnetic and thermal properties of construction mate-
rials. From design of light boats to construction of very complicated space
crafts, new composites have growing importance in the whole engineering
design.
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Detailed mathematical description of complex composites involves so-
phisticated formalism like random geometry. A remarkable reference in the
field of random materials is the monograph by Torquato which guides all
relevant research before 2002 and introduces the general theory [1]. Never-
theless, plenty of new research has been published until now.

This paper focuses on description of transport (electric or thermal) prop-
erties of composites reinforced by highly conductive fibres. These properties
depend on such fundamental parameters as composite composition, prop-
erties of the constituents and their distribution in the matrix. The way of
distribution of constituents for the two-constituent media and in the case
when one of the constituents is dispersed in the other constituent — matrix
may be described in a simplified way by the quantity called a coordination
number. In general, the coordination number (CN) is an average number
of neighbourhoods of an object (particle, atom, fibre, etc.) but there is
no one strict definition of this quantity — it depends on the field of in-
terest. For example, in the case of regular three-dimensional cubic array
of atoms (abbreviated as cP) coordination number equals to six — every
atom has bounds with six other atoms. Differently in granular media, for
two-dimensional circular cylinders packing in hexagonal lattice, which is
most dense packing, coordination number equals six. Coordination num-
ber for any other packing structure in two dimensions, random or regular
is bounded by this value [2].

Certain amount of correlations between coordination number and prop-
erties like thermal conductivity are available in the literature. Unfortu-
nately, all the research revised pertains to three dimensional systems as
they are more practical and applicable in engineering [3]. Recently with
development of nanoscience two-dimensional systems become more impor-
tant and applicable.

Most of the research employing CN to random heterogeneous materials
treats about granular media, pebble beds or powders because this number
has significant role in description of their structure [3], however it is rarely
used to describe the composite structures [4]. Moreover, no correlations
between the effective thermal conductivity (ETC) and CN for two dimen-
sional systems and in particular for the random sequential addition (RSA)
packing scheme seem to exist in literature, where the RSA scheme is process
of random adding of fibres one by one into matrix without intersecting oth-
ers and composite boundaries [5]. Traditional attempt to CN as the mean
number of direct contacts does not fulfil its role for the RSA and that is
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why both modified sequential analysis (SA) and pair distribution function
(PDF) integration were further used [2,6]. The coordination number com-
puted by the SA method is a simple sum of CNs for every object in the
population divided by population magnitude [7]. Otherwise, CN calculated
by integration of the pair distribution function is more general approach
based on statistical mechanics where PDF function describes probability
distribution of distances between two particles in an ensemble of particles
[8,9].

The main purpose of this research is to find a correlation between the
coordination number and effective thermal conductivity, taking into ac-
count size of the particles. It seems quite intuitive that the volume fraction
of fibres and the ratio of the conductivities of fibre to matrix (k;/kg) af-
fects mean properties of a composite material as was earlier observed [1,10].
However, it is also well known that this property depends on the geomet-
rical arrangement of constituents. Therefore, we intend to verify if it is
possible to predict effective conductivity knowing only coordination num-
ber. Moreover, it is expected that the size of the fibres has an impact on
the correlation and it should be analysed.

The additional goal was to investigate quantitatively the symmetry of
the conductivity tensor in random composites. If this tensor is symmetric
it can be awaited that the analysed composite is isotropic on the macro-
scopic level. A random distribution of fibres can lead to anisotropy in the
properties especially in case of finite composite where size of particle is
non-negligible. It seems therefore to be important issue because most cor-
relations between ETC and volume fraction assume that the medium is
isotropic.

2 Correlations for the effective thermal
conductivity presented in literature

Not many formulae for the effective thermal conductivity of two-component
media containing randomly located fibres have been presented in literature.
They were used for comparison with numerical results further in the present
paper.

Historically the first and simplest correlation was derived theoretically
by Clausius-Mossotti for small volume fractions [11-13]:

keff . 1+ f5

ko 1—fB"°

(1)
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where Bergman’s contrast parameter § for ky fibre and ky matrix conduc-
tivities respectively, is defined as

k1 — ko
. 2
ko + k1 ()

This formula is valid for statistically isotropic random media with no in-
teraction between fibres taken into account.

Torquato presented another formula based on an expansion in series
versus contrast for two-phase isotropic and disordered media with impene-
trable cylinders or spheres [1,13]:

kepp 14+ (d—1)f18 — (d— 1) fo¢23? 3)
ko L— f1B — (d—1)fo(2?
where d is a number of space dimensions, fy is the volume fraction of the
matrix and f = f; =1 — f; is the volume fraction of the dispersed phase.
Three-point parameter (o is here responsible for microstructure. It was
derived by Torquato and Lado [14] for isotropic equilibrium distribution of
identical hard cylinders in a matrix and given as

Gy = g —0.05707f2% . (4)

8=

Equation (1) can be derived from Eq. (3) by setting (» = 0 and d = 2.
Czapla et al. [11] obtained a formula for the ETC in the form of power
series

ke
% =1+2fB8+2f%6% +4.9843 133 — 6.829f15°
0
+4.2139f° 8% — 0.34626 8% — 0.0688 3 5* + 7.3652 454
—12.4218 % 8* 4 7.0868 6 3* — 0.1463 3 3°
+6.3079 4 8% — 10.4599 £° 8% + 6.7108 5 3°

—0.7996 f38% + 4517485 — 7.8602° 3% + 5.9897 f636 . (5)

It was derived for unidirectional infinite circular cylinders randomly dis-
tributed in a uniform matrix and is claimed to be valid for any concentra-
tion [11]. In order to carry out more general comparison additionally two
approximate formulae for the effective thermal conductivity of composites
with periodic arrays of inclusions were considered, which were derived by
Perrins, McKenzie, and McPherdan [1,15,16], for square lattice:

kepr 28f
ko L+ 1 — Bf —0.30582732 f4 (6)
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and for hexagonal lattice:
k 2
eff _ 14 Bf - 1)
ko 1— Bf — 0.07542252 f

They are assumed to be valid for a relatively low volume fractions of fibres.

