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CAD models clustering with machine learning

Similarity assessment between 3D models is an important problem in many fields
including medicine, biology and industry. As there is no direct method to compare 3D
geometries, different model representations (shape signatures) are developed to enable
shape description, indexing and clustering. Even though some of those descriptors
proved to achieve high classification precision, their application is often limited.
In this work, a different approach to similarity assessment of 3D CAD models was
presented. Instead of focusing on one specific shape signature, 45 easy-to-extract shape
signatures were considered simultaneously. The vector of those features constituted
an input for 3 machine learning algorithms: the random forest classifier, the support
vector classifier and the fully connected neural network. The usefulness of the proposed
approach was evaluated with a dataset consisting of over 1600 CAD models belonging
to 9 separate classes. Different values of hyperparameters, as well as neural network
configurations, were considered. Retrieval accuracy exceeding 99% was achieved on
the test dataset.

1. Introduction

1.1. 3D model retrieval

Over the last few decades, 3D models have been used in various applications
including medicine, biology, chemistry, archaeology, games and industry [1, 2]. At
the same time, an increasing number of 3D models stored in databases and product
lifecycle management systems (PLM) enforces development of methods for 3D
geometry comparison and retrieval. In the industrial applications, the opportunity
to detect existing, similar components accelerates the design process of the new

<l Dawid Machalica, e-mail: dawid.machalical @ge.com
IWarsaw Institute of Aviation, Warsaw, Poland.

>Warsaw University of Technology, Institute of Aeronautics and Applied Mechanics, Warsaw,
Poland. E-mail: mmatyjew @meil.pw.edu.pl

© 2019. The Author(s). This is an open-access article distributed under the terms of the Creative Commons Attribution-
@ @ @ NonCommercial-NoDerivatives License (CC BY-NC-ND 4.0, https://creativecommons.org/licenses/by-nc-nd/4.0/), which
permits use, distribution, and reproduction in any medium, provided that the Article is properly cited, the use is non-

BY NC ND

commercial, and no modifications or adaptations are made.


https://orcid.org/0000-0002-3367-0196
https://orcid.org/0000-0001-6821-9840
mailto:dawid.machalica1@ge.com
mailto:mmatyjew@meil.pw.edu.pl
https://creativecommons.org/licenses/by-nc-nd/4.0/

www.czasopisma.pan.pl P N www.journals.pan.pl
N
S
POLSKA AKADEMIA NAUK

134 Dawid Machalica, Marek Matyjewski

parts [3]. It also eliminates the risk of producing several identical components and
thus higher unit cost. Finally, it reduces the number of manufacturing issues and
the number of files that need to be maintained. All of those features result in a
lower price of the component created based on the existing design.

The significance of the problem of the 3D geometry comparison and retrieval
made it an area of an extensive study since 1990 [4]. However, the initial, text-
based algorithms, utilizing the name of the file, its extension and assigned tags
turned out to be insufficient. They had poor efficiency and unsatisfactory retrieval
accuracy [5]. Simultaneously, it has been proven that better results can be obtained
by incorporating content-based searches in which 3D model or its representation
is used to formulate the query [6].

As far as we know, there is no method for a direct comparison of 3D models.
Therefore, researchers have developed a series of descriptors called shape signa-
tures, representing 3D model and its attributes. Available shape signatures will be
discussed in section 2 of the article. Nonetheless, it is important to underline that
most of the works focus on a development of a single “perfect” descriptor which
will allow one to compare designs and precisely define their similarity factor. In
reality, usage of just one shape signature usually results in the part descriptor that
is suitable only in some specific area of application.

In this paper, an alternative method based on utilizing a combination of dif-
ferent shape signatures was proposed. The vector of easy-to-extract attributes of
the geometry including total area, volume and number of edges was used as an
input for supervised machine learning algorithms supposed to learn how to cluster
components based on the aforementioned properties.

The paper is organized as follows: in section 2 existing methods of 3D shape
clustering is discussed. The overview of the proposed technique together with shape
signatures and machine learning algorithms to be used are discussed in section 3.
Section 4 presents the implementation of the proposed method, evaluation of
hyperparameters and discussion on obtained results. Finally, section 5 covers the
discussion, whereas conclusions and future work are presented in section 6.

