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Development of identification procedure for the internal
and external damping in a cracked rotor system

undergoing forward and backward whirls

In the present work, a procedure for the estimation of internal damping in a
cracked rotor system is described. The internal (or rotating) damping is one of the
important rotor system parameters and it contributes to the instability of the system
above its critical speed. A rotor with a crack during fatigue loading has rubbing action
between the two crack faces,which contributes to the internal damping.Hence, internal
damping estimation also can be an indicator of the presence of a crack. A cracked rotor
system with an offset disc, which incorporates the rotary and translatory of inertia
and gyroscopic effect of the disc is considered. The transverse crack is modeled based
on the switching crack assumption, which gives multiple harmonics excitation to the
rotor system.Moreover, due to the crack asymmetry, the multiple harmonic excitations
leads to the forward and backward whirls in the rotor orbit. Based on equations of
motions derived in the frequency domain (full spectrum), an estimation procedure
is evolved to identify the internal and external damping, the additive crack stiffness
and unbalance in the rotor system. Numerically, the identification procedure is tested
using noisy responses and bias errors in system parameters.

1. Introduction

In industry, high-speed rotating machinery requires the operation in a stable
speed region to evade premature failure of components and to ensure the personnel
safety. Hence, the prediction of the instability at the design stage itself of such a
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machinery is very crucial. However, it requires accurate modeling and analysis of
physical phenomena leading to instability. One of the many causes of the rotor
instability is the existence of internal (or rotating) damping. This type of damping
occurs owing to rubbing of free surfaces (shaft-disc interfaces, crack free faces,
etc.) and/or the material hysteresis during the shaft rotation. Theoretical procedures
to accurately estimate the internal damping of intact shaft in available damping
mathematical models are quite challenging in rotor systems [1]. Moreover, it is to
emphasize that the internal damping could also come from the crack and, from
this aspect, hardly any literature is available. The analysis on the micro-rubbing
of surfaces in mechanical parts and joints and its effect on dynamics of bigger
structures (the so-called structural friction) are available but these are non-rotating
structures.

Very few attempts have been made on the internal damping identification.
However, in literature, the instability analysis due to the internal damping has been
dealt with in detail. Ehrich [2] studied the spin speed stability regions with dif-
ferent whirl modes for different internal damping condition. Shaw and Shaw [3]
elaborated the stable and unstable regions of the whirl mode in a rotor system
based on the ratio of external and internal damping with increasing spin speed.
Kurnik [4] analyzed the stability of rotating shaft with the internal and external
damping with speed variation from the subcritical to supercritical speeds. Chen
and Ku [5] and Ku [6] worked on analysis of the forward and backward whirls in the
region of stability owing to the effect of the internal and hysteretic damping. The
rotary and translational inertia are considered including the gyroscopic couple in a
rotor-bearing system based on the Timoshenko beam theory. Melanson and Zu [7],
based on the Timoshenko beam model, studied the stability of rotating machinery,
considering the external damping and hysteretic damping. Genta [8] discussed the
effect of hysteretic damping at the critical, subcritical and supercritical speeds for
a rotor system in the forward and backward whirling motions. Dynamic instability
of the rotor system was also studied by Dimentberg [9] and Vatta and Vigliani [10]
due to random variations of the system internal damping. The stability analysis of
viscous internal damping and dry friction damping at rotor-shaft joints was consid-
ered in a rotor system by Fischer and Strackeljan [11]. Using the Euler–Bernoulli
beam theory in rotor system by considering the effect of rotary and translational
inertia with a gyroscopic moment of the disc, the external and hysteretic damping
was estimated by Montagnier and Hochard [12]. Chouksey et al. [13] worked on
the modal analysis to study the effect of the internal damping influence of the shaft
and fluid film forces (external damping) from journal bearings on the rotor system
instability. The effect of the shaft material (internal) damping is found to reduce
the stability limit speed.