3 Composite geometry and way of determination
of the effective thermal conductivity

Heat conduction in the transverse direction (Y-direction — XY-plane) for
infinitely long cylinder composite with cylindrical fibres parallel to Z-axis
was analysed, see Fig.1.

Most of the theoretical research treats composite systems as infinite.
As it is impossible to simulate numerically the infinite media, the simula-
tion techniques are typically applied to a square or circle domain (cube or
sphere in 3D) [1,17]. In case of circular system, there is usually one cen-
tral (‘reference’) particle assumed and, for example, the pair-distribution
function is computed for this particle by generation of many (thousands)
of different distributions of neighbouring particles (geometry realizations),
which are subsequently ensemble averaged. This approach does not give
opportunity to analyse finite random system properties due to preferred
location of the central particle. In the case of square geometry typically
periodic boundary conditions (BC) are applied to simulate infinite struc-
tures. But, the periodicity creates recurrent pattern and it is not obvious
that it ensures proper randomness and isotropy. On the contrary system
investigated in this paper is the finite one in order to analyse the related
effects. The external boundary is circular because authors’ anticipate that,
it is more natural to investigate anisotropy and it has highest inherent level
of symmetry.

Fibres were packed by the random sequential addition (RSA) scheme
[5]. They are added one by one with restrictions that they cannot intersect
with each other and the external boundary. Sample geometry of composite
is shown in Fig. 1.

One hundred twenty such random patterns were created. Three volume
fractions were chosen and analysed f = 0.3, 0.4, and 0.49 with four different
radii of particles assumed, i.e., a/R = 0.04, 0.06, 0.08, and 0.1, where R
is the matrix radius. Different geometries were created for every particular
radius and corresponding volume fraction. The highest volume fraction,
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Figure 1: Example geometry of composite with f = 0.49 and N = 136 particles and
fibres with radius a = 0.6R.

f = 0.49, was chosen as its value is relatively close to saturation limit
[5] for the RSA method (corresponding to ~ 0.55) and due to difficulty
in obtaining higher f in reasonable computational time. Particles radii
were selected arbitrary from relatively large (a/R = 0.1) to relatively small
(a/R = 0.04), where R is the matrix radius.

The effective thermal conductivity (ETC) for random heterogeneous
media is defined in a way similar to the classical Fourier law used in heat
conduction [1,18,19]

(@) = -K-(VT) , (8)

where (g) is the mean heat flux vector, (VT') denotes the mean temperature
gradient, K is the second order effective thermal conductivity tensor while
() denotes the volume averaging procedure. Detailed derivation of ETC
relations is presented in Appendix A. Assuming that temperature gradient
occurs only in Y-direction, the formulae for the non-zero K components
are:

_ —$ay(g-M)dA
kyy = <%_¢5 v ) (9)
= $4x(q-1)dA
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where the volume of composite is V = 7LR? and its length was set as
L = 1.0 in arbitrary units. Scalar g, = ¢ 7 stands for the heat flux on the
outer surface of the elementary surface element of composite. The mean
heat flux was calculated using the simplified numerical formulae:

1 n

() =7 D_anyAA, (11)
=1
1 n

(¢) = qu” TAA (12)
=1

where AA = A/n is a ratio of the total external surface area A = 27 RL to
the n — number of elements on this surface.

The steady state of heat conduction without heat sources with fixed
thermal conductivity of each phase and no contact resistance at the fibre-
matrix interface were assumed in the composite. In order to find the ETC
it was necessary to determine at first the temperature distribution in the
composite solving the Laplace equation and accounting for continuity of
temperature and heat fluxes at the fibre-matrix interfaces [18]:

V2T =0, (13)

where ¢ = 0 for matrix and ¢ = 1 for fibre. The first boundary condi-
tion (BC) on the border between fibre and matrix states that there should
be the same temperature, T¢ ;ns = T1,int, and the second boundary condi-
tion demands continuity of heat fluxes on the interfaces, (ko0T/0n)oint =
(k10T'/On)1 int. The external boundary conditions are formulated in such
a way as to obtain the constant temperature gradient in one direction (Y
or X). This allows to perform simpler computation of the ETC — see Ap-
pendix A. Therefore, for the outer cylindrical region (Fig.1) temperature
distribution obeying the following formula was adopted:

T =Tg+c(VT)-i, (14)

where ¢ is a constant and Ty is the reference temperature and 7 is vector
normal to the surface. For the circular boundary of the composite the
normal vector has the same direction as the vector locating a point on the
composite outer surface with the origin in the circle centre: 7 = #/|F]. To
satisfy the condition that (VT) is the mean temperature gradient in the
composite the constant ¢ should be equal to matrix radius ¥ = R, i.e.,

T=Tg+ (VT)-F. (15)
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4 Correlating the effective thermal conductivity
with the coordination number

The coordination number (CN) is one of the fundamental parameter de-
scribing the geometry in heterogeneous media of any type. In most cases
it is understood as number of direct contact with given particle (atom,
molecule, fibre, etc.). Unfortunately, the RSA packing method of particles
is based on statistical ‘parked’ [1] process and probability of direct contact
of sampled particles tends to zero [8]. In such case it is not feasible to
calculate useful coordination number by counting direct contact of parti-
cles [6,8]. To solve this problem a notion of the neighbourhood area was
introduced. A particle becomes the neighbour when it crosses area of the
neighbourhood.