1.2. Machine learning

Machine learning (ML) is a field of computer science utilizing statistics to
make computers to learn without being explicitly programmed [7]. Machine learn-
ing techniques can be divided into 2 main categories — supervised learning and
unsupervised learning algorithms. Supervised learning algorithms, including, i.e.,
regression, need to be feed with both input data and desired outputs. Based on
those 2 datasets, the algorithm learns how to obtain the desired output based on
the corresponding inputs. On the other hand, in unsupervised learning the desired
outputs are not presented to the model and the algorithm is supposed to find the
optimal method for categorizing data without any guidance. Both supervised and
unsupervised machine learning techniques proved to be useful in many real-world
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applications. They can be used for classification, regression and dimensionality
reduction type problems. Thanks to their capability to generalize patterns, they
are not sensitive to noise (small variations) in the input vector. Additionally, as
the operation of many ML models, such as neural network, is based on simple
calculations, after being trained they operate faster than methods utilizing filtering
and set of logical rules [8].

Machine learning algorithms, after being trained, are supposed to correctly
predict desired output based on the previously unseen input vector. Because of
that, accuracy of ML algorithms should be determined based on previously unseen
samples. In practical applications, the dataset is usually divided into 3 groups —
training, validation and test datasets. The parameters of the ML algorithm, called the
hyperparameters, are tuned using validation dataset, the model is trained with the
training dataset whereas the final model performance (e.g., accuracy) is estimated
based on the test data. This approach gives more accurate predictions on how the
model will behave in the future. As the extraction of the validation dataset leads to
the reduction in the amount of data which can be used for training, the alternative
approach, called the cross-validation, is commonly used. Cross-validation is a
technique in which a dataset is divided into n portions. Then, all combinations of
n—1 portions are used for training purposes when the last fold is used to test the
performance of the model. This approach allows determining not only the average
performance of the classifier using specific hyperparameters, but also standard
deviation describing how much the performance of the model depends on the data
used during the training.

Detailed description of the various machine learning algorithms and their
applications can be found in [9]. In this paper, 3 different supervised learning
algorithms were compared. They include the random forest classifier, the support
vector classifier (SVC) and the fully connected neural network. The first one —
random forest classifier is actually a set of simpler predictive models called decision
trees. Each decision tree is a tree-like graph using conditional instructions on input
variables to obtain the desired output. As random forest utilizes a set of random
trees which simultaneously “vote” for the final output, this method is less sensitive
to the selection of samples used for training and thus less vulnerable to overfitting
— obtaining perfect predictions for training dataset and low performance on the
test set.

Another technique called the support vector machine (SVM), or its variety
called the support vector classifier (SVC), creates a set of hyperplanes in the high
dimensional space which is supposed to split the dataset into desired clusters while
maintaining the maximum distance between hyperplanes and adjacent samples.
Those hyperplanes can then be used for regression (in SVM application called the
Support Vector Regression or SVR) or classification purposes. The SVC algorithm
is considered to achieve high classification accuracy on datasets composed of a
relatively small number of samples compared to the number of features describing
the samples.
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The last machine learning technique considered in this work was the fully
connected neural network (NN). NN is made up of neurons grouped into layers
and links connecting neurons belonging to adjacent layers. Every neural network
contains input and output layers, separated by one or more “hidden” layers. NN
including more than 1 hidden layer is sometimes called the “deep neural network™.
Each value of an input vector provided to the input layer is multiplied by weights
assigned to links connecting neurons. The resultant values are then summed and
processed by an activation function in the neurons of the next layer. Following this
scheme, some values will be obtained on the output layer. Those values can be
treated as the output of the neural network. Training of a NN is thus optimizing the
weights assigned to specific links, so they produce desired values on the output layer.

2. Related works

As far as we know, 3D models cannot be compared directly. Instead, body
descriptors called shape representations or shape signatures are extracted from the
geometry. Then, the similarity between components is obtained by comparing their
shape descriptors. Set of requirements for the perfect shape representation was
discussed in [10]. The most important ones include the effectiveness of extracting
shape descriptor from the model and the number of values it is composed of. Never-
theless, the aforementioned requirements are only the guideline for the researchers
looking for the new shape signatures, and to the best of our knowledge, none of the
existing shape signatures fully meets all of the requirements.