Full-spectrum based regression methods have been used by many authors for
different fault identification. For example, in the identification of fault parameters of
rotating machinery, i.e., the residual unbalance, crack, viscous (external) damping,
etc. The feature-based identification of malfunctioning of rotating machinery based
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on full-spectrum in the forward and backward whirling was proposed by Goldman
andMuszynska [14]. The full-spectrum conveys the sense of rotation of a particular
whirl orbit in the forward or backward direction with respect to the spinning
direction of the rotor. Tiwari [15] presented a detail discussion on the identification
of the residual unbalance and bearing dynamic parameters in a multi-degrees-of-
freedom rotor-bearing system based on the regression method.

Several researchers have worked on the crack identification including other
system parameters, like external damping, unbalance, misalignment, etc. Mayes
and Davies [16] described the transverse crack opening and closure in the rotor
shaft based on vibration in a rotor-bearing system. Gasch [17] illustrated the dy-
namic response of a Laval rotor in the presence of transverse crack and unbalance.
Karthikeyan et al. [18], and Singh and Tiwari [19] used the finite element modeling
and developed algorithms to estimate the size and location of cracks in a shaft sys-
tem. Shravankumar and Tiwari [20], and Sandeep Singh and Tiwari [21] worked
on a transverse cracked shaft to identify different system parameters, such as the
additive crack stiffness, viscous damping, and disc eccentricity. They assumed the
crack model as the switching crack, and the full spectrum in multi-harmonics was
used for the identification of the parameters based on the regression matrix method.
Sandeep Singh and Tiwari [22, 23] extended the identification of crack parameters
in a Jeffcott rotor active magnetic bearing model with an offset disc considering
gyroscopic effect.

It is clear from the literature review that research works so far focused on the
estimation of internal damping or estimation of crack parameters along with the
other rotor systemparameters. However, limited or nowork has been reported on the
combined effect of coexistence of crack and associated internal damping, which is
very much of practical importance. This is because the internal damping estimation
can give an indication of crack growth in rotors. Therefore, in the current work,
estimation of the internal damping owing to the rotor crack effect is being attempted.
The system model has a simple rotor with an offset disc and an assumption of
switching crack has been made to mathematically model the crack function. The
offset disc gives rise to the gyroscopic effect, and based on these considerations
the equations of motion (EOMs) are derived. The dynamic condensation has been
applied to eliminate two rotational (due to tilting of the disc) displacements from
the EOMs,which are difficult tomeasure in practice. The full spectrum of responses
is obtained by two methods, the first method is based on the regression method
and the second method is based on the fast Fourier transform (FFT). However,
the FFT-based full spectrum needs a phase correction with respect to a reference
signal. Based on EOMs in frequency domain, an identification procedure has
been developed, which estimates the internal damping and other crucial system
unknown parameters, like the external damping, unbalance and crack stiffness. The
effectiveness of the present model-based identification procedure has been tested
numerically against different noise levels in responses and bias errors in system
parameters.
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2. System model

This section presents the derivation of EOMs of a cracked rotor. The rotor
consists of a crack shaft incorporating the internal damping due to crack and
the gyroscopic effect owing to the offset disc. Moreover, it includes the external
damping and unbalance. The generation of numerical responses in full spectrum
has been also been described.

2.1. Configuration of rotor model and equations of motion

In this work, a simple rotor model configuration is considered with a transverse
crack near the offset disc, as shown in Fig. 1. The support bearings at both the ends
are assumed to be transversely rigid, which allows the rotations of the shaft. Point O
is the origin on the bearing axis line and near the disc, z is the bearing axis and x
is the vertical axis in the downward direction (along the direction of gravity). Let
mg be the weight of the disc, ϕy0 represent the initial (static) tilting of disc and
ux0 is the static deflection of the disc. Rotational coordinate axes are ξ and η. The
crack front direction is considered in the ξ axis. Disc translation displacements are
shown in Fig. 2. Let ω be the shaft spin speed and t represents the time. Points C
and G represent the geometric center and center of gravity of the disc, respectively.
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Fig. 1. Jeffcott rotor with an offset disc in the presence
of a transverse crack in static condition
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Fig. 2. The rotor with unbalance, self-weight, internal and external
damping force and displacement (x = ux + ux0 and y = uy) with

respect to the fixed and rotating frame of references
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Let e be the radial eccentricity of the disc, which is the distance between C and G,
and φ is the phase angle between the unbalance force and the crack front direction
(i.e., ξ axis direction). Forces due the internal damping (cH ), external damping
(cE ) and the gravity are shown in Fig. 2.