Two forms of this idea were utilized. The first one was the constant
neighbourhood circular region around every particle with radius equal r/d =
1.5 [2,9] with the corresponding coordination number denoted as Z;. The
second form assumes that the neighbourhood region radius is equal to the
location of the first minimum of the pair distribution function (Xy) and it
was marked by the symbol Z5 [§].

In order to calculate CN, two methods were identified to combine with
the neighbourhood regions described above. The first method was based
on integration of the pair distribution function from zero to the radius of
neighbourhood area [5]. The second method used the sequential analysis
(SA), which is based on simple counting process of particles and calculating
mean numbers of particles in vicinity of the given particle [7].

Detailed description of the methods and their modifications used to
evaluate CN, were described in paper [6]. It was shown there that the
coordination number calculated from integration of the pair distribution
function and the sequential analysis are equivalent for the same neighbour-
hood radius. Therefore, only the SA method was used in the present paper.
Following Eq. (3) the general relationship for the ETC was assumed in the
form
R (65.) (16)

0
where ¢ is the function symbol. Equation (4) defines (s for isotropic ran-
dom distribution of the unidirectional fibres in an infinite medium and this
parameter is function of volume fraction only.

It was shown that volume fraction could be connected with the coordi-
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nation number (CN) for the RSA packing by approximate relation [2]
7, (f) = 6.8898f2 + 4.3608f . (17)

This equation shows that average Z, and f are quantities related explicitly.
It is known that CN (Z,) is responsible for microstructure of the system
similarly as f and (5 and it is possible that those quantities are coupled.
Nevertheless, it is not obvious if such coupling exists in any conditions.

An attempt to find out what influence the CN exerts on the ETC in the
finite system and therefore to figure out what conditions should be met to
consider the system to be infinite were analysed in this paper. Development
of the respective correlations was difficult and required some compromises.
First of all, it was assumed that the general form of expression for the
ETC, corresponding to Eq. (3), is valid because it reduces to Clausius-
Mossotti relation (Eq. (1)) for small volume fractions. Hence, only the
three-point parameter (2 was modified. Secondly the CN (Z;) was used as
microstructure parameter and introduced into modified (;. Moreover a/R
was added to the new relation for (5 to introduce finite size effects on the
ETC of the composite. Moreover, it was expected that new expression for
the ETC becomes equivalent to Eq. (3) when system size becomes infinite
relative to fibre dimension (a/R — 0). The modified three-point parameter

( was sought in form

G- (5.208) . (18)

where ® is the function symbol. It should be noted that in the proposed
correlation not only a/R and Z, instead of f were used but also the pa-
rameter 8 was introduced as it was noticed that it had some effect on the
results.

5 Symmetry of the effective thermal conductivity
tensor

The system analysed in this work, due to unidirectional fibre alignment,
has monoclinic symmetry [1]. Therefore, anisotropy of the ETC can be ex-
pected only in XY-plane — Fig. 1. Hence the effective thermal conductivity
tensor can be expressed as

kuw kuy O
K=| ky ky 0 | . (19)
0 0 k.
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If additionally, kyy= ks», the composite becomes transversely isotropic
[1]. In the ideal case of radially infinite (in XY plane) system with a ran-
dom distribution of unidirectional fibres it should be transversely isotropic.
Simulations were performed to investigate if the analysed composites with
relatively large fibres distributed in the matrix according to the RSA could
be described in terms of simpler symmetry as transversely isotropic [1].

In physical systems, thermal conductivity tensor must be symmetric
so non-diagonal components should obey the condition k;; = kj;, where
i,7 = x,y,z [1,20]. Additionally, due to the 2nd law of thermodynamics,
the matrix formed from tensor components should be positive definite so
all of its eigenvalues should be positive [1]. For simulations presented here
possibility of occurrence of nonphysical rotational heat flux as an effect of
numerical or methodology errors have been taken into account.

Generally, tensor K can be decomposed into the symmetric (k;;) and
anti-symmetric (kf;) parts by transformations [20]

ks, = kuths
ka _ gy Ji
iy T 2 ’

and after such transformation (K = K* + K¥)

kew key O ks, kS, O 0 k2, 0
kyo Ky O | =]k, K, O |+| k%Y 0 0. (21)
0 0 ke 0 0 kK, 0 0 0

The symmetric part K° can be diagonalized by tensor P and therefore
after multiplication both sides of Eq. (19) by this tensor sides the following
decomposition is obtained:

A=P 'KP =P ! (K:4K*)P =P 'K*P + P 'K°P = AS+A* | (22)

where P is invertible matrix with eigen-vectors of K® as columns, A® is a
diagonal tensor and A® is a non-diagonal tensor. The thermal conductivity
tensor after diagonalization using P matrix was adjusted to the monoclinic
symmetry and assumes the form

kirn 0O 0 0 ki O
A= 0 koo 0 + | — k1o 0 O . (23)
0 0 kss 0 0 0
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The anti-symmetric component of the tensor should disappear for physical
system as it leads to occurrence of the spiral heat flow, which was not ob-
served experimentally [20].