3D shape clustering techniques are often classified based on the features uti-
lized to describe geometry and its topology. Those general groups of algorithms
rely on global and manufacturing features, graphs, histograms and 2D views of the
model. Detailed comparison of the algorithms can be found in [2, 3, 10].

In the area of descriptors utilizing global features, those relying on geometric
properties are usually the easiest to extract. In [11], search engine filtering 3D
models based on their geometric properties was proposed. The utilized features
included volume, total surface area as well as geometric ratios — crinkliness and
compactness. In [12], the parameters used in filtering were expanded with those
related to the hull covering the model. It reduced the variation in the shape de-
scriptors due to minor features existing in the models. This work also suggested
to incorporate additional features including bounding-box aspect ratio, number of
faces and holes. Finally, in [13] similarity factor based on the average ratio of the
properties such as the number of edges, faces, hollows etc., was utilized. What is
worth mentioning is the fact that the algorithm was very robust and successfully
worked with industrial parts. Other types of global feature-based algorithms utilize
moments [14, 15] and spherical harmonics [16]. Obtaining those descriptors might
be more complex or computationally expensive but their usage is not limited to
solid modeling and thus can be utilized to compare 3D scans or surface meshes.
Because of that, their applications extend far beyond industrial applications.
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Another popular group of descriptors uses graphs. The method of transforming
the 3D model into an attributed graph was presented in [17]. In this approach, the
faces of a CAD model are represented by the nodes of a graph, whereas the edges of a
model refer to its links. Attributes such as the face or edge type, supposed to facilitate
graph comparison, are assigned to specific features of the resultant attributes graph.
The process of indexing, retrieval and matching graphs representing CAD models
was discussed in [18]. However, because of the insufficient computational resources
(2003), inexact graph comparison method was recommended in this work. In [19],
a more advanced approach to the comparison of attributed graphs was presented. It
utilized simulated annealing optimization to obtain maximum common subgraph.
The method proved the effectiveness of detecting both global and local similarities
between CAD models. However, it was also computationally expensive and thus
some of the queries took more than 4 hours. It is also worth mentioning that the
application of the graph-based methods in 3D CAD model retrieval is limited by
the existence of minor features like blends or chamfers. It is because these kinds of
features can significantly affect the size and structure of the resultant graph.

Inrecent years, image analysis is increasingly used to compare 3D modes. First
work in this area was probably presented in [20]. The authors utilized the fully con-
nected neural network to classify shafts, based on their cross sections represented
by 19 x 13 pixels images. In [21], “elevation descriptor” obtained based on 6 basic
grey-scaled views (top, bottom, front etc.) was defined and utilized to 3D model re-
trieval. In [22], algorithm for selection of most representative views presenting 3D
geometry was presented. It increased retrieval accuracy simultaneously reducing
computational cost. Finally, in [23], convolutional neural network was utilized to
detect similarities between sketches and 2D views of 3D geometry. This approach
gives an opportunity to find an existing model based on freehand sketch rather than
3D geometry that might be unknown or unavailable.

3. Methodology overview

In the Fig. 1 general overview of the applied methodology was presented.

Selection of Extraction of Data Trainin Classification
CAD models features preprocessing g

Fig. 1. Methodology overview

In the first step, 1653 CAD models were downloaded from the Product Lifecy-
cle Management system (PLM), courtesy of General Electric. Those models were
created with the use of Siemens NX CAD software and saved in the .prt file format.
Those models belong to 9 different categories and are a part of a welded assembly
commonly used in gas turbines. Some examples of the geometries, together with
the number of components belonging to specific classes, were presented in Fig. 2.
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All the models were created with regard to the same axis of rotation, however, their
axial and circumferential position might vary. It is also worth mentioning that some
classes (1-3, 46 and 7-9) are visually similar to each other. Classes 1-3 differs
mainly because of the orientation in 3D space. Classes 4—6 differs because of the
thickness and existence of small holes. Finally, classes 7-9 have different diameters
and wall thicknesses.

