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1. Introduction

Fractional calculus is the branch of mathematics in which non-
integer order integrals and derivatives are considered. It is used
in many fields of science and engineering, such as signal and
image processing, physics, mechanics, control systems, biology,
etc. Many fractional models of physical phenomena have been
presented and used in real world applications [1]. The review
of fractional modeling and applications can be found in many
monographs and articles, e.g. [2–7].

The stability is the most important property of dynamic sys-
tems. The state-space model describes the behavior of a dy-
namic system. For the discrete-time systems, the model with a
time shift in the difference is the most well-known. The stability
problem of this model with fractional order has been considered.
The asymptotic stability and the so-called practical stability for
a given length of practical implementation have been analysed.
The asymptotic stability conditions and the stability domains
have been presented in [8-12]. The conditions of practical sta-
bility have been established in [8, 13]. The practical stability
problem for the discrete-time fractional model of the heat trans-
fer process has been presented in [14].

The discrete-time fractional order state-space model without
a time shift in the difference has been introduced in [15]. The so-
lution of state-space equations and the realization problem have
been presented in [15, 16], respectively. The asymptotic stabil-
ity conditions have been established in [17, 18]. The stability
testing of this model with state delays is less advanced. Recently,
the sufficient condition for asymptotic stability of this system
with one delay has been established in [19]. In the case of scalar
systems, the stability conditions for systems with pure delay and
multiple delays have been presented in [20, 21], respectively.

In this paper the stability of delayed fractional discrete-time
system (model without a time shift in the difference) will be
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investigated. New necessary and sufficient conditions for the
practical and asymptotic stabilities will be proposed.

The paper is organized as follows. In Section 2 the formulation
of the problem is given. Necessary and sufficient conditions for
practical and asymptotic stabilities are established in Section 3.
Concluding remarks are given in Section 4.

2. Problem formulation

Let us consider a discrete-time linear system described by the
fractional homogeneous state equation

∆α xi = A1xi−1, i = 0, 1, . . . , (1)

with the initial condition x−l ∈ ℜn (l = 0, 1). Moreover, xi ∈ ℜn

is the state vector, A1 ∈ ℜn×n is the state matrix and α is the
fractional order α ∈ (0, 1). In this paper we use the following
fractional difference of the discrete-time function xi [3]

∆α xi =
i

∑
k=0

ck(α)xi−k, i = 0, 1, . . . , (2)

where

ck(α) = (−1)k
(

α
k

)

=





1 for k = 0,

(−1)k α(α −1) . . .(α − k+1)
k!

for k > 0.

(3)

Using fractional difference (2), equation (1) can be written in
the following form

xi = A1xi−1 −
i

∑
k=1

ck(α)xi−k , i = 0, 1, . . . , (4)

where coefficients ck(α) are defined by (3).
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The sequence of coefficients (3) for k > 0 can be calculated
by the following recursive formula

ck+1(α) = ck(α)
k−α
k+1

, k = 1,2, . . . , (5)

where c1(α) =−α .
It is easy to see that coefficients (3) for k > 0 are negative

and absolute values of coefficients ck(α) quickly decrease for
increasing k. Therefore, in equation (4) we can limit upper bound
of summation by the natural number L, which is called the length
of the practical implementation [13]. Thus, equation (4) can be
written in the form

xi = A1xi−1 −
L

∑
k=1

ck(α)xi−k, i = 0, 1, . . . . (6)

Equation (6) is called the practical realization of fractional sys-
tem (1).

The definition of practical stability for fractional discrete-time
systems have been introduced in [13]. Regarding equations (1)
and (6) this definition takes the following form.

Definition 1. The fractional system (1) is called practically sta-
ble for given length L of practical implementation if the system
(6) is asymptotically stable.

If system (6) is asymptotically stable for L→∞ then fractional
system (1) is called asymptotically stable.

It is well-known that discrete-time linear systems are asymp-
totically stable if all roots of their characteristic polynomials
have absolute values less than 1, i.e. lie inside the unit circle
of the complex z-plane. From the above we can formulate the
following theorem.

Theorem 1. The fractional system (1) with given length L of
practical implementation is practically stable if and only if

w(z) �= 0, |z| ≥ 1, (7)

where

w(z) = det

{
I −A1z−1 +

L

∑
k=1

ck(α)z−k

}
. (8)

is the characteristic polynomial of system (6), where I is the
n×n identity matrix.