In order to analyse the symmetry of the conductivity tensor it is re-
quired to find k,, and k,, components. Instead of constant tempera-

ture gradient in Y-direction (%—2) also gradient in X-direction is applied

oT T . .
(VT) = [ <W> 00 } leading to new equations for the ETC compo-
nents:

ko = — ffzé; i)dA (25)

6 Numerical procedure an materials

Typical heat transfer simulations requiring solution of partial differential
equations are conducted by finite element method (FEM), finite differ-
ence method (FDM) or finite volume method (FVM). Nevertheless, those
methods have limited numerical capabilities when both many boundary
conditions (BC) and complex geometry are applied. Problems with these
issues especially appear in analysis of complex structures like porous or
granular media. What is remarkable even for calculations performed here,
for two dimensional systems such complications appeared. Plenty of recent
works emphasis on using new computational methods like lattice Boltz-
mann method (LBM) which allows creating complicated BC without huge
increase in computational time [21,22]. Nevertheless, in this work the pop-
ular and widely proven FVM code Fluent has been used [23].

Triangular unstructured mesh was used with similar mesh size for every
case. Mesh grids parameters were calculated by computer code and then
used in automatic generation of input file for Gambit 2.4.6 software [24].
Such mesh was satisfactory for small number of particles (Fig. 3) but qual-
ity was poorer for huge number of particles (Fig. 2).

Creation of mesh was problematic because of the appearance of very
small distances between particles and between particles and boundary. The
most troublesome was possibility of occurrence of direct (or almost direct)
contact between particles. In such case automatic generation of mesh was
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dom methods like RSA probability of perfect contact tends to zero [8], so
penalty on calculations of conductivity due to loss of contact effects should
be much smaller than for patterns generated by other packing methods
where direct contact is more common.

In spite of the undertaken actions to avoid it, the problem with mesh
generation still exists (Fig. 2). In space between close particles there are
not enough mesh elements to perform calculations with enough high accu-
racy. The example of mesh for low particle density (Fig. 3) reveals denser
mesh between particles but still some particles are very close to boundary
and there are few layers of mesh elements. The obvious solution would be
to create finer mesh but it will demand manual mesh creation or using of
more sophisticated algorithms to create the input file.

Materials making the composites were chosen arbitrary. The fibres were
assumed to be from diamond with conductivity 2000 % Two types
of a matrix were considered, one of copper (Cu case) with conductiv-
ity 387.6 %, relatively high compared to fibres (ki/kg = 5.16, SBcy =
0.675322) while the second one from magnesium (Mg case) with relatively
low conductivity 7.82 % compared to fibres (k1/ko = 255.75, By, =
0.99221).

7 Results

For every particular case with given f, a/R, k/ko numerical data contained
ten random geometries and altogether, 120 different geometrical patterns
and 240 cases were studied. The root mean squared error (RMSE) was
used as a quantitative indicator of deviation of numerical data from the
proposed correlations dependent both on the fibre volume fraction and co-
ordination number.

Numerical data for high and low conductivity ratio (Mg or Cu, (k1 /ko))
was compared with formulae given by Torquato, Czapla, and Claussius-
Mossotti (C-M) — Egs. (3), (5), and (1), respectively. Results are pre-
sented in Fig. 4 with additional curves for regular structures Eq. (6) and
(7). Moreover, Tab. 1 presents the RSME between values obtained from
simulation and the mentioned formulae.

It can be observed that the RMSE (Tab. 1) for all cases increases with
the fibre size and conductivity ratio. For the same particle size and differ-
ent (ki/ko) it could be even one order of magnitude higher. For different
fibre size, the RMSE can change by a factor of six.
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Figure 4: Effective thermal conductivity versus volume fraction. Comparison of numeri-
cal data for different particle size with analytical formulae for fibre to matrix
conductivity ratio: a) k/ko = 5.16, b) k/ko = 255.75.

Table 1: Discrepancy between dimensionless ETC numerical data and values from an-
alytical expressions (RMSE values) for different dimensionless fibre size (a/R)
and fibre/matrix thermal conductivity ratio. Last row presents RMSE for data
when fibre size is not taken into account.

RMSE Cu RMSE Mg
Torquato ‘ Czapla ‘ C-M Torquato ‘ Czapla ‘ C-M

a/R

0.04 0.0059 0.0055 | 0.0254 0.0351 0.0919 | 0.1817
0.06 0.0054 0.0087 | 0.0303 0.0603 0.1207 | 0.2110
0.08 0.0084 0.0117 | 0.0323 0.0734 0.1343 | 0.2242
0.10 0.0168 0.0212 | 0.0426 0.18021 0.2421 | 0.3311
all 0.0102 0.0131 | 0.0332 0.1033 0.1579 | 0.2436

Table 2 presents the dimensionless effective thermal conductivity and co-
ordination number and their respective standard deviations averaged over
all fibre sizes as a function of fibre volume fraction. In the case of the
ETC standard deviation (o(k/kp)) increases with the fibre volume fraction
for both high and low conductivity ratio (k1/k2). It means that data are
more dispersed for higher volume fraction and it can be observed in Fig.
4. Remarkably, the standard deviations for CNs (Tab. 2, 0(Z4)) decrease
with increasing mean CN (and increasing volume fraction) so CNs disper-
sion lowers. Although, for high conductivity ratio standard deviations for
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the mean effective thermal conductivity data (Tab. 2) are few times higher
than for low conductivity.

