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Abstract
The accuracy and reliability of Kalman filter are easily affected by the gross errors in observations. Although
robust Kalman filter based on equivalent weight function models can reduce the impact of gross errors on
filtering results, the conventional equivalent weight function models are more suitable for the observations
with the same noise level. For Precise Point Positioning (PPP) with multiple types of observations that
have different measuring accuracy and noise levels, the filtering results obtained with conventional robust
equivalent weight function models are not the best ones. For this problem, a classification robust equivalent
weight function model based on the t-inspection statistics is proposed, which has better performance than
the conventional equivalent weight function models in the case of no more than one gross error in a certain
type of observations. However, in the case of multiple gross errors in a certain type of observations, the
performance of the conventional robust Kalman filter based on the two kinds of equivalent weight function
models are barely satisfactory due to the interaction between gross errors. To address this problem, an
improved classification robust Kalman filtering method is further proposed in this paper. To verify and
evaluate the performance of the proposed method, simulation tests were carried out based on the GPS/BDS
data and their results were compared with those obtained with the conventional robust Kalman filtering
method. The results show that the improved classification robust Kalman filtering method can effectively
reduce the impact of multiple gross errors on the positioning results and significantly improve the positioning
accuracy and reliability of PPP.
Keywords: Kalman filter, classification robust, equivalent weight function, precise point positioning.
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1. Introduction

Precise Point Positioning (PPP) is a high-precision positioning solution based on precise
ephemeris and clock products, using both pseudo-range and carrier phase observations [1].
Because only one dual-band receiver can achieve decimetre or centimetre level positioning
accuracy, it has been widely applied in the field of surveying and mapping [2, 3]. However, the
performance of PPP is not always stable in practice due to the observation data quality and gross
errors in observations. In order to ensure the accuracy and reliability of the positioning results, it
is generally necessary to pre-process the observation results so as to remove outliers in pseudo-
range and phase-range observations [4, 5]. Nonetheless, there may still be some gross errors in
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observations that cannot be detected. When the observations contain gross errors at a certain point
in time, it will cause a jump at this point and influence the subsequent results of Kalman filter
[6]. In view of this situation, a robust Kalman filter is developed to reduce the impact of gross
errors on the filtering results by constructing an equivalent weight matrix according to equivalent
weight function models [6–9]. In order to obtain an accurate equivalent weight matrix, there
are many weight function models proposed, including Huber weight function, Danish weight
function, IGG-I, IGG-II and IGG-III weight functions etc. [9–12]. However, the conventional
robust equivalent weight function models generally use the standardized residual as the test
statistics and the empirical value as the critical threshold. They are more suitable for observations
with the same accuracy or noise levels and have a good robustness [9]. For PPP with multiple types
of observations that have different measuring accuracy and noise levels, the filtering results based
on conventional robust equivalent weight function models are not the best ones [8]. The reason is
that the random characteristics of different types of observations are different and their a posteriori
residuals are different as well. The standardized residuals are normalized values of a posteriori
residuals, which is related to the a priori weights of the observations. When the a priori weights
of different types of observations are not precise, the distributions of standardized residuals of
different types of observations will not be the same. Thus, the equivalent weight matrix calculated
by the conventional robust equivalent weight function models will not be accurate [8]. On the
other hand, choosing an empirical value as the detection threshold for the equivalent weight
model may cause a significant risk that the weights of some healthy observations are reduced
or the observations with gross errors cannot be detected at a certain point in time [13, 14]. To
overcome those problems of the robust Kalman filter based on the conventional robust equivalent
weight function models for PPP, a classification robust Kalman filter based on the classification
robust weight function model is proposed [15]. The new robust weight function model using
the t-inspection statistics, and the equivalent weight matrix of different types of observations are
calculated separately. The robust Kalman filter based on the classification robust weight function
model has a better performance than that based on the conventional robust weight function models
in the case of no more than one gross error in a certain type of observation. However, in the case of
multiple gross errors in a certain type of observation, the performance of the robust Kalman filter
based on the two kinds of robust weight function models is barely satisfactory. To address this
problem, an improved classification robust Kalman filtering method is further proposed in this
paper. Simulation tests were performed based on the GPS/BDS data to verify the effectiveness of
the proposed method.