Class 1 Class 2 Class 3 Class 4 Class 5 Class 6
(45 models) | (60 models) |(669 models)|(101 models) (103 models) | (94 models)

§\ & & &
n U Hh S

Class 7 Class 8 Class 9
(99 models) | (465 models)| (17 models)

S0
00

Fig. 2. Examples of CAD models belonging to specific classes

In the second step, the collected models were processed with an application
developed in C# programming language, utilizing NXOpen APIL. With the use of
the aforementioned software, 45 variables characterizing each CAD model were
extracted. They are: number of faces, number of edges, total surface area, volume,
volume/area ratio, area/volume ratio, compactness (volume squared divided by
the cube of the total surface area), crinkliness (ratio of the total surface area of a
model and surface of the sphere having the same volume), area of the largest face,
relative area of the largest face (with regard to the total area of the model), type of
the largest face (e.g., planar, cylindrical), sizes of the bounding box, moments of
inertia (around 3 axes that constitute absolute coordinate system), number of faces
of each type (e.g., planar, cylindrical), number of edges of each type (e.g., line, arc),
percentage of faces having relative size within predefined ranges (0—10%, 10-20%,
20-30%, 30—-40%, 40-50%). The collected variables characterizing CAD models
were then saved into the .csv file. The program was able to extract all variables
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for every single model. Thanks to that, there were no missing values in the dataset
what could constitute a problem in the case of some machine learning algorithms.

Raw data to be used by machine learning algorithms need to be preprocessed.
The numerical data, e.g., volume, surface area was normalized. It was to avoid
algorithms being biased by attributes with higher absolute values. Additionally,
categorical data (LargestFaceType) were converted into “dummy variables” (IsPla-
nar, IsCylindrical, IsConical). As a result, the number of features increased to 47.
They are presented in Table 1. All of the data processing was executed with Python
libraries: Pandas and NumPy.

Table 1.
Features used by machine learning algorithms

Feature Data Type
Number of faces Numerical
Number of edges Numerical
Total surface area Numerical
Volume Numerical
Volume / Total surface area Numerical
Total surface area / Volume Numerical
Compactness Numerical
Crinkliness Numerical
Area of the largest face Numerical
Relative area of the largest face Numerical
x direction Numerical
Size of the bounding box y direction Numerical
z direction Numerical
diagonal Numerical
x axis Numerical
Moment of inertia y axis Numerical
Z axis Numerical
Number of faces of each type (e.g. planar, conical) (11 types) Numerical
Number of edges of each type (e.g. line, arc) (11 types) Numerical
0-10% Numerical
Percentage of faces having relative size 10-20% Numerical
within predefined ranges 20—30% Numerical
30-40% Numerical
40-50% Numerical

IsPlanar Categorical;

Type of the largest face IsCylindrical Converted to

IsConical 3 dummy variables




www.czasopisma.pan.pl P N www.journals.pan.pl
N
S
POLSKA AKADEMIA NAUK

140 Dawid Machalica, Marek Matyjewski

In the last step, 3 different machine learning algorithms: the random forest
classifier, the support vector classifier and the fully connected neural network;
were fed with the preprocessed data. As the accuracy of those algorithms strongly
depends on the values of the hyperparameters, their values were optimized with
the use of grid search and 5-folds cross-validation.

Finally, the machine learning algorithms were trained with the optimal values
of hyperparameters and train-test split defined as 0,25. As a result, overall classi-
fication accuracy, F1 score, the precision-recall curve and confusion matrix were
generated for each of the considered algorithms. To implement machine learning
algorithms, the scikit-learn and the Keras (running on a top of the TensorFlow)
libraries were used.

4. Results

To objectively evaluate results obtained with machine learning algorithms, the
reference “benchmark” classification accuracy (CApenchmark ) n€€ds to be calculated.
It can be defined as:

CA B Number of CAD models in the most common cluster 0
benchmark = Total number of CAD models in the dataset ’

For the considered dataset, the benchmark is equal to 40.5% (669/1653). It means
that machine learning algorithms need to obtain higher accuracy to prove they
perform better than “betting” that specific sample belongs to the most common
model type.