EOMs of the rotor with the cracked shaft and offset disc considering of gyro-
scopic effects, however, without internal damping are given as ([24])

Mq̈(t) + (CE − ωG) q̇(t) +
(
K − ∆K(u, t)

)
q(t) = fst + funb(t). (1)

Here M, CE , G, and K are the mass matrix, external damping matrix, gyroscopic
matrix, and stiffnessmatrix, respectively. In addition, thematrix∆K is the flexibility
matrix owing to the crack and details of it are discussed in the next section. Vectors
fst and funb are force vectors owing to the static deflection and the unbalance,
respectively; q is the vector of displacement, and q̇ and q̈ are the first and second
time derivatives of q. Various matrices and vectors are given in Appendix A
(Equation (A1)).

2.2. Internal damping model

The internal damping comes on the shaft owing to the rubbing of two faces of a
crack, rubbing between disc and shaft, and due to hysteresis. Let the combined form
of internal viscous damping factor be cH . Forces due this are shown in Fig. 2 along
with external viscous damping force. These forces in the stationary coordinate
system can be written as

fxd (t) = cH ξ̇ cos(ωt) − cH η̇ sin(ωt) + cE u̇x (2)

and
fyd (t) = cH ξ̇ sin(ωt) + cH η̇ cos(ωt) + cE u̇y . (3)

On combining damping forces in the complex form, we get

fcd (t) = fxd (t) + j fyd (t). (4)

On using Equations (2) and (3) in Equation (4), we get

fcd (t) = cH ζ̇ejωt + cE ṙ . (5)

Defining ζ = ξ + jη one gets the complex displacement in a rotating coordinate
system with j =

√
−1, and r = x + jy is the complex displacement in the stationary

coordinate system. This gives ζ̇ = ξ̇ + jη̇ and ṙ = ẋ + jẏ as the derivatives of
complex displacement. The transformation from the stationary coordinate system
to the rotating coordinate system is given as ζ = re−jωt with ζ̇ =

(
ṙ − jωr

)
e−jωt .

Hence, the damping force takes in the following form

fcd (t) = cH
(
ṙ − jωr

)
+ cE ṙ . (6)
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The details of the matrices and vectors are given in Appendix A (Equations (A2)).
On including the internal damping, the system of Equation (1) takes the follow-
ing form

Mq̈ + (CE + CH − ωG) q̇ +
(
ωC1H +K − ∆K(s, t)

)
q = fst + funb(t). (7)

The detail of the matrices is given in Appendix A (Equations (A3)). We have
q(t) = qv (t) + q0, so that q̇(t) = q̇v (t) and q̈(t) = q̈v (t). Equation (7) takes the
following form

Mq̈v + (CE + CH − ωG) q̇v + (ωC1H +K) qv

= ∆K (s, t) (qv + q0) − ωC1Hq0 + funb(t) (8)

with Kq0 = fst, for the static condition, and details of the solution of q0 are
given in appendix Equations (A4) to (A5). Based on the weight dominance, in
Equation (8), the terms qv (t) in right-hand side can be ignored as compared to the
static deflection, q0, because of q0 is much larger than qv (t) owing to the heavy
weight of the rotor ([22]). Hence, the modified EOM is

Mq̈v + (CE + CH − ωG) q̇v + (ωC1H +K) qv

= ∆K(s, t)q0 − ωC1Hq0 + funb(t). (9)

2.3. Model of the Crack

The load (forces and moments) direction based on a transverse crack represen-
tation is shown in Fig. 3. The additional flexibility matrix because of the crack, on
the basis of the fracture mechanics approach, is generally used as a crack model
[22, 25]. The time-dependent additive crack has the following form