In the following sections, we first introduce the basic models of PPP and robust Kalman
filtering estimation, then give the conventional robust weight function model and the classification
robust weight function model, and introduce an improved classification robust Kalman filter
method. Finally, we analyse the performance and problems of the conventional and classification
robust weight function models, and verify the effectiveness and evaluate the performance of the
improved classification robust Kalman filtering.

2. Basic models of precise point positioning

There are many observation models developed for PPP, including the ionosphere-free (IF)
combination model, Uofc model, un-combined model [1, 16–18]. Because the IF combination
model can eliminate nearly all of the ionospheric propagation delays by a combination of dual-
frequency data with a simple model, it has been widely used as the observation model for PPP [19].
Moreover, in order to obtain the optimal solutions, Kalman filter is usually used to estimate the
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unknown state parameters, such as position, velocity, receiver clock bias [5]. The IF combination
observation model and the EKF (extended Kalman filter)-based parameter estimation method for
PPP are described in detail below.

2.1. Ionospheric-free combination observation model

In Precise Point Positioning, where dual-band code pseudo-range and phase-range observa-
tions in the ionosphere-free combination are generally used, a simplified IF combination obser-
vation model is as follows [1, 2]:

PIF = ρ + c
(
dtr − dts

)
+ T + εPIF , (1)

ΦIF = ρ + c
(
dtr − dts

)
+ T + λIFNIF + εΦIF , (2)

where PIF is the IF combination code pseudo-range observation and ΦIF is the corresponding IF
combination phase-range observation; ρ is the geometric distance between the receiver and the
satellite; c is the vacuum speed of light; dtr and dts are the receiver and satellite clock offsets;
T is the tropospheric delay; λIF is the IF linear combination carrier wavelength and NIF is the
corresponding float carrier-phase bias; εPIF and εΦIF are the code noises of pseudo-range and
phase-range observations in the IF linear combination, respectively.

According to the observation model, there are at least two types of observations in PPP,
including pseudo-range and phase-range observations. Generally, for the GPS, the precision
values of P code and C/A code pseudo-range are about 0.3 m and 3 m, and the precision value of
phase-range is about 1∼2 mm [19]. Therefore, the phase-range observation has a higher accuracy
than the pseudo-range observation.

2.2. Parameter estimation based on extended Kalman filter

According to (1) and (2), the observation equation is a non-linear function that is related to
the receiver’s three-dimensional position, so the measurement model for PPP is non-linear. The
state and measurement model for Kalman filter can be described by:

yk = h(xk ) + vk , (3)

xk = Fk,k−1xk−1 + wk , (4)

where h(x) is an observation model function vector; Fk,k−1 is a transition matrix; wk and vk are
usually uncorrelated white noise vectors of the system and the measurement respectively, and the
corresponding covariance matrix is obtained as:

cov(wk,wk ) = Qk , cov(vk, vk ) = Rk , (5)

where Qk is a system noise covariance matrix; Rk is a measurement noise covariance matrix. The
unknown state vector x for the PPP is set as:

x =
(
r, dtr, Zr, N1

IF, N2
IF, . . . , Nn

IF

)T
, (6)

and the observation vector y is defined by the IF linear combination pseudo-range and phase-range
observations as:

y =
(
P1

IF, P2
IF, . . . , Pn

IF, Φ
1
IF, Φ

2
IF, . . . , Φ

n
IF

)T
, (7)

where r = (x, y, z) are the receiver’s coordinates and velocity in the Earth-Centred-Earth-Fixed
(ECEF) frame; Zr is the zenith total delay (ZTD).
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By using EKF, the state vector x̂ for unknown model parameters and its covariance matrix Px̂

can be estimated with the measurement vector yk at an epoch tk by [21]:

x̂k = xk + Kk
(
yk − h(x̂k )

)
, (8)

Px̂k = (I − KkHk )Pxk , (9)

Kk = Pxk HT
k

(
HkPxk HT

k + Rk

)−1
, (10)

xk = Fk,k−1x̂k−1 , (11)

Pxk = Fk,k−1Px̂k−1F
T
k,k−1 + Qk,k−1 , (12)

where xk and Pxk are the time-propagated state estimates and covariance; Rk is the measurement
noise covariance matrix; Hk = ∂h(x)/∂x|x=x̂ is the matrix of partial derivatives; Kk is the Kalman
gain matrix.

