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Investigation of non-Fourier thermal waves

interaction in a solid material
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Abstract In this paper, effects of non-Fourier thermal wave interac-
tions in a thin film have been investigated. The non-Fourier, hyperbolic
heat conduction equation is solved, using finite difference method with an
implicit scheme. Calculations have been carried out for three geometrical
configurations with various film thicknesses. The boundary condition of
a symmetrical temperature step-change on both sides has been used. Time
history for the temperature distribution for each investigated case is pre-
sented. Processes of thermal wave propagation, temperature peak build-up
and reverse wave front creation have been described. It has been shown
that (i) significant temperature overshoot can appear in the film subjected
to symmetric thermal load (which can be potentially dangerous for real-
life application), and (ii) effect of temperature amplification decreases with
increased film thickness.
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Nomenclature

cp – specific heat capacity at constant pressure, J/(kgK)
cv – volumetric heat capacity, J/(m3K)
f – time step number
i – spatial location
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L – film thickness, m
q(x, t) – heat flux
q(x, t) – x-component of heat flux, W/m2

T (x, t) – temperature, K
Tt – total duration time, s
t – time, s
x – space variable, m

Greek symbols

α – thermal diffusivity, m2/s
λ – thermal conductivity, W/(K m)
ρ – density, kg/m3

τq – relaxation time, s

Subscripts

i – spatial location
f – time level

1 Introduction

A heat wave, also known as a thermal wave, is a subject of an extensive
research in thermal science and engineering. In the recent decades, one can
observe a growing usage of the ultrashort-pulsed lasers (with pulse dura-
tions of the order of subpicoseconds to femtoseconds) in practical applica-
tions. At present, the thermal wave phenomenon is being applied to the
fields of industrial laser heating processes, i.e., welding or non-destructive
examinations, specifically the grain size and thickness of the thin metal de-
posits [1]. Special attention is also given to laser micromachining [2], pat-
tering [3] as well as synthesis and processing in the thin film deposition [4].
In medicine, a heat wave propagation mechanism is being investigated [5]
with some practical applications, like minimally intrusive operational tech-
niques, which are based on heating biological tissue in a localized and safe
way [6]. In chemistry, the elution chromatography is one of the examples
where thermal wave phenomena is being studied [7].

Ultrashort-pulsed lasers possess exclusive capabilities in limiting the
undesirable spread of the thermal process zone in the heated sample [8,9].
This advantage is widely known and it gets attention of researchers across
different fields.

In the current paper, authors aim to investigate thermal effects which
occur during waves interactions between each other. The numerical solu-
tion of the hyperbolic heat conduction equation is carried out for various
geometrical configurations. The discussion on consequences for the mate-
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rial subjected to a symmetric step change of temperature is presented in
the summary section.

2 Non-Fourier equation formulation

If the time of the interaction between the laser and the solid body becomes
extremally small, Fourier heat conduction equation (HHC) does not provide
accurate results. This is because of lack of a local thermal equilibrium [10].
In 1958 a hyperbolic heat conduction equation was proposed by Catteneo
[11] and independently by Vernotte [12]. The hyperbolic equation is based
on a relaxation model for heat conduction which accounts for finite thermal
propagation speed. Relaxation concept addresses Fourier law’s paradox of
instantaneous heat propagation1. In the heat conduction mechanism, the
thermal relaxation time plays a primary role in distinguishing the domain
to be wave dominated or diffusion dominated [13].

The classical Fourier law can be written as follows:

q (x, t) = −λ∇T (x, t) , (1)

where q is the heat flux and λ is a thermal conductivity of material. As
mentioned, this equation has been modified to take into account a relax-
ation phenomenon

q (x, t+ τq) = −λ∇T (x, t) , (2)

where τq is a relaxation time, which is a parameter that takes in to account
the finite velocity of a thermal wave.