∆K′rot(t) = σ(t)∆K′rot . (10)

The shaft stiffness in the closed condition of the crack is K′rot (which is the same
as the intact shaft stiffness) and for the crack open condition is K′rot − ∆K′rot. Here,
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3p 4p

5p

Fig. 3. Various load directions across the transverse crack in a rotor element
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∆K′rot is the additive crack stiffness, which comes into picture when the crack is in
open condition. In the rotating shaft, ∆K′rot is not considered when the crack is in
the closed condition and is subtracted only in its open condition. Thus, it represents
a switch on-off mode of the crack, which is a time-dependent phenomenon. To
model this behavior, a switching crack model of an additive stiffness excitation
function is chosen based on the Fourier-series [17]. It considers a switching crack
excitation function (SCEF) as σ(t). The general SCEF for a rectangular function
is given as,

σ(t) =
1
2
+

2
π

cos(ωt) −
2

3π
cos(3ωt) +

2
5π

cos(5ωt) −
2

7π
cos(7ωt) + · · · (11)

The stiffness matrix of the intact shaft, the crack stiffness matrix and the force
vector is expressed in the static frame of reference, as

K′ = TTK′rotT,

∆K′(t) = TT∆K′rotT,

fcr (t) = σ(t)∆K′(t)q0 ,

(12)

which can be written in the expanded form, as

fcr (t) =
1
2
σ(t)




∆k22(1 + cos 2ωt)ux0

∆k22 sin(2ωt)ux0

∆k44(1 + cos 2ωt)ϕy0

∆k44 sin(2ωt)ϕy0




. (13)

Noting Equations (9) and (13), the EOM takes the following form

Mq̈v + (CE + CH − ωG) q̇v + (ωC1H +K) qv = fcr (t) −ωC1Hq0 + funb(t). (14)

Equation (14) in the complex form can be expressed, as

Mv̈+
(
CE + CH − jωG

)
v̇+

(
K − jωCH

)
v = fcr (t)+funb(t)+ jωcH




ux0

0




(15)

with
r = ux + juy , ϕ = ϕy + jϕx ,(

−Ipωϕ̇x
)
+j

(
Ipωϕ̇y

)
= jIpωϕ̇, ωcHuy−jωcHux = −jωcHr, ux0+juy0 = r0ejθ,

M =


m 0
0 Id


, CE =



cE 0
0 0


, CH =



cH 0
0 0


,

G =


0 0
0 −Ip


, K =



k22 k23

k32 k33


, v(t) =




r (t)
ϕ(t)



,
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fcr (t) =
1
2
σ(t)




∆k22ux0
(
1 + e2jωt

)
∆k44ϕy0

(
1 + e2jωt

) 

, funb(t) =




meω2ej(ωt+φ)

0



.

In the crack force expression, the following term is expressed in a series of multiple
harmonics through Equation (11), as

1
2
σ(t)

(
1+e2jωt

)
= 0.25 + 0.319ejωt + 0.25e2jωt + 0.106e3jωt

− 0.021e5jωt + 0.009e7jωt + 0.106e−jωt − 0.021e−3jωt

+ 0.009e−5jωt + · · ·

(16)

Equation (16), in a notational form, is expressed as

1
2
σ(t)

(
1 + e2jωt

)
=

i=n∑
i=−n

piejiωt . (17)

In Equation (17), pi denotes the coefficient of the ith term in the harmonic function
of the crack force excitation, also called the participation factor of individual
harmonics. The coefficients are small for higher-order harmonics and they do not
depend on the crack depth, for the whole range of tc/R < 0.5, where, tc is the crack
depth and R is the radius of the shaft. This is an assumption for the hinge model of
the crack [17]. Then, the crack force takes the following form

fcr (t) =



∆k22ux0

∆k44ϕy0




i=n∑
i=−n

piejiωt . (18)

Hence, the solution to Equation (15) will be of the following form

v(t) =
i=n∑
i=−n

viejiωt . (19)