3. Robust Kalman filter

For the standard Kalman filter, the results of state estimation are extremely sensitive to the
gross errors in observations, so that it shows its instability and even divergence. According to (8),
when the measurement vector yk contains gross errors, the state estimation will be influenced by
the gain matrix Kk . In order to reduce the impact of gross errors on filtering results, the robust
estimation is developed by constructing an equivalent weight matrix of observations [6–9].

According to the theory of robust estimation, the recursive solution of state parameters
calculated by (8) can be rewritten as [9]:

x̂k = xk + Kk
(
yk − h(xk )

)
, (13)

where Kk is the Kalman gain matrix based on the equivalent weight matrix of observations, i.e.:

Kk = Pxk HT
k

(
HkPxk HT

k + Rk

)−1
, (14)

Rk is the equivalent covariance matrix of observations, which is usually obtained by multiplying
Rk by a weight matrix P as follows:

Rk = Rk · P. (15)
In the above equations, P is calculated by the equivalent weight function model. In the

observation-independent case, P is a diagonal matrix. The variances of pseudo-range and phase-
range observations are usually determined by the stochastic model based on elevation angle [22]:

σ2 = FsR2
r

(
a2
σ + b2

σ/ sin E2
)
+ σ2

eph + σ
2
ion + σ

2
trop + σ

2
bias , (16)

where Fs is a satellite system error factor (GPS:1, BDS:2); Rr is a code/carrier-phase error ratio
(GPS, BDS MEO and IGSO:100, BDS GEO: 300); the parameters aσ and bσ are carrier-phase
error factors, which are usually set to 0.003; E is a satellite elevation angle; σeph , σion, σtrop and
σbias are standard deviation of ephemeris and clock, ionosphere correction model, troposphere
correction model and code bias errors, respectively. The covariance matrix is constructed by:

Rk = diag
{
σ2

PIF
, σ2

ΦIF

}
, (17)

where σ2
PIF

and σ2
ΦIF

are covariance matrices of the IF combination pseudo-range and phase-range
observations and they are diagonal matrices.
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3.1. Conventional robust equivalent weight function model

In order to obtain the equivalent weight matrix P, many equivalent weight function models
have been developed, including Huber weight function, Danish weight function, IGG-III weight
function [9–12]. In general, IGG-III is a good choice to use for constructing the equivalent weight
matrix and the function model is expressed as follows [9]:

Pi =


1 |vi | ≤ k0

|vi |
k0

(
k1 − k0

k1 − |vi |

)2
k0 < |vi | ≤ k1

∞ |vi | > k1

, (18)

where k0 and k1 are constants which are found to have the values k0 = 1.0∼2.0, k1 = 3.0∼8.0.
Pi is the diagonal element of the weight matrix P. vi is the standardized residual corresponding
to the measurement residual vi of the observation yi , which can be calculated by the following
equation:

vi = vi
/√

σ̂2
0Qvivi , (19)

Qvivi is the diagonal element of the covariance matrix Qv of measurement residuals v and

Qv = Rk −HkPx̂k HT
k , (20)

σ̂2
0 is the estimate of unit weight variance. According to the theory of generalized least squares,

it can be calculated by the following equation [23]:

σ̂2
0 =

vTP v + vTx P−1
x̂ vx

n
=

ξTQ−1
ξ ξ

n
, (21)

where

ξ = yk − h
(
xk

)
, (22)

Qξ = Rk +HkPxk HT
k , (23)

vx and ξ are the state residual vector and the predicted residual vector (innovation), respectively;
Qξ is the covariance matrix of ξ ; n is the number of measurements.