The asymptotic stability of system (6), i.e. the practical sta-
bility of fractional system (1), can be checked using well-known
stability tests for discrete-time systems with delays. However,
these methods may be inconvenient, because the degree of poly-
nomial (8) can be very high for a large length L of practical
implementation.

3. Solution of the problem

3.1. Practical stability. The characteristic equation w(z) = 0
of system (6) with polynomial (8) has the form

det

{
I −A1z−1 +

L

∑
k=1

ck(α)z−k

}
= 0. (9)

By multiplying both sides of equation (9) by z we obtain

det

{(
z+

L

∑
k=1

ck(α)z1−k

)
I −A1

}
= 0. (10)

The multiplication by z adds the root at 0, but this does not
change the stability of the discrete-time system (6). Equation
(10) can be written as

n

∏
i=1

wi(z) = 0, (11)

where

wi(z) = z+
L

∑
k=1

ck(α)z1−k −λi(A1) (12)

and λi(A1) denotes i-th eigenvalue of A1 (i = 1,2, . . . ,n).
Fractional system (1) with given length L of practical im-

plementation is practically stable if all roots of all equations
wi(z) = 0 (i = 1,2, . . . ,n) are stable, i.e. have absolute values
less than 1. Therefore, we analyse the stability problem of roots
of the equation

z+
L

∑
k=1

ck(α)z1−k −ρ = 0 (13)

in terms of ρ = λi(A1).
We apply the D-decomposition method [22] to stability analy-

sis. According to this method, the parameter plane is partitioned
into a finite number of regions. For a point from each region
the characteristic polynomial has fixed number of unstable and
stable roots. This number does not change in each region. If the
number of unstable roots is zero, thus this region is the stability
region.

Substituting z = exp( jω), ω ∈ [0, 2π], i.e. boundary of the
unit circle in the complex z-plane, in equation (13) we have

ρ(ω) = e jω +
L

∑
k=1

ck(α)e jω(1−k), ω ∈ [0, 2π]. (14)

Equation (14) determines the boundary of asymptotic stability
region in the complex ρ-plane for given values of α and L.
The closed curve (14) partitions the complex ρ-plane into two
regions, one bounded and one unbounded. The bounded region
will be denoted by S(α,L).

It is easy to check that (14) for α = 1 describes the circle of
radius 1 centered at point (−1, 0).
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Lemma 1. All roots of equation (13) are stable if and only if
ρ ∈ S(α,L).

Proof. According to the D-decomposition method, we need
only to show that there exists at least one point in the region
S(α,L) such that all roots of equation (13) are stable. It is easy
to check that for all α ∈ (0, 1) and L ≥ 2 the point ρ = 0 lies in
bounded region S(α,L).

Equation (13) for ρ = 0 can be written in the form

z

(
zL +

L

∑
k=1

ck(α)zL−k

)
= 0. (15)

Thus, equation (15) has one stable root z = 0 and L roots of
equation

zL +
L

∑
k=1

ck(α)zL−k = 0. (16)

To prove that all roots of (16) are stable we use the fact presented
in [23], i.e. the polynomial zn+an−1zn−1+ · · ·+a1z+a0 has all
roots of absolute values less than 1 if

1 > |an−1|+ · · ·+ |a1|+ |a0|. (17)

Notice that for α ∈ (0, 1) coefficients ck(α) < 0 for k =

1,2, . . . ,n, therefore

∣∣∣∣∣
L

∑
k=1

ck(α)

∣∣∣∣∣=−
L

∑
k=1

ck(α).

Considering above, condition (17) for the left-hand side of
equation (16) has the form

1 >−
L

∑
k=1

ck(α). (18)

Taking into account that
∞

∑
k=1

ck(α) =−1 [3], we have

1+
L

∑
k=1

ck(α)> 1+
∞

∑
k=1

ck(α) = 0. (19)

Thus, condition (18) holds.
For example, for L = 2 equation (16) has the form

z2 + c1(α)z+ c2(α) = 0, (20)

where c1(α) =−α and c2(α) =
α(α −1)

2
.

The characteristic equation (20) has only real roots since

c1(α)2 −4c2(α) = 2α −α2 > 0 for α ∈ (0, 1). (21)

It easy to check that the real roots of equation (20)

z1 =
α −

√
2α −α2

2
, z2 =

α +
√

2α −α2

2
(22)

have absolute values less than 1 for all α ∈ (0, 1).