The classical expression for the energy equation can be written as

cv
∂T (x, t)

∂t
= −∇q (x, t) , (3)

By introducing relaxation time in the first order approximation of the
Eq. (2), we can derive formula as follows:

q (x, t) + τq
∂q(x, t)

∂t
= −λ∇T (x, t) (4)

1The paradox of instantaneous heat propagation, is not physically reasonable because
it clearly violates one important principle of the Einstein’s special theory of relativity:
the velocity of light in vacuum is the greatest known speed and has a finite value of
2.9×108 m/s [14].
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or

−q (x, t) = λ∇T (x, t) + τq
∂q (x, t)

∂t
. (5)

If we use this expression in the formula (3) then energy equation can be
written as

c
∂T (x, t)

∂t
= τq

∂

∂t
[∇q(x, t)] + ∇ [λ∇T (x, t)] . (6)

When substituting −∇q by c(∂T/∂t) we obtain

cv

[
∂T (x, t)

∂t
+ τq

∂2T (x, t)

∂t2

]
= ∇ [λ∇T (x, t)] . (7)

If additionally, we define thermal diffusivity, which is

α =
λ

ρcp
, (8)

where ρ is the density and cp is the volumetric heat capacity, we obtain
hyperbolic heat conduction equation given as

∂T (x, t)

∂t
+ τq

∂2T (x, t)

∂t2
= α

∂2T

∂x2 . (9)

3 Numerical method

Let consider a very thin film with thickness considerably smaller than the
length, as shown in Fig. 1. Geometrical configuration allows us to take a
1D approach. The side walls are suddenly heated with the same, constant
temperature, which implies boundary conditions:

x = 0 : T (x, t)|x=0 = 100 . (10)

x = L : T (x, t)|x=L = 100 . (11)

Convection and radiation are assumed to be negligible. The film is main-
tained at a uniform, initial temperature T = 0, thus initial conditions for
t = 0 can be written as

T (x, t)|t=0 = 0 . (12)

∂T (x, t)

∂t

∣∣∣∣
t=0

= 0 . (13)
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Figure 1: Considered domain with coordinate system: τL/τR – left/ride side wall tem-
perature.

A finite difference method with an implicit scheme has been employed to
solve this problem numerically. Let define a time discretization as

0 = t0 < t1 < . . . < tf−1 < tf < . . . < tF = Tt (14)

and △t = tf − tf−1, thus tf = f△t, where f is a time step number and
F = Tt/∆t. Furthermore, 1D space domain of x ∈ [0, L], where L is total
length of the domain and N is number of nodes, can be defined as

0 = x0 < x1 < . . . < xi−1 < xi < . . . < xN = L (15)

and △xi = xi+1 − xi, assuming constant distance between spatial nodes
we can consider △x = L/N , and then xi = x0 + i△x (i = 1, . . . , N).
Finite differences for derivatives of hyperbolic heat conduction Eq. (9) can
be written as follows. First order time finite difference

∂T (x, t)

∂t

∣∣∣∣
tf

→tf+1

xi

∼=
T
(
xi, t

f+1
)

− T
(
xi, t

f
)

△t
. (16)
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Second order finite difference of time can be written as follows:

∂2T (x, t)

∂t2

∣∣∣∣∣

tf
→tf+1

xi

∼=
T
(
xi, t

f+1
)

(△t)2 −
2T
(
xi, t

f
)

(△t)2 +
T
(
xi, t

f−1
)

(△t)2 . (17)

For the implicit scheme, adapted in this study, second order spatial variable
finite difference can be defined as

∂2T (x, t)

∂x2

∣∣∣∣∣

tf
→tf+1

xi

∼=
T
(
xi+1, t

f+1
)

(△x)2 −
2T
(
xi, t

f+1
)

(△x)2 +
T
(
xi−1, t

f+1
)

(△x)2 . (18)

If we denote T f
i = T (xi, t

f ), then the finite difference approximation of
Eq. (9) can be written in the form

T f+1
i − T f

i

△t
+ τq

T f+1
i − 2T f

i + T f−1
i

(△t)2 = α
T f+1

i−1 − 2T f+1
i + T f+1

i+1

(△x)2 . (19)

Above equation is applicable to the inner nodes of the computational do-
main, i = 1, . . . , N−1. For the boundary nodes temperature value is being
derived directly from boundary conditions:

T f+1
0 = 100 , f = 1, . . . , F − 1 , (20)

T f+1
n = 100 , f = 1, . . . , F − 1 . (21)

Equations (19), (20), and (21) create a system of algebraic equations, which
can be denoted by means of matrix A and vectors B and T f+1

AT f+1 = B , (22)

which is then solved by the Gauss elimination method.
Throughout numerical calculations, the number of elements of the grid is

selected to be between 1000 and 3000 to obtain a grid independent solution.
Material properties of the film are assumed to be as follows: density

ρ = 8000 kg/m3, specific heat capacity cp = 500 J/kgK, and thermal
conductivity λ = 40 W/K m [15].