The conventional equivalent weight function model described by (18) is constructed by the
standardized residual statistics and the critical values are often established by experience. It has
a good performance for observations with the same accuracy and has been verified and widely
used. However, its robustness is not optimal for GNSS PPP with multiple types of observations
with different measuring accuracy [11]. That is because the conventional robust equivalent weight
function model suggests that all types of observations have the same unit weight variance, although
they are actually different. Thus, the distributions of the standardized residuals calculated by (19)
for different types of observations will be different and critically may cause a significant risk,
resulting in a decrease in robustness and influencing the positioning accuracy of PPP. Those
problems will be illustrated in simulation tests and analysis of their results.

3.2. Classification robust equivalent weight function model

Although the distribution of standardized residuals for different types of observations vary,
the distribution of the same type of observations is the same and follows the normal distribution
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in the case of absence of gross errors in observations. So, the equivalent weight matrices for each
type of observation can be constructed based on the standardized residuals separately. According
to this idea, a t-inspection criterion-based classification robust equivalent weight function model
is proposed which adopts the t-inspection statistics, and the equivalent weight function model is
described as follows [15]:

Pi
j =



1 T i
j ≤ t0(a0, τ)

T i
j

t0
*, t1 − t0

t1 − T i
j

+-
2

t0(a0, τ) < T i
j ≤ t1(a1, τ)

∞ T i
j > t1(a1, τ)

, (24)

where the superscript i, i = 1, 2, . . . , N , indicates the type of observation, N is the number of
types of observations (for a single GNSS PPP there are two types of observations, including
pseudo-range and phase-range ones, N = 2; for multiple GNSS PPP, there are more than two
types, i.e. GPS/BDS PPP, N = 4). t0 and t1 are t-inspection coefficients at significance levels a0
and a1 with a degree of freedom τ = ni − 1. T i

j is the t-inspection statistics of the i-th type of
observation, which is calculated by the following equation [13, 24]:

T i
j =

���������
vij −

1
ni − 1

ni∑
k=1
k,j

vik

���������√√√√√√√√√√ 1
ni − 2

ni∑
k=1
k,j

*...,v
i
k −

1
ni − 1

ni∑
l=1
l,k

vil

+///-
2
, (25)

where vij is the standardized residual of the j-th measurement of the i-th type of observation. ni

is the number of measurements of the i-th type of observation. The total weight matrix P can be
constructed by the sub-weight matrix P

i
(i = 1, 2, . . . , N):

P = diag
{
P

1
, P

2
, . . . , P

N
}
, (26)

where diag{·} indicates a diagonal matrix. Because the t-inspection statistics reflects the dispersion
degree of measurement residuals among one certain type of observations, it will not be affected
by the residuals of other types of observations and has a higher sensitivity to gross errors in each
type of observations.

3.3. Improved classification robust Kalman filtering algorithm

The conventional robust Kalman filter is based on the iteration method with variable weights
determined by the equivalent weight function models. It has a good robustness in the presence of
no more than one gross error. However, for the presence of multiple gross errors in a certain type of
observation, the performance of robust Kalman filter based on the conventional and classification
robust equivalent weight function models will be reduced or even lead to the failure of robustness
due to the interaction of gross errors. In order to improve the robustness of Kalman filter in the
case of multiple gross errors in a certain type of observation for PPP, an improved classification
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robust Kalman filtering algorithm is proposed. In the improved method, for a certain type of
observation with gross errors, only one observation that is most likely to contain a gross error
is weighted when the robust weighting is performed to avoid a wrong weighting for the healthy
observations caused by the interactions of multiple gross errors, while for the types of observations
which do not contain gross errors, the classification robust equivalent weight function model is
used to calculate the equivalent weights of observations. Because the weighted sum squared of
measurement residuals (WSSR) has a chi-square distribution without considering the dynamic
model error, the chi-square test can be used to detect the faults globally and the normalized test
statistics for each type of observations is as follows [25]:

r i =
viTR

i−1
vi

σi
0

2 ∼ χ2
1−a,υ (υ = n−m, i = 1, 2, . . . , N ), (27)

where σ2
0 is the a priori variance factor; υ is the number of degrees of freedom which is equal to

the difference between the number of observations n and the number of estimated parameters m.
It is determined whether there are gross errors in a certain type of observation by comparing the
test statistics r i and the threshold T hi calculated at the significance level a.