4.1. Random Forest

The random forest classifier was implemented with the use of the scikit-learn
library. The number of trees voting for the final classification was defined as 100
and was a compromise between the ability of the resultant model to generalize
and time required to train the model. Additionally, according to the suggestions on
the specific algorithm implementation [24], the minimum size of the “leaf” was
determined as 5. It is to force the algorithm to generalize data and, as a consequence,
to avoid overfitting.

The other important hyperparameter of a random forest classifier is the max
depth of a tree, defining the maximum number of steps in a division process of
a dataset. Too small value of this hyperparameter results in low accuracy of the
model, as only a few features are subsequently used to divide the dataset. On the
other hand, the too large number will lead to overfitting — the model will learn
how to perfectly split the models from the training data set when classification
accuracy for the test dataset will be considerably lower. The mean classification
accuracy obtained for different max depth hyperparameter values were presented
in Fig. 3. Based on this chart, we can state that max depth equal to 8 is the
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optimal value. Increasing this number does not significantly affect the classification
accuracy. However, it is important to mention that this value was established for the
dataset including only 9 different classes. In the case of libraries of CAD models
including more clusters, other, probably higher value of the hyperparameter might
be desired.

o
©

Classification accuracy
o o
~ ™

o
[}
o

5 10 15 20

Fig. 3. Classification accuracy as a function of “max depth” of the forest

After the optimal depth of the tree was defined, another random forest classifier
model was built (using the optimal hyperparameters and train test split 3:1) to obtain
confusion matrix and precision-recall curve. These characteristics are presented in
Table 2 and Fig. 4, respectively. The confusion matrix is supposed to present
algorithm classification predictions against the actual classification. The precision-
recall curve represents the compromise between the relative number of samples
the algorithm classifies and precision of this classification.

Table 2.
Confusion matrix obtained for the random forest classifier
Actual class

class S| S| S| S |86d|d|8]| S |8
Class 1 0 0 0 0 0 0 0 0
Class 2 0 0 0 0 0 0 0 0
Class 3 0 0 0 0 0 0 0 0
Class 4 5 0 0 1 0 0 0 0
Class 5 4 0 0 8 0 0 0 0
Class 6 1 0 0 0 0 0 0 0
Class 7 0 0 0 0 0 0 0 0
Class 8 0 0 0 0 0 0 0 0
Class 9 0 0 0 0 0 0
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Fig. 4. Classification accuracy as a function of “max depth” of the forest

The obtained values prove that even relatively simple machine learning model
can provide classification accuracy much higher than the benchmark. According to
the precision-recall curve (Fig. 4), the model achieves almost ideal classification
precision (99% or more) for the recall less than 0.9. In other words, if the goal is just
to detect some examples of the models belonging to a specific class, the random
forest classifier performs very well. On the other hand, if the goal is to detect all
instances of the specific class (recall equal to 1), the number of incorrectly labeled
models increases and thus the classification precision drops significantly.

Features most likely used in the random forest classifier were presented in
Fig. 5. 10 features presented in the chart have over 63% of impact on the final accu-
racy of the model. According to those statistics, features representing relationship
between area and volume are the most critical ones. Nevertheless, the total number
of faces and edges included in the model is also important.

Bounding box diagonal IE———

Bounding box size X I

Area

Relative area of largest face
Contribution of faces of area 0-10%
Number of edges

Crinkliness

Number of faces

Valume/Area ratio

Area/Volume ratio

o
o
o
@

0,06 0,09 0,12
Feature importance

Fig. 5. The most important features according to the random forest classifier



www.czasopisma.pan.pl P N www.journals.pan.pl
N
S
POLSKA AKADEMIA NAUK

CAD models clustering with machine learning 143

4.2. Support Vector Classifier (SVC)

Support vector classifier (SVC) is an algorithm that proved to be useful in
the case of problems that consist of a large number of features inside input vector
compared to the number of samples used for training. However, the best accuracy
of the algorithm is achieved with datasets whose classes do not overlap and can be
easily separated with the hyperplanes. It can potentially be a problem in the case
of the considered dataset.

SVCis an algorithm working with numerical data. Because of this requirement,
categorical features (LargestFaceType) were converted into the set of dummy vari-
ables (IsCylindrical, etc.) Additionally, as SVC is not scale invariant, all numerical
features were normalized to avoid the algorithm being biased by the absolute value
of the specific feature.