Table 2: Mean values (fibre size averaged) of the dimensionless effective thermal conduc-
tivity, and coordination number with their respective standard deviations for
different fibre volume fractions.

I [Fen][-@[Few]H] 7 [

0.30 | 1.52980 | 0.007 1.9605 0.0298 | 1.9260 | 0.1624
0.40 | 1.77870 | 0.011 2.5669 0.0710 | 2.8210 | 0.1380
0.49 | 2.05368 | 0.018 3.3967 0.1425 | 3.7347 | 0.1154

Qualitatively results in Tab. 2 are in agreement with the data in Fig. 4 and
Tab. 1 — discrepancy between numerical data and obtained from the ana-
lytical formulae increases for higher fibre volume fraction (f), dimensionless
fibre size (a/R) and fibre/matrix thermal conductivity ratio (k1 /ko).

7.1 Correlation for ETC

Equations (4) and (17) were used to correlate the coordination number
Z4 with the parameter (o. Eliminating the fibre volume fraction between
two formulae and truncating the result to the quadratic term the following
relation for the infinite isotropic two-dimensional composite with random
distribution of unidirectional fibres according to the RSA pattern:

Co (Z4) = —0.0046 Z4 % +0.0579 Zy . (26)

To take into account the finite size of the composite, a correlation parameter
CF was introduced

G=CFG. (27)

Values obtained from Eq. (3) with 52 replacing of (o were fitted to numer-
ical data to obtain the CF parameter. In the limiting case of the infinite
medium (a/R = 0.0), the CF parameter tends to unity and the proposed
formula for the ETC should be equivalent to Torquato’s formula. The pa-
rameter CF was used to obtain a relation between Z, and (». A simple
quadratic polynomial was used as the fitting curve

G=AZi*+BZ. (28)
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The new parameters A and B depend on the dimensionless fibre size (a/R)
and the contrast parameter 5 defined in Eq.(2). Therefore, at first the
quadratic relation between A and B and (a/R) was assumed:

A:C(%>2+D(%>+E, (29)

1%:F(3)2+G(3>+H' (30)
R R ’

where £ = —0.0046, H = 0.0579. Then linear dependence the parameters
C, D, F, G on 8 was proposed, i.e.,

y=I1p+J, (31)

where the symbol y stands for C, D, F, G and I, J are constants given in
Tab. 3.

Table 3: Correlation constants for Eq. (31).

vl c [ o | F | ¢ |

I | 0.2461 | -0.0723 | -2.8127 | 0.8823
J | -0.6632 | 0.0782 8.0196 | -0.9561

Equations (28)—(30) and (31) both with data given in Tab. 3 forms rela-
tions which could be used with Eq. (3) for prediction of the effective thermal
conductivity of the finite size composite with random distribution of the
unidirectional aligned fibres obtained with RSA sampling method inside
circular matrix. In the case of a/R = 0, the following relation holds A=FE,
B=H and Eq. (28) reduces to Eq. (26).

The dimensionless ETC, as a function of the fibre volume fraction, cal-
culated from Egs. (28)—(31) and the relation (17) are plotted in Fig. 5.
In the case of low conductivity ratio (Fig. 5a) all curves practically merge.
For high conductivity ratio and high-volume fractions (Fig. 5b) curves sig-
nificantly diverge. In general, with increasing fibre volume fraction data
becomes more dispersed and precision of the correlation lowers. The respec-
tive RMSE for obtained correlation and numerical data are summarized in
Tab. 4 (a).

The effective thermal conductivity values obtained from numerical treat-
ment and the proposed correlation, given by Egs. (28)—(31) with formula for
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Figure 5: Effective thermal conductivity as a function of fibre volume fraction: a) for Cu;
and b) for Mg matrix. Results given by solid and dashed lines were obtained
by modified parameter Egs. (28)—(31) with CN given by Eq. (17) and the
effective conductivity Eq. (3). Graphical symbols correspond to numerical
data. RMSE for curves is presented in Tab. 4 (a).

Table 4: Root mean squared error (RMSE) for ETC obtained from numerical simulation
and calculated from correlation given by Egs. (28)—(31). RMSE as a function of:
a) fibre volume fraction f with CN given by Eq. (17) (corresponds to Fig. 5); b)
Z4 with application of Eq. (17) (Fig. 6); ¢) applying Z4 calculated by sequential
analysis for every single geometry pattern.

a/R RMSE (a) RMSE (b) RMSE (c)
Cu | Mg Cu | Mg Cu | Mg
0.04 | 0.0053 | 0.0260 | 0.0491 | 0.0553 | 0.0054 | 0.0269
0.06 | 0.0051 | 0.0281 | 0.0733 | 0.0783 | 0.0053 | 0.0296
0.08 | 0.0080 | 0.0447 | 0.1180 | 0.1260 | 0.0078 | 0.0451
0.10 | 0.0098 | 0.0574 | 0.1421 | 0.1530 | 0.0103 | 0.0631

the CN given by Eq. (17) is plotted in Fig. 6. Dispersion between the data
increases with the fibre/matrix thermal conductivity ratio, particle size and
fibre volume fraction. The obtained correlation using the CN seems to be
less accurate than directly using the fibre volume fraction (Fig. 5) as indi-
cated in Tab. 4 (b). Applying coordination numbers computed separately
for every geometrical pattern (not from Eq. (17)) and putting them into
the proposed correlation given by Egs. (28)—(31) leads to better agreement
— see Tab. 4 (c).