A flowchart of the improved classification robust Kalman filtering algorithm is shown in
Fig. 1.

Fig. 1. A flowchart of the improved classification robust Kalman filtering algorithm for PPP.
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It comprises the following steps:
Step 1: Estimate the state parameters xk (u) by using EKF according to (8)∼(12).
Step 2: Perform the Chi-square test for each type of observations. Calculate the measurement

residual vi , the standardized residual vi and the test statistics r i (i = 1, 2, . . . , N ) for each type
of observations. If r i > T hi , it indicates that there are some gross errors in the i-th type of
observation.

Step 3: Calculate the total equivalent weight matrix P and update the covariance matrix R.
First, the sub-weight equivalent weight matrix P

i
(i = 1, 2, . . . , N ) is calculated. In step 2, if

r i > T hi , the sub-weight matrix P
i

for the i-th type of observation is calculated by the following
function model:

Pi
j =

{ 1 j , s
∞ j = s

, (28)

where s is the subscript of the max value of vi . If r i ≤ T hi , calculate the sub-weight matrix
P
i

for the i-th type of observation according to (24). Then, the total equivalent weight matrix is
constructed according to (26), and the covariance matrix is updated according to (15).

Step 4: Repeat steps 1 to 3 until the change in the state parameter satisfies the following
condition:

∥xk (u) − xk (u − 1)∥ < 10−3, xk (0) = {0}, (29)

where u is the number of times of performing the robust filtering at time k-th, and the initial value
of state vector xk (0) is set to zeros.

4. Tests and analysis

To verify the effectiveness of the classification robust equivalent weight function model and
to assess the performance of the improved classification robust Kalman filtering method for
PPP, simulation tests were carried out with GPS/BDS data. The test data set was obtained from
International GNSS Service (IGS) Multi-GNSS Experiment data centre at JFNG reference station
on May 30, 2018. Fig. 2 shows the number of the available satellites and GDOP of GPS, BDS and

Fig. 2. The number of available satellites and GDOP at JFNG station on May 30, 2018 (cut angle 15◦).
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GPS/BDS. The products such as precise satellite orbits (15 min) and clocks (30 s) used in PPP
were provided by IGS data centre of Wuhan University [26]. In the following sections, we first
discuss the conventional and classification robust equivalent weight function models, verify the
effectiveness of the classification robust function model assuming that no more than one gross
error in a certain type of observation exists, and further analyse the problems of the conventional
robust Kalman filtering algorithm based on the two kinds of equivalent weight function models in
the case of multiple gross errors in a certain type of observation. Finally, we verify and evaluate
the performance of the improved classification robust Kalman filtering algorithm.

4.1. Analysis of conventional and classification robust equivalent weight function models

In order to analyse the advantages and disadvantages of the conventional and classification
robust equivalent weight function models, the following five cases were studied. In each case,
an extended Kalman filter (EKF), a robust Kalman filter with the conventional robust equivalent
weight function model (RKF), and a robust Kalman filter with the classification robust equivalent
weight function model (CRKF) were used to calculate the positioning results of GPS PPP. The
root-mean-square (RMS) values of positioning errors were counted in order to analyse the
performance of different filtering methods.

Case 1: No gross errors in pseudo-range and phase-range observations.
Case 2: Gross errors with values of 100 m were added to pseudo-range observations for a

random satellite from 5:00 to 6:00 (one gross error only in each pseudo-range observation).
Case 3: Gross errors with values of 1 m were added to phase-range observations for a random

satellite from 5:00 to 6:00 (one gross error only in each phase-range observation).
Case 4: Gross errors with values of 100 m and 1 m were respectively added to pseudo-range

and phase-range observations for a random satellite from 5:00 to 6:00 (one gross error in each of
pseudo-range and phase-range observations).

Case 5: Gross errors with values of 100 m and 1 m were respectively added to pseudo-range
and phase-range observations for two random satellites from 5:00 to 6:00 (two gross errors in
each of pseudo-range and phase-range observations).