Support vector classifier is also vulnerable to the values of hyperparameters.
Because of that, four most important hyperparameters were optimized with the use
of grid search [9]. Those hyperparameters included: the kernel defining the type
of hyperplane used to split the data; y defining how well algorithm should match
the training data and thus defining the compromise between generalization and
overfitting; C defining soft margin around hyperplanes within which points are not
assigned to any of the classes. Additionally, for the polynomial kernel, different
values of degree were tested. Optimal values of hyperparameters obtained in the
optimization using 5-folds cross-validation were presented in Table 3.

Table 3.
Optimal hyperparameters values obtained for SVC
Kernel b% C Degree
Polynomial 1 10 3

After optimal values of hyperparameters were evaluated, another SVC model
was built to obtain the precision-recall curve and the confusion matrix. Those
characteristics are presented in Fig. 6 and Table 4, respectively. According to the
precision-recall curve, SVC performs worse than the random forest classifier in the

'
0,8

0,6

Precision

0,4
0,2

0

0 0,2 0,4 0,6 0,8 1
Recall

Fig. 6. Precision-recall curve obtained for the Support Vector Classifier
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significant range of recall values. Nevertheless, SVC outperforms random forest
classifier in the most important, top-right corner of the chart where both precision
and recall are high. The fact that SVC performs better than the random forest
classifier in this critical region was also captured in the confusion matrix (Table 3).
It points out that SVC incorrectly classified only 9 out of 414 models achieving
classification accuracy equal to 97.8%.

Table 4.
Confusion matrix obtained for support vector classifier
Actual class

Pediced |y |y | 2 |z | 2| gz | 2 % |3
class S| S| S| |86|d|8]| S |38
Class 1 1 0 0 0 0 0 0 0
Class 2 0 0 0 0 0 0 0 0
Class 3 0 0 0 0 0 0 0 0
Class 4 0 0 0 6 0 0 0 0
Class 5 0 0 1 0 0 0 0 0
Class 6 0 0 0 1 0 0 0 0
Class 7 0 0 0 0 0 0 0 0
Class 8 0 0 0 0 0 0 0 0

Class 9 0 0 0 0 0 0 0 0

Unfortunately, because of the number of hyperparameters that need to be tuned,
the creation of skillful SVC model is more time-consuming than the preparation
of the random forest classifier model. Additionally, implementation of SVC avail-
able in the scikit-learn library might use one-against-one approach to multiclass
classification [25]. It means the number of classifiers built in the background is
proportional to the square of the number of classes. Because of that, utilization of
SVC could be much more computationally expensive in the case of the real-world
databases including many groups of models. In those cases, usage of one-vs.-rest
approach could be more desirable.

4.3. Fully Connected Neural Network

There are two important hyperparameters controlling topology and architecture
of the neural network. These are the number of hidden layers and the number of
neurons in each layer. Neural networks including more than one hidden layer are
commonly called deep neural networks [26]. It is said that deep neural networks
usually outperform regular neural networks [27] and are better in recognizing
complex patterns. In this work, both a “shallow” and a deep network (with 2 hidden
layers) were considered.
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Among the algorithms considered in this work, the neural network has the
largest number of parameters to be tuned. However, in this paper, the optimization
was limited to the network architecture. The remaining hyperparameters were
adopted from the literature [28, 29] and are presented in Table 5. It was assumed
that their suboptimal values will be partially compensated by the relatively high
number of 5000 training epochs. Additionally, the initial tests indicated that the
best classification accuracy was achieved with the use of the rectified linear unit
(ReLU) activation function assigned to neurons in all hidden layers. The sigmoid
function was used in the output layer to ensure that the output values are in a 0-1
range what can be regarded as a probability of the CAD model belonging to the
specific cluster.