06
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Figure 6: Effective thermal conductivity vs. coordination number given by Eq. (3)
with (2 given by Egs. (28)—(31) and coordination number given by correla-
tion Eq. (17). RMSE for those curves is presented in Tab. 4 (b). Graphical
symbols correspond to numerical data.

7.2 Anisotropy and symmetry of the effective thermal
conductivity tensor

In order to investigate symmetry of conductivity tensor (see Eq. (19))
components ky;, ki, and kg, ky, were calculated numerically using Eqgs.
(A19)-(A21), and (A22) for two extreme cases f = 0.49 with a = 0.04R
and f = 0.3 with @ = 0.1R and only for high conductivity ratio case
(k1/ko = 255.75). Components k., kzo were calculated applying temper-
ature gradient in X-direction only and similarly £,, k,, were computed for
temperature gradient in Y-direction only. Resulting conductivity tensor K
was divided into symmetric (K®) and antisymmetric (K?) part, diagonal-
ized (Eq. 23) and finally A was obtained, as described in Sec. 5. Finally,
the principal components for the symmetric and antisymmetric parts of A
tensor were obtained: ko1, k11 and kis, koo.
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Figure 7: Comparison of conductivity tensor A diagonal components of the composite in
the principal directions.

Figure 7 compares diagonal components of the effective thermal conductiv-
ity tensor A in principal frame of reference (Eq. 22), while Fig. 8 shows
non-diagonal (unphysical) components of A tensor related to correspond-
ing diagonal components (a) and matrix conductivity (b).

The root mean squared error (RMSE) was used as quantitative indica-
tor of deviation of numerical data from transverse isotropy. The first case
has f = 0.3 and ¢ = 0.1R and for diagonal elements it has RMSE = 0.0658,
maximal relative difference between k11 and koy was 7.09% (Fig. 7). For
non-diagonal components RMSE=0.0220 and non-diagonals are less than
3% of corresponding diagonals (Fig. 8a). Maximum non-diagonal is less
than 5% of matrix conductivity (Fig. 8b).

In case of high volume fraction (f = 0.49) and small particles (a =
0.04R) diagonal elements RMSE = 0.1041 (Fig. 8a). Maximum relative
difference between k7 and koo was 6.92%. For non-diagonal components
RMSE = 0.0166 (Fig. 8a). Non-diagonal elements were less than 2% of
diagonals (Fig. 8a) and maximum value was about 6% of matrix conduc-
tivity value. Some of the non-diagonal components of conductivity tensors
were negative (Fig. 8), however all matrices as required were positively-
definite [1].
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Figure 8: Comparison of non-diagonal components of conductivity tensor for principal di-
rections of the composite: a) values relative to corresponding diagonal element
of A tensor; b) values relative to matrix thermal conductivity

8 Conclusions

Numerical simulations were carried out in order to determine the effective
thermal conductivity (ETC) of composites reinforced with unidirectional
aligned fibres of circular cross-section. The fibres were randomly distributed
in the matrix with the random geometry generated according to the RSA
pattern. The finite domain of the composite was considered in the form a
circle with a radius R. The way of determination of the effective thermal
conductivity for this shape of the domain and transverse direction to fibre
alignment was presented. The obtained ETC data were ensemble averaged
and correlated with fibre/matrix thermal conductivity ratio and directly
or indirectly (via the coordination number CN) with the volume fraction
of fibres. The results were compared with analytical formulae proposed
by Torquato and Lado — Eq. (3) and Czapla [13] for random and statisti-
cally isotropic distribution of fibres and infinite domain of the composite.
Additionally, comparison was carried out with the well-known Claussius-
Mossotti formula (Eq.(1)) valid for low volume fraction of fibres and not
including mutual interaction of neighbour fibres. In all cases, as anticipated,
the ETC calculated with Eq. (1) under predicted the numerical results. It
was found that for small fibre/matrix thermal conductivity ratio ki /kq the
numerical simulations lead to values very close to these calculated from
Torquato, Eq. (3) and Czapla, Eq. (5), formulae except for high values of
fibre / composite radii ratio (a/R). For high k;/ko values Czapla results
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are significantly different than numerical. The results show that for small
particles size, i.e., small values of a/R ratio, the numerical data are in good
agreement with Eq. (3) but with increasing size of particles and increasing
volume fraction, differences become remarkable. In order to treat the ETC
as property of the composite its value should be independent of the shape
and dimensions of the material. Therefore, the obtained results allow to
evaluate what dimensions should the specimen have, e.g., in experiments,
in order to determine its effective thermal conductivity as the bulk prop-
erty.

The numerically calculated ETC for random composite was also corre-
lated directly with the mean coordination number, i.e., the mean number
of nearest neighbours to the selected fibre — see Fig. 6. Here it was found
that for small values of a/R ratio the correlation is in good agreement with
numerical data but with increasing size of particles and increasing volume
fraction, the correlation seems to be worse. Therefore, it can be concluded
that, the relation between the ETC and the volume fraction of fibres (f1)
seems less sensitive to volume fraction (f) than between the ETC and the
mean coordination number to Zj.