Figure 3 shows the standardized residual distribution of pseudo-range and phase-range obser-
vations in the absence of gross errors. The results show that the standard variance of pseudo-range
standardized residuals is equal to 1.25, while the standard variance of phase-range standardized
residuals is equal to 0.67. Obviously, they have different distribution characteristics. According
to the distribution characteristics of standardized residuals, k0 = 1.5 and k1 = 3.5 were selected
as the critical values for the conventional robust equivalent weight function model. For the clas-

Fig. 3. Distributions of standardized residuals for pseudo-range and phase-range observations in
the absence of gross errors.
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sification robust equivalent weight function model, the thresholds t0 and t1 were obtained from
the t-inspection coefficient table with the significance levels a0 = 0.1 and a1 = 0.01.

Figures 4, 5 and 6 show sequences of the standardized residuals and t-inspection statistics
for phase-range and pseudo-range observations for cases 2, 3 and 4 that assume only one gross
error in a certain type of observation. Fig. 7 shows sequences of the standardized residuals and t-
inspection statistics for phase-range and pseudo-range observations for case 5 that the presence of
multiple gross errors in a certain type of observation is assumed. The RMS values of positioning
errors of GPS PPP with EKF, RKF and CRKF for the different cases are listed in Table 1.

Fig. 4. Sequences of standardized residuals and t-inspection statistics for pseudo-range and phase-range
observations in case 2.

Fig. 5. Sequences of standardized residuals and t-inspection statistics for pseudo-range and phase-range
observations in case 3.

It can be seen from Figs. 4 to 6 that the conventional robust equivalent weight function model
based on standardized residual statistics can detect outliers in the case of existing gross errors only
in a certain type of observation, but it cannot detect the outliers in pseudo-range observations in
the case of existing a gross error in each of pseudo-range and phase-range observations. Because
the gross errors in phase-range observations have a greater contribution to the measurement
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Fig. 6. Sequences of standardized residuals and t-inspection statistics for pseudo-range and phase-range
observations in case 4.

Fig. 7. Sequences of standardized residuals and t-inspection statistics for pseudo-range and phase-range
observations in case 5.

Table 1. RMS values of positioning errors of GPS PPP with EKF, RKF and CRKF for different cases.

Gross error
cases

EKF (RMS/cm) RKF (RMS/cm) CRKF (RMS/cm)
East North Up East North Up East North Up

Case 1 0.24 0.69 0.45 0.23 0.65 0.41 0.26 0.48 0.45

Case 2 0.85 2.68 2.58 0.23 0.87 0.55 0.27 0.49 0.45

Case 3 3.97 2.87 5.76 0.25 0.57 0.46 0.26 0.48 0.44

Case 4 8.43 6.51 8.09 4.54 1.79 3.89 0.27 0.50 0.44

Case 5 13.42 11.56 9.93 11.92 13.94 8.38 13.43 11.95 7.75

residuals, the standardized residuals of pseudo-range observations with gross errors are below the
critical value. However, the t-inspection statistics of phase-range and pseudo-range observations
with gross errors from 5:00 to 6:00 are all greater than the threshold, so the outliers can be
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detected by the classification robust equivalent weight function model not only in the case of
gross errors in a certain type of observation, but also in the case of gross errors in both types. In
addition, based on the comparison of the positioning errors of EKF for different cases given in
Table 1, the performance of PPP will be reduced when the observations contain gross errors, and
the impact of gross errors in phase-range observations on the positioning results is more obvious
than that of gross errors in pseudo-range observations. Moreover, based on the comparison of the
positioning errors of EKF, RKF and CRKF for cases 2, 3 and 4 given in Table 1, both RKF and
CRKF methods can reduce the impact of gross errors on the positioning results in cases 2 and 3
that assume one gross error only in a certain type of observation, and they have almost the same
performance. However, in case 3 assuming one gross error in each of pseudo-range and phase-
range observations, the CRKF method outperforms the RKF method. In fact, the RKF method
just eliminates the effect of gross errors in phase-range observations on the positioning results,
while the CRKF method can eliminate the effect of gross errors in both types of observations
at the same time. So the classification robust equivalent weight function model is more effective
than the conventional robust equivalent weight function model for PPP in the case of no more
than one gross error existing in a certain type of observation.