Table 5.
Hyperparameters used for training of the neural networks
Activation function (hidden layer(s)) ReLLU
Activation function (output layer) Sigmoid
Loss function categorical cross entropy
Optimizer Adam with default parameters
Number of epochs 5000
Batch size 32

As the considered dataset is relatively small, the exhaustive approach for
neural network structure optimization was applied. In the exhaustive approach,
all potential configurations of the neural network within predefined bounds are
considered. Generally, the increase in the number of neurons in the hidden layer
should increase the capability of the neural network to perceive patterns. On the
other hand, too large number of neurons can result in overfitting and increase
learning time. In this paper, the following heuristics were used to determine the
maximum and minimum number of neurons in the hidden layers to be used in the
optimization:

* The number of neurons in the hidden layer should be smaller than the size of
the input layer and larger than the size of the output layer. In the considered
case, it translates to the maximum of 46 neurons.

* The number of neurons in the hidden layer should not be larger than 2/3 of
the sum of neurons in the input and the output layers. In the considered case,
it is the maximum of 37 neurons.

* The total number of neurons in all hidden layers should not be greater than
twice the size of the input layer.

The influence of the number of neurons in the hidden layer on the classification

accuracy (calculated with use of 5-fold cross validation) was presented in Fig. 7.
It is observed that, starting from 8 neurons, the classification accuracy fluctuates
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Fig. 7. Classification accuracy of a neural network as a function of the number of neurons
in a hidden layer

around 98%. Nevertheless, the highest value was recorded for 22 hidden neurons
and this value was used in further evaluation.

In the case of deep neural network, the third of the aforementioned heuristics
imposes additional constraint on the total number of neurons. Optimization of the
NN architecture indicated that the highest classification accuracy was obtained for
the network with 20 neurons in the first hidden layer and 14 neurons in a second
hidden layer (configuration: 47-20-14-9).

To obtain precision-recall curves and confusion matrices, additional models
using optimal NN architecture were built. The model including 1 hidden layer
achieved 98% classification accuracy, whereas the model with 2 hidden layers
achieved accuracy as high as 99%. The obtained characteristics, i.e., precision-
recall curves and confusion matrices are presented in Fig. 8 as well as Tables 6 and 7.
Those characteristics prove that neural network can outperform other machine

0,8 0,8

S 06 S 06
3 3
3 3

a 04 & 04

0,2 0,2

0 0

0 0,5 1 0 0,5 1
Recall Recall
(a) 1 hidden layer (b) 2 hidden layers

Fig. 8. Precision-recall curves obtained with the neural network
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learning algorithms in the case of the considered problem as well as that deep
neural network can achieve better results than the regular, “shallow” network. At
the same time, the analysis of confusion matrices showed that the biggest challenge
for the algorithms was to distinguish classes 4 and 5 which differ only because of
the existence of few small holes in class 4.

Confusion matrix obtained with the neural network with 1 hidden layer bl
Actual class

Pediced |y |y | 2 | 2| 2 2| 2| % | %
class S|Sd| S |c|d|8|38]| T |3
Class 1 1 0 0 0 0 0 0 0
Class 2 0 0 0 0 0 0 0 0
Class 3 0 0 0 0 0 0 0 0
Class 4 0 0 0 3 0 0 0 0
Class 5 0 0 0 3 0 0 0 0
Class 6 0 0 0 1 0 0 0 0
Class 7 0 0 0 0 0 0 0 0
Class 8 0 0 0 0 0 0 0 0

Class 9 0 0 0 0 0 0 0 0

Table 7.
Confusion matrix obtained with the neural network with 2 hidden layers
Actual class

class S|Sd| S| |5 |8|8]| 3T |3
Class 1 1 0 0 0 0 0 0 0
Class 2 0 0 0 0 0 0 0 0
Class 3 0 0 0 0 0 0 0 0
Class 4 0 0 0 2 0 0 0 0
Class 5 0 0 0 0 0 0 0 0
Class 6 0 0 0 1 0 0 0 0
Class 7 0 0 0 0 0 0 0 0
Class 8 0 0 0 0 0 0 0 0

Class 9 0 0 0 0 0 0 0 0
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4.4. Comparison of machine learning models

All of the models considered in this paper achieved classification accuracy
much higher than the benchmark. The comparison of the precision-recall curves
presented in Fig. 9 shows that random forest classifier outperforms other models
for the recall range 0-0.9. It means that this simple model can properly classify
even 90% of the CAD models with the precision exceeding 99.5%. Nevertheless,
the difference between random forest classifier and the neural network is very small
(less than 0.5%). At the same time, the neural network performs much better in the
top-right corner of the chart where both recall and precision are high. Actually, it
is the most desirable point of operation for the machine learning model.