The problem of isotropy of the effective thermal conductivity tensor
were investigated for two extreme cases: f = 0.49, a = 0.04R and f = 0.03,
a = 0.1R. Relatively high difference between components in principal di-
rections (k11 and ko) were observed reaching as high as 7% (Fig. 7). It
leads to the conclusion of some level of anisotropy in fibre distribution for
analysed geometries in XY-plane, i.e., transverse direction to fibres.

The effective thermal conductivity tensor should be symmetric, i.e., its
non-diagonal elements should be zero in the principal frame of reference
(k{5 = —k$; = 0 in Eq. (23)). In calculations presented here this condi-
tion was satisfied within 3% accuracy in relation to the diagonal elements
(Fig. 8a). Possible reason are numerical errors or errors introduced by ap-
plied methods.

Summing up, relatively simple correlations (Eqgs. (28)—(31), Tab. 3), to
apply with Eq. (3), were proposed. They can be used to estimate influence
of existence of composite boundaries on the effective thermal conductivity
of the composite material. Those correlations are equivalent with Torquatos
correlation (Eq. (3)) in the case of very small fibres in comparison to size
of the composite matrix. The use of the correlation between the coordi-
nation number and conductivity is an alternative to the application of the
correlation between conductivity and volume fraction.



www.czasopisma.pan.pl P N www.journals.pan.pl

N

Relation between thermal conductivity and coordination number. .. 43

Acknowledgements This work has been supported by the the Polish
National Centre for Research and Development within European Regional
Development Fund under the Operational Program Innovative Economy
No POIG.01.01.02-00-097/09 ‘TERMET — New structural materials with
enhanced thermal conductivity’.

Received 6 July, 2017

References

1]

2]

3]

[4]

[5]

(6]
(7]
8]

[9]

(10]

(11]

TORQUATO S.: Random Heterogeneous Materials — Microstructure and Macroscopic
Proporties (S. Antman, Ed.), Springer-Verlag, 2002.

SCHREINER W. AND KRATKY K.W.: Computer simulation of hard-disk packings
with spherical boundary conditions. J. Chem. Soc. Faraday Trans. 2(1982), 78, 379—
389.

ANTWERPEN W.V.:, Torr C.D, ROUSSEAU P.: A review of correlations to model
the packing structure and effective thermal conductivity in packed beds of mono-sized
spherical particles. Nucl. Eng. Des. 240(2010), 10, 1803-1818.

PIETRAK K.AND WISNIEWSKI T.S.: A review of models for effective thermal con-
ductivity of composite materials. J. Power Technol. 1(2015), 14-24.

TorQuaTO S., UCHE O.U. AND STILLINGER F.H.: Random sequential addition
of hard spheres in high Euclidean dimensions. Phys. Rev. E, 74(2006), 061308-1—
061308-16.

DARNOWSKI P., FURMANKSKI P., DOMAKSKI R.: Coordination number for random
distribution of parallel fibres. Arch. Thermodyn. 38(2017), 1, 3-26.

JOUANNOT-CHESNEY P., JERNOT J. AND LANTUEJOUL C.: Practical determination
of the coordination number in granular media. Image Anal. Stereol 25(2006), 55—61.

HuerTA A., NauMis G.G.: Role of rigidity in the fluid-solid transition. Phys. Rev.
Lett. 90(2003), 14, 145701-1-14570-4.

LARGO J., SOLANA J.: Theory and computer simulation of the coordination number
of square-well fluids of variable width. Fluid Phase Equilibr. 193(2002), 1-2, 277
287.

RAYLEIGH L.: On the influence of obstacles arranged in a rectagular order upon the
proporties of medium. Phil. Mag. 34(1892) 481-502.

CzAPLA R., NAWALANIEC W., MITYUSHEV V.: Effective conductivity of random
two-dimensional composites with circular non-overlaping inclusions. Comp. Mater,
Sci. 63(2012), 118-126.

FiepLe T., PeseETskay E., OcaHsNE A., Gracio J.: Calculations
of the thermal conductivity of porous media. Materials Science Forum,
DOI:10.4028 /www.scientific.net /MSF.514-516.754, 514:754-758, 01/2006.

TORQUATO S.: Effective electrical conductivity of two-phase disordered composite
media. J Appl. Phys. 58(1985), 10, 3790-3797.



44

www.czasopisma.pan.pl P N www.journals.pan.pl

N

P. Darnowski, P. Furmanski and R. Domanski

(14]

(15]

(16]

20]

(21]

TorQuAaTO S., LADO F., FISHER M.E.: Bounds on the conductivity of a random
array of cylinders. Proc. Royal Soc. Lond. A, 417(1988), 1852, 59-80.

FURMANSKI P.: Heat conduction in composites: Homogenization and macroscopic
behavior. Appl. Mech. Rev. 50(1997), 6, 327-356.

PERRINS W.T., MCKENZIE D.R., MCPHEDRAN R.: Transport proporties of regular
arrays of cylinders. Proc. R. Soc. Lond. A, 369(1979), 1737, 207-225.

HinrICHSEN E.L., FEDER J., JOSSANG T.: Geometry of random sequential ad-
sorption. J. Stat. Phys. 44(1986), 5/6, 793-827.

Farvow S.J.: Partial Differential Equations for Scientist and Engineers. Dover
Pub. 1993.

L1U S., ZHANG Y.: Multi-scale analysis method for thermal conductivity of porous
material with radiation. Multidiscipline Model. Mater. Struct., Emerald, 2(2012), 3,
327-344.

FURMAKSKI P., Gocor. W.: Fundamentals of heat conduction in anisotropic media.
Bull. Inst. Heat Eng. 46(1977).