Hence, noting above equations, the EOM (i.e., Equation (15)) will be having the
following form in the frequency domain


−(iω)2



m 0
0 Id


+ j(iω) *

,



cE 0
0 0


+



cH 0
0 0


+ jω



0 0
0 Ip


+
-

+ *
,



k22 k23

k32 k33


− jω



cH 0
0 0


+
-


vi = fi (20)

with

fi =



∆k22ux0

∆k44ϕy0




i=n∑
i=−n

pi +



meω2ejφ

0


i=1

+ jωcH



ux0

0


i=0

.
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The force term fi is represented in the following form

f0 =



∆k22ux0

∆k44ϕy0




p0 + jωcH



ux0

0




for i = 0

f1 =



∆k22ux0

∆k44ϕy0




p1 +



meω2ejφ

0




for i = 1

fi =



∆k22ux0

∆k44ϕy0




i=n∑
i=−n

pi for i = 2, 3, 5, 7, . . . , −1, −3, −5, . . .

(21)

The time-domain response of the system, v(t), is generated through the integration
of Equation (15). The forward and backward whirling of the rotor system, vi, can
be obtained through the full spectrum of v(t). The full spectrum extraction from
time domain signals and its application are presented in the next section.

3. Generation of full spectrum responses

Equation (19) can be expanded as

v(t) = v0 + v1ejωt + v2e2jωt + v3e3jωt + v5e5jωt + · · ·

+ v−1e−jωt + v−3e−3jωt + v−5e−5jωt + · · · . (22)

In the above equation, the aim is to obtain various terms, v0, v1, v−1, v2, v−2, . . .
It should be noted that these are complex quantities, and it gives amplitude and
phase corresponding to various harmonics,ω,−ω, 2ω,−2ω, . . . , which in graphical
representation is called the full spectrum. Two procedures are described below to
extract the full spectrum.

3.1. Full spectrum based on regression method

For the estimation of unknown complex displacement, i.e., full spectrum dis-
placements, Equation (22) gives the following regression equation (for the present
case only up to 7th positive and up to 5th negative harmonic expressions are illus-
trated)

A1n×9 (t)vi9×1 = vn×1(t). (23)

The details of vector matrices A1n×9 (t), vi9×1 and vn×1(t) are given in Appendix A
(Equation (A6)). For the estimation of the unknown vector fromEquation (23), time
domain displacement responses v(t)n×1 will be used as an input that is obtained by
time integration discussed earlier (or in the case of the experimental setup, it can
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be measured directly). Now, for the computation of unknown vector, Equation (23)
may be expressed as

vi9×1 =
(
AT

1 A1
)−1

AT
1 v(t). (24)

The estimates, vi9×1 , thus found from Equation (24), are in the complex form and
they represent complex displacement at various harmonics (both in the forward
and backward directions). The above estimation requires large data to be handled
in the time domain, which is time consuming, so FFT-based full spectrum has been
explained in the next subsection. However, it gives a phase shift, and the correction
of it is also explained in the next subsection.

3.2. FFT-based full spectrum estimation

It is known that the FFT is the most popular tool to convert time domain
signals to the frequency domain. The FFT is a practical tool as compared to the
estimation of full-spectrum based on the regression equation (i.e., Equation (24))
due to its computation efficiency. However, it is seen that during FFT of signals,
the amplitudes of various harmonics remain unaffected, but the phases contain
an anomaly. To avoid this anomaly, it is required to pass a time domain signal to
the FFT algorithm starting at the same time instants with respect to a reference
signal. Moreover, to avoid leakage error (which gives anomaly in both amplitude
and phase), the signals must have a complete cycle, (i.e., ωt = 2πn with n is an
integer). It is very difficult to capture a signal in the aforementioned methods for all
practical purposes. An adequate phase compensation can be provided for removing
the ambiguity in phase, which is due to random instant picking of the time domain
signal, to match the rotor system configuration with the help of a reference signal.
In this work, with the help of a reference signal, the phase compensation has been
provided.