It follows that equation (15) for ρ = 0 has one root z = 0 and
L roots with absolute values less than 1. Since ρ = 0 ∈ S(α,L),
then S(α,L) is the stability region for equation (15) and the
proof is completed.

Theorem 2. The fractional system (1) with given length L of
practical implementation is practically stable if and only if all
eigenvalues λi(A1) (i = 1,2, . . . ,n) lie in the stability region
S(α,L), i.e. λi(A1) ∈ S(α,L) for all i = 1,2, . . . ,n.

Proof. The proof directly follows from Lemma 1 and equations
(11) and (12).

Substituting ω = 0 and ω = π in (14), we obtain

ρ(0) = 1+
L

∑
k=1

ck(α), (23)

ρ(π) =−1−
L

∑
k=1

ck(α)(−1)k. (24)

Lemma 2. If all eigenvalues λi(A1) are real, then the fractional
system (1) with given length L of practical implementation is
practically stable if and only if

ρ(π)< λi(A1)< ρ(0), i = 1,2, . . . ,n. (25)

Proof. Note that ρ(π) < ρ(0) and from Theorem 2 we have
that the interval (ρ(π), ρ(0)) of the real axis lies in the sta-
bility region S(α,L) for α ∈ (0, 1). This completes the proof.
Lemma 2 also follows from [20].

Fig. 1 shows the practical stability regions S(α,L) on the plane
of eigenvalues of A1 for L = 100 and some values of fractional
order α ∈ (0, 1). The practical stability regions S(α,L) for α =
0.5 and some values of length L of practical implementation are
shown in Fig. 2. Notice that for fixed α and different values of L,
the values of ρ(π) are almost the same, while the values of ρ(0)
differ to a greater extent.

Fig. 1. Regions S(α,L) for L = 100 and α = 0.1 (boundary 1), α = 0.5
(boundary 2) and α = 0.9 (boundary 3)
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Fig. 2. Regions S(α,L) for α = 0.5 and L = 5 (boundary 1),
L = 10 (boundary 2) and L = 100 (boundary 3)

From Figs. 1 and 2 and Lemma 2 it follows that for fixed
α ∈ (0, 1) and L we can inscribe a circle D1 = D1(ρ1,r1) with
the centre

ρ1 = 0.5(ρ(0)+ρ(π)) =
L

∑
k=1,3,...

ck(α) (26)

and radius

r1 = 0.5(ρ(0)−ρ(π)) = 1+
L

∑
k=2,4,...

ck(α) (27)

into the stability region S(α,L).
From the above we have the following sufficient condition for

the practical stability.

Lemma 3. The fractional system (1) with given length L of
practical implementation is practically stable if all eigenvalues
of A1 lie in circle D1 = D1(ρ1,r1).

Region S(α,L)with α = 0.5, L= 100 and circle D1 are shown
in Fig. 3. From (26) and (27) for α = 0.5 and L = 100 we have
ρ1 =−0.6788 and r1 = 0.73521.

Example 1. Check the practical stability of fractional system
(1) with length L = 100 of practical implementation and the
matrix

A1 =




−0.01 −1.82 0.04 −0.52
0.95 −2.24 −1.21 0.81
0.17 −0.75 0.75 −1.55
0.34 −0.54 0.48 −0.71


 . (28)

The matrix A1 has the following eigenvalues:

λ1,2 =−1.197± j0.2767, λ3,4 = 0.092± j0.7039. (29)

Practical stability regions S(α,L) with L = 100 for α = 0.1,
α = 0.5, α = 0.9 and eigenvalues (29) are shown in Fig. 4.

Fig. 3. Region S(α,L) for α = 0.5 and L = 100 (boundary 1) and circle
D1 (boundary 2)

From Fig. 4 it follows that eigenvalues (29) lie in the practical
stability region for α = 0.5. Thus, the considered fractional
system with L = 100 is practically stable for α = 0.5, while it
is not practically stable for α = 0.1 and α = 0.9. Analysing
practical stability regions for all fixed α ∈ (0, 1) we obtain
that fractional system (1), (28) is practically stable for α ∈
(0.31, 0.65). The circle D1 for L = 100 and α = 0.5 is also
shown in Fig. 4. It is easy to see that not all eigenvalues (29) lie
in circle D1. This means that the sufficient condition of Lemma 3
is not satisfied for system (1), (28) with L = 100 and α = 0.5.