CHEN Q., WANG M., Guo Z., PAN N.: Irreversibility of heat conduction in the
complex multiphase systems and its application to the effective thermal conductivity
of porous media. Int. J. Nonlin. Sci. Num. 10(2009), 1, 7-16.

WANG M., PAN N.: Modeling and prediction of the effective thermal conductivity of
random open-cell porous foams. Int. J. Heat Mass Tran. 51(2008), 5-6, 1325-1331.

ANSYS FLUENT 13.0.0 User’s Guide, 2010.
Gambit 2.4 User’s Guide, 2007.

MCcQUARRIE D.A.: Mathematical Methods for Scientists and Engineers. University
Science Books Suasalito 2003.

SMITH P.A., TORQUATO S.: Computer simulation results for bounds on the effective
conductivity of composite nedia. J. Appl. Phys. 65(1989), 3, 893-900.

Jorpek H., STREK H.T.: Optimization of the effective thermal conductivity of a
composite. In: Convection and Conduction Heat Transfer, (A. Ahsan, Ed.), InTech,
Rijecka 2011, 197-214.

GLANDT E.D.: Continuity between disorder and order in the sequential deposition
of particles. Chem. Eng. Commun. 19(2005), 2, 1405-1423.

Material Property MatWeb: Proporties of diamond, copper and magnesium 11 2012,
www.matweb.com.

KipaLov S.V., SHAKHOV F.M.: Thermal conductivity of diamond composites. Ma-
terials 2(2009), 2467-2495.

SHINDE S.L., GOELA J.S.: High Thermal Conductivity Materials. Springer, 2006.



www.czasopisma.pan.pl P N www.journals.pan.pl

N

Relation between thermal conductivity and coordination number. .. 45

APPENDIX

A. Derivation of expressions for calculation of components of
the effective thermal conductivity tensor

The effective thermal conductivity for heterogeneous media and slowly
varying, in space and time, temperature distribution is given by the re-
lation similar to the Fourier law [1,18,19]:

(@) =-K-(VT), (A1)

where (¢) is the mean heat flux vector, (VT) is the mean temperature
gradient and K is 3 x 3 thermal conductivity tensor and () denotes volume
averaging procedure [19,20]

(w) = %/deV . (A2)

The analysis starts with ¢® 7 outer product of the vectors ¢ and 7. Gen-
eralized chain rule allows to transform divergence of this product into the
form

V- (Feq)=(Ver) - d+7V-q . (A3)

Outer product of the nabla operator and the location vector is the unit
tensor V® =1, so

V (7o) =fV 9 +q. (A4)

In order to eliminate V - ¢ the energy equation without heat sources was
introduced [25]

oT
—_— . _;: A.
Py +V.-7=0 (A5)
and by combining Eqs. (A4) and (A5) relation for the heat flux is given by

. o . oT
i=v - Fon+7 () (AG)

Volume averaging of both sides of the latter expression and application of
the relation (A1) leads to the formula

<v (7F® ) +F<pcp%—f>> ~ K. (VT) (AT)
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which can be transformed to
1 1 oT
— V(7 — d — =-K - (VT) . A
V/V (7‘®(f)dV+v/Vr<pcpat)dV (VT) (A8)

It is convenient to introduce generalized divergence theorem to replace vol-
umetric integral with surface integral [1]

%4(7@@-1?6114—1—/‘/77(;)%88—1;) AV = —K-(VT).  (A9)

The integrand in the first term on the left hand side of Eq. (A9), taking
r T T
into account fact that ¥ = | ¢ y =z } , q = [ @ Qy - } and 7 =

T
[ Ng Ny N } , can be expressed as

Ty TGy TGz Ny
(FRQ M= |y Y@y yg= |- | ny | =
| ?9z 24y 24z Ny
Ne@a® + NyQyT + N,q x(q - 1)
= | NeQey + nyqy+ n.qy | = | y(@-A) | . (A10)
NapQe?z + NyQyz + N3q:2 z(q- )

If temperature gradient is only applied in Y-direction then
T
_ or
(viy=|o0 (%) o] . (A11)

For the assumed constant value of the mean temperature gradient and the
steady state of heat conduction

or
<8_y> = const . (A12)
or
T 0. (A13)

Finally, taking into account Egs. (A9)—(A11l), (A13) and Eq. (19) the
general equation combining heat flux with conductivity can be written as

SL 3L 3y

) 0
) [dA= ==V |k ky 0 || ()] . (A19)
) 0
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Therefore, according to Eq. (Al):

oT
(qy) Y f MydA = —ky, - <8_y> ) (A15)
oT
=t f @mai= e (Z) g
and hence o
by = — $4y(q-7)dA (A17)
T ’
(%) v
T (E)v
dy

the

- — $a2(q-

q
<8_’£> g ) (A19)
ke = _%;/—T—W . (A20)

B. Examples of temperature distributions in the composite
reinforced with randomly dispersed unidirectional fibres

Some example temperature distribution in the composite for random dis-
tribution of fibres and based on numerical calculations are shown below
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Figure B1. Temperature distribution in composites with r/R=0.04, f=0.49 and 306

particles for: a) k1/ko=255.75, kzzf =3.23; b) for ’;—;:5.16, k;’;f =2.03.

Figure B2. Temperature distribution in composites with r/R=0.1, f=0.3 and 30
particles for: a) k1/ko=255.75, Fert —9.00; b) for 2—;:5.16, kers —1.54.
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