4 Results

Numerical calculations have been carried out for three geometrical config-
urations with various film thicknesses: 10 , 20, and 30 × 10−9 m. All the
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three cases have been subjected to the identical boundary conditions, a sym-
metrical temperature change on both sides (described in the previous sec-
tion). For each case, the same relaxation time is considered, τq = 10−11 s.
Duration time has been set arbitrary for each geometrical calculation to
investigate maximum temperature in the vicinity of film walls. Time his-
tory for the temperature distribution variations for each investigated case
is shown in Fig. 2.

Figure 2: Temperature distribution variation. Investigated cases: 10, 20,
and 30 ×10−9 m film thickness.

After the boundary conditions on both sides are imposed, a set of wave
fronts is being created in the domain. Thermal wave propagation starts
to advance toward centre. The propagation front separates the thermally
affected zone from the thermally undistributed region. Once wave fronts
arrive at the centre of the film they collide with each other causing sud-
den and significant temperature increase in this region. After that, revers
thermal wave fronts emerge and they begin to advance toward side walls.
Once reverse waves reach boundary region – for all the investigated cases –
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the temperature at both heated walls exceed the imposed wall temperature
creating temperature overshoot.

Performed numerical study predicts the existence of thermal waves pro-
viding both the amplification and shape. Large reverse waves are seen
in case of thinner films. For the case of 10×10−9 m thickness, maximum
temperature registered at the control surface – placed 1×10−9 m from the
side wall – is equal to 161 K (see Fig. 2). Compared to 100 K imposed as
a boundary condition, temperature overshoot in the vicinity of side walls is
equal to 61 K. For the thicker, 20×10−9 m film, temperature at the control
surface raised up to 136 K, while for the 30×10−9 m case maximum temper-
ature was only 121 K. Figure 3 presents values of maximum temperature
amplifications next to the side walls in function of time. The plot shows
effect of temperature overshoot decrease with film thickness increase.

Figure 3: Maximum temperature peak value at control surface. Investigated cases:
10, 20, and 30×10−9 m film thickness.

In the central part of the film the temperature increases rapidly and then
decreases steadily. Next to the side walls temperature overshoots appear
as temporary peaks. An example can be seen in Fig. 4, which presents
time history of heat propagation process for 10×10−9 m film. Reverse heat
waves create temperature overshoots next to the side walls periodically.
Each temperature peak is obviously lower than its predecessor as the en-
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Figure 4: Time history of heat propagation process. Control point located next to the
side wall. Case: 10×10−9 m film.

tire system moves toward equilibrium state. In Fig. 5 we can see sudden
temperature changes across the 10 nm film, with temperature oscillations
over temperature equilibrium value of 100 K.

Figure 5: Temperature distribution history across film thickness. Case: 10×10−9 m film.

In Fig. 6 we can see a detailed evolution of the thermal waves for the 10 nm
film thickness case. If we neglect wave front itself and consider only non-
wave part of temperature distribution along film thickness, we can observe
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temperature oscillation over 100 K as well. During that process energy is
being transferred to the system and from the system, due to the positive
or negative sign of the thermal gradient next to the side walls.

Figure 6: Thermal waves evolution over time. Arrows show waves propagation directions.
Case: 10×10−9 m film.

5 Summary

A numerical study on heat waves interaction has been performed. The
non-Fourier, hyperbolic heat conduction equation is solved using a finite
difference method with an implicit scheme. Special consideration has been
given to heat transfer behaviour before and after symmetrical collision of
wave fronts coming from two sides of a film. It has been shown that signifi-
cant temperature overshoot can appear in the film subjected to symmetric
thermal load at two side walls. Effect of temperature amplification decrease
with increased film thickness – for a given thermal relaxation time – has
been revealed.
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Results of the presented study suggest that temperature overshoot phe-
nomena in a very thin film can be potentially dangerous for real-life applica-
tions, where strict temperature limits are imposed. However, temperature
amplification effect can be significantly reduced by increasing distance be-
tween side walls and forcing wave fronts to decrease (or disappear) when
they arrive at the centre of the film and then side walls.
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