Fig. 4. Regions S(α,L) for L = 100 and α = 0.1 (boundary 1), α = 0.5
(boundary 2), α = 0.9 (boundary 3), circle D1 for L = 100 and α = 0.5

(boundary 4) and eigenvalues (29) (x)

Notice that the presented method of practical stability test
does not require calculation of L= 100 roots of the characteristic
equation.

3.2. Asymptotic stability. We will analyse system (6) with
L → ∞ to formulate asymptotic stability conditions of sys-
tem (1). Firstly, we prove the following important lemma.
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Lemma 4. The following formula is true

∞

∑
k=1

ck(α)z−k = (z−1)α z−α −1, (30)

where coefficients ck(α) are defined by (3).

Proof. Using Newton’s generalized binomial formula

(a+b)α =
∞

∑
k=0

(
α
k

)
aα−kbk, (31)

where α is a real number, for a = z and b =−1 we obtain

(z−1)α =
∞

∑
k=0

(
α
k

)
zα−k(−1)k

= zα +
∞

∑
k=1

(
α
k

)
zα−k(−1)k.

(32)

Multiplying both sides of (32) by z−α leads to

(z−1)α z−α = 1+
∞

∑
k=1

(
α
k

)
z−k(−1)k. (33)

Finally, from (33) we have

∞

∑
k=1

(
α
k

)
z−k(−1)k = (z−1)α z−α −1. (34)

Using (3), from (34) we obtain (30). This completes the proof.

Fractional system (1) is called asymptotically stable if system
(6) is practically stable for L → ∞. Characteristic function (10)
for L → ∞ has the form

det

{(
z+

∞

∑
k=1

ck(α)z1−k

)
I −A1

}
= 0. (35)

Using (30) and (35), we obtain

det
{
(z−1)α z1−α I −A1)

}
= 0. (36)

Equation (36) can be written in the form (11), where

wi(z) = (z−1)α z1−α −λi(A1) (37)

and λi(A1) denotes i-th eigenvalue of A1 (i = 1,2, . . . ,n).
From the above it follows that fractional system (1) is asymp-

totically stable if and only if all roots of all equations wi(z) = 0
(i = 1,2, . . . ,n) are stable, where wi(z) has the form (37). Thus,
we consider the stability problem of roots of the equation

(z−1)α z1−α −η = 0 (38)

in terms of η = λi(A1).

Substituting z = exp( jω), ω ∈ [0, 2π], in equation (38) we
obtain the parametric description of boundary of the stability
region in the complex η-plane

η(ω) = (e jω −1)α(e jω)1−α , ω ∈ [0, 2π]. (39)

It is easy to check that (39) for α = 1 describes the circle of
radius 1 centered at point (−1, 0).

The closed curve (39) partitions the complex η-plane into two
regions (bounded and unbounded). The bounded region will be
denoted by S(α).

Lemma 5. If η is real, then all roots of equation (38) are stable
if and only if

−2α < η < 0. (40)

Proof. The system (1) where the matrix A1 is a scalar a1 has
been considered in [20]. It has been shown that this system is
asymptotically stable if and only if −2α < a1 < 0. Thus, (40)
is the necessary and sufficient condition for asymptotic stability
of real η roots of (38) and the proof is completed.

Lemma 6. All roots of equation (38) are stable if and only if
η ∈ S(α).

Proof. We need only to show that there exists at least one point
in the region S(α) such that all roots of (38) are stable. Using
(39) for ω = 0 and ω = π we obtain η(0) = 0 and η(π) =−2α .
Note that η(π) < η(0) and from Lemma 5 we have that the
interval (−2α , 0) of the real axis is the stability region for all
real η roots of (38). Hence, there exist such points η in S(α) for
which all roots of (38) are stable. This completes the proof.

Asymptotic stability regions S(α) for α = 0.1, α = 0.5 and
α = 0.9 are shown in Fig. 5.

Fig. 5. Regions S(α) for α = 0.1 (boundary 1), α = 0.5 (boundary 2)
and α = 0.9 (boundary 3)

Theorem 3. The fractional system (1) is asymptotically stable
if and only if all eigenvalues of the matrix A1 lie in the stability
region S(α) with boundary (39).
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Proof. The proof directly follows from Lemma 6 and equations
(11) and (37).

Lemma 7. If all eigenvalues λi(A1) are real, then the fractional
system (1) is asymptotically stable if and only if

−2α < λi(A)< 0, i = 1,2, . . . ,n. (41)

Proof. The proof directly follows from Lemma 5 and equations
(11) and (37).