However, the conventional robust Kalman filter based on the two kinds of robust equivalent
weight function models (RKF and CRKF) may be subjected to the risk of low robustness or even
failing a robust estimation in the case of multiple gross errors in a certain type of observation.
Case 5 illustrates this situation. As can be seen from Fig. 7, the standardized residual and t-
inspection statistics cannot detect gross errors in pseudo-range and phase-range observations, and
the positioning results in Table 1 show that neither RKF nor CRKF method has a good robustness.

4.2. Performance evaluation of improved classification robust Kalman filtering algorithm

To verify the effectiveness and evaluate the performance of the improved classification robust
Kalman filter method, the following five schemes were designed. In schemes 2, 3, 4 and 5, gross
errors with values of 100 m and 1 m were added to pseudo-range and phase-range observations
of two random satellites from 5:00 to 6:00.

Scheme 1: Standard Kalman filtering for GPS/BDS PPP with no gross errors in observations
(EKF with no gross errors)

Scheme 2: Standard Kalman filtering for GPS/BDS PPP with simulated gross errors (EKF
with gross errors).

Scheme 3: Conventional robust Kalman filtering for GPS/BDS PPP with simulated gross
errors and the critical values k0 = 1.5, k1 = 3.5 (RKF).

Scheme 4: Classification robust Kalman filtering for GPS/BDS PPP with simulated gross
errors and the significant levels a0 = 0.1, a1 = 0.01 (CRKF).

Scheme 5: Improved classification robust Kalman filtering for GPS/BDS PPP with simulated
gross errors and the significant levels a0 = 0.1, a1 =0.01 (ICRKF).

Table 2. RMS values of positioning errors for different filtering schemes.

Items EKF (no
gross errors) EKF RKF CRKF ICRKF

East 0.162 9.889 6.067 9.350 0.421
RMS/cm North 0.409 22.16 10.96 20.17 0.413

Up 0.306 11.90 4.118 10.75 0.252
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Figures 8, 9 and 10 show the positioning errors of five schemes in the directions of East (E),
North (N) and Up (U). The RMS values of positioning errors are shown in Table 2. It is obvious
that RKF and CRKF all have low robustness. In particular, CRKF can hardly reduce the influence
of gross errors in the case of multiple gross errors in a certain type of observation. By comparing
the position error curve and positioning accuracy of the five schemes, we conclude that ICRKF
has the best performance, which can reduce the impact of multiple gross errors on the positioning
results and significantly improve the positioning accuracy.

Fig. 8. Positioning error sequences in East direction for five schemes.

Fig. 9. Positioning error sequences in North direction for five schemes.

Fig. 10. Positioning error sequences in Up direction for five schemes.
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5. Conclusions

The conventional robust equivalent weight function model has a good robustness for ob-
servations with the same error distribution. However, the performance is not optimal regarding
multiple types of observations with different accuracy. Because the distributions of residuals are
different due to the different error distributions of various types of observations, the conventional
robust equivalent weight function models may lead to the overall reduction of weights in a certain
type of observation without gross errors thus affecting the filtering results. The classification
robust equivalent weight function model constructs a weight matrix for each type of observa-
tions respectively based on the t-inspection statistics, which can reduce the mutual influence
between residuals of different types of observations and improve the recognition rate of gross
errors. However, the robust Kalman filter based on the classification robust equivalent weight
function model has a good performance only if there is less than one gross error in a certain type
of observations. In the presence of multiple gross errors in a certain type of observations, the
conventional robust Kalman filter based on the two kinds of equivalent weight function models is
subjected to the risk of low robustness and failing to provide a robust estimation. In this paper, an
improved classification robust Kalman filtering algorithm is proposed to improve the robustness
in the presence of multiple gross errors in a certain type of observations. The results show that
the proposed method can effectively reduce the impact of multiple gross errors on the positioning
results and significantly improve the accuracy and stability of PPP.
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