1
1 =

0,9 V 1 - ._ _

0,8 !

0,7 | ceeeeee Random Forest 0,95

......... Random Forest
s c
S o6 (SJ{';aésmer o Classifier
(2]
205 S 09 SvC
04 £
o Neural Network o Neural Network
0,3 (1 hidden layer) 0.85 (1 hidden layer)
0,2 — = = Neural Network ’ — = = Neural Network
0,1 (2 hidden layers) (2 hidden layers)
0 0,8 .
0 05 1 0,8 0,9 1
Recall Recall
(a) Entire range (b) Top-right corner of precision-recall curve

Fig. 9. Precision-recall curves obtained for different machine learning models

In Fig. 10 the F1 score, being the harmonic mean of the precision and recall
was presented. It can be noticed that all the models achieve very high value of
F1 for classes 3 and 6-9. However, for classes 1, 4 and 5, the random forest

1

0,9
0,8
0,7
0,6
L 05
0,4
0,3
0,2
0,1
0
1 2 3 4 5 6 7 8 9

Class
m Random Forest Classifier SvVC = NN (1 hidden layer) mNN (2 hidden layers)

Fig. 10. F1 score obtained for different machine learning models
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classifier performs worse than other models. Additionally, the difference in F1
values obtained for classes 4 and 5 proves that the neural network with 2 hidden
layers is the best model to detect nuances distinguishing the part shapes.

5. Discussion

Most industries still use text-based search engines to retrieve CAD models. In
the background, they utilize file name and manually-entered attributes describing
the geometry. It makes those methods vulnerable to human error and difficult to
maintain.

The machine learning approach using geometry attributes for classification
provides a convenient alternative. By using different training datasets, the machine
learning model can easily meet the requirements of the specific industry. It can
also be expanded with new classification “rules” without the necessity to manually
define them — the algorithm just needs to be retrained with the expanded/modified
dataset. As aresult, the algorithm is easy to maintain. Finally, the resultant (trained)
model is relatively small compared to the methods based on if-then statements. It
makes it possible to use the model even on computers with limited computational
power.

The advantages of the proposed methodology provide many potential indus-
trial applications. First of all, it could be implemented in the Product Lifecycle
Management systems (PLM) to help designers find similar components already
in the production. As a result, they could utilize the knowledge (e.g., about the
acceptable tolerances) already stored in the parts being produced. It would also
prevent designing very similar components or duplicates. The proposed approach
could also enable Computer-Aided Process Planning (CAPP) systems to faster de-
fine manufacturing processes or estimate the manufacturing cost based on the most
similar components which already have been considered.

6. Conclusions and future work

This paper introduces a methodology for utilizing machine learning (ML)
algorithms for clustering CAD models. 45 properties of CAD model geometry
(volume, surface area, type of the largest face etc.) were used as an input vector
for 3 different machine learning models: the random forest classifier, the support
vector classifier and the fully connected neural network. Each of those algorithms
achieved average classification accuracy exceeding 95% when being trained and
tested on the dataset generated with use of 1653 CAD models coming from the
industry. The best classification accuracy, exceeding 99% was achieved with the
deep neural network supposed to split the dataset into 9 different clusters. Confusion
matrices prepared for each of the ML models showed that the biggest challenge
for the algorithms was to properly classify CAD models that differ only because of
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the existence of some minor features (e.g., holes). The initial tests proved that even
simple machine learning techniques (random forest classifier), using only a few
hyperparameters, can achieve relatively high classification accuracy. Additionally,
due to the flexibility of machine learning techniques, the resultant models can be
easily adjusted to specific requirements of the company or industry.

Further work should verify the reliability of the proposed method on a dataset
that consists of more classes as well as includes some complex geometries. Ad-
ditionally, only the features that mostly contribute to the final performance of the
algorithms should be extracted. The input vector provided to the algorithm can
also be expanded with new properties such as average length of the edge. Finally,
further tuning of architecture and hyperparameters of the neural network can be
considered as a potential method for obtaining even better results.
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