Theorem 4. The fractional system (1) is asymptotically stable
if and only if

φi ∈
[
α

π
2
, 2π −α

π
2

]
, ∧ |λi|< |mi| , i = 1,2, . . . ,n,

(42)
where |λi| and φi are the modulus and argument, respectively,
of the i-th eigenvalue λi of the matrix A1 and

|mi|=
(

2
∣∣∣∣sin

φi −α π
2

2−α

∣∣∣∣
)α

, i = 1,2, . . . ,n. (43)

Proof. The fractional system described by state equation

∆α xi+1 = A1xi (44)

has been considered in [8] for α ∈ (0, 1) and [11, 12] for
α ∈ (0, 2). Note that asymptotic stability regions of system (44)
with α ∈ (0, 1) presented in [8, 11, 12] are the same as obtained
for system (1). Thus, the analytical asymptotic stability condi-
tion given in [12] for system (44) is also true for system (1). This
completes the proof.

Similar results for asymptotic stability of system (1) have
been obtained in [19] using Z-transform method.

Similarly as in [8] from Fig. 5 it follows that for any fixed
α ∈ (0, 1) we can inscribe a circle D2 = D2(η2,r2) with
the centre η2 = 0.5(η(0) + η(π)) = −2α−1 and radius r2 =
0.5(η(0)− η(π)) = 2α−1 into the stability region S(α). For
example, for α = 0.5 we obtain η2 = −2−0.5 = −0.7071 and
r2 = 0.7071.

Region S(α) for α = 0.5 and circle D2 are shown in Fig. 6.
From the above we have the following sufficient condition for

asymptotic stability.

Lemma 8. The fractional system (1) is asymptotically stable if
all eigenvalues of A1 lie in the circle D2 = D2(η2,r2).

Example 2. Check asymptotic stability of fractional system (1),
(28) considered in Example 1.

Asymptotic stability regions S(α) for α = 0.1, α = 0.5, α =
0.9, eigenvalues (29) and circle D2 for α = 0.5 are shown in
Fig. 7. We can see that all eigenvalues (29) lie in the stability
region S(α) for α = 0.5, but not all eigenvalues (29) lie in circle
D2. This means that the sufficient condition of Lemma 8 is not
satisfied for system (1), (28) with α = 0.5. Analysing asymptotic
stability regions for all fixed α ∈ (0, 1) we obtain that fractional
system (1), (28) is asymptotically stable for α ∈ (0.301, 0.659).

Fig. 6. Region S(α) for α = 0.5 (boundary 1) and circle D2
(boundary 2)

Fig. 7. Regions S(α) for α = 0.1 (boundary 1), α = 0.5 (boundary
2), α = 0.9 (boundary 3), circle D2 for α = 0.5 (boundary 4) and

eigenvalues (29) (x)

Example 3. Check asymptotic stability of fractional system (1)
with the matrix

A1 =




−2.71 0.45 0.37 1.67
−3.89 0.36 0.61 3.61
0.42 −1.11 −0.47 1.03
−1.28 0.02 0.62 0.72


 . (45)

The matrix A1 has the following eigenvalues: λ1 =−1.0178,
λ2 = −0.9352, λ3 = −0.3119 and λ4 = 0.1649. Note that the
considered system has only real eigenvalues and one of them is
positive. According to Lemma 7 this system is not asymptoti-
cally stable for any α ∈ (0, 1), because condition (41) does not
hold.



515

Practical and asymptotic stabilities for a class of delayed fractional discrete-time linear systems

Bull.  Pol.  Ac.:  Tech.  67(3)  2019

4. Concluding remarks

The practical and asymptotic stabilities of the fractional order
α ∈ (0, 1) discrete-time delayed linear system have been anal-
ysed. The state equation (1) is the fractional model without a
time shift in the difference.

Necessary and sufficient conditions for practical stability and
for asymptotic stability have been established. The conditions
in terms of the location of eigenvalues of the state matrix in the
complex plane have been given. Parametric descriptions of the
boundary of practical stability and asymptotic stability regions
have been presented. Necessary conditions for the practical sta-
bility and the asymptotic stability have been also proposed in
Lemmas 3 and 8, respectively. These conditions give more re-
strictive stability regions than conditions in Theorems 2 and 3,
but they are easier to check.
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