The full-spectrum estimation methodology is given in the form of a flowchart,
as shown in Fig. 4. In which, |vi (ω) | is the magnitude and ∠θi is the phase of ith

harmonic of the response displacement, where i is an integer (positive as well as
negative). The multiple harmonic complex reference signal is used for all signal
analyses, the harmonics that are mentioned in the flowchart are only required to
be present in the reference signal. Conversion of time domain quadrature reference
signal to the frequency domain has been carried out using the FFT process. In
the flowchart, |Xi | and ∠ψi are the magnitude and phase of ith harmonic of the
reference signal, respectively. The compensated full spectrum is expressed as [21].

vci = |vi (ω) |∠ (θi − ψi) , (25)

where vci = RiRe + jRiIm is the corrected full-spectrum complex displacement.
Initially, the identification of system parameters is performed by both methods
described in this section, viz., the regression-based and FFT-based methods, and
are compared for the correctness and their accuracy.
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Fig. 4. A flowchart for the full spectrum phase compensation processing

4. Identification of internal damping and other rotor parameters

In this section, an estimation procedure will be developed to estimate the
rotor system parameters, like the internal damping, external damping, additive
crack stiffness and unbalance, which are not possible to predict by modeling.
The developed procedure will use the system responses and some of the system
parameters, like the mass of discs and stiffness of the shaft. The procedure will
use the EOM Equation (20) to convert it to a regression form for estimation of the
parameters. However, it contains the rotational DOFs, the measurement of such
responses, in practice, is very difficult. To overcome this practical difficulty, the
dynamic reduction scheme has been used in the identification procedure.
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4.1. Application of the dynamic reduction scheme

With this scheme, rotationalDOFs are eliminated. In Equation (20), the transla-
tion and rotational DOFs are considered as the slave andmaster DOFs, respectively.
The master and slave are represented with subscripts m and s, respectively. The
crack force in right-hand side of Equation (20) due to rotational DOFs can be
neglected in developing the transformation. The partitioned form of the equation
takes the following form

*
,
−(iω)2



Mmm 0
0 Mss


+ j(iω) *

,



Cmm Cms

Csm Css


− jω



0 0
0 Gss


+
-

+ *
,



Kmm Kms

Ksm Kss


− jω



CHmm 0
0 0


+
-
+
-




qmm

qss



=



fi
0



. (26)

The details of the matrices mentioned in equation (26) are given in Appendix A
(Equation (A7)). The dynamic condensation transformation matrix, TD , is ob-
tained as

qmm = Iqmm;



qmm

qss



= TDqmm (27)

with

TD =



I
Li




where Li =
−Ksm

Kss + iω2Gss − (iω)2Mss
.

Hereω is assumed to be the central frequency in the range of frequency of interest.
Using this transformation and including the crack force due to rotational DOFs in
Equation (26), we get

(
TD

)T 
−(iω)2



m 0
0 Id


+ ijω



cE 0
0 0


+ (i − 1)jω



cH 0
0 0


+ iω2



0 0
0 −Ip



+



k22 k23

k32 k33




TDqmm =

(
TD

)T *
,




∆k22ux0

∆k44ϕy0




i=n∑
i=−n

pi

+



meω2ejϕ

0


i=1

+ jωcH



ux0

0


i=0

+/
-
. (28)

For typical ith harmonic, TD is given as

TD
i =



1 0
0 1
tdi 0
0 tdi



where tdi =
−k42

k44 − iω2Ip − (iω)2Id
. (29)
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At the time of development of dynamic condensation transformation, the external
force including ∆k44 in the slave degree of freedom is considered to be zero, and it
is again added to the equation after the application of transformation matrix.

In matrix form, the reduced EOM takes the following form(
−(iω)2MD + ijωCD + (i − 1)jωCD

H + iω2GD +KD
)

qmm = fD . (30)

On substituting Equations (A10) through (A15) into Equation (30) and combining
together in a complex form with qmm = Ri , we get a single equation, as(
−(iω)2mi + ijω(cE ) + (i − 1)jωcH − iω2Ip

(
tdi

)2
+ ki

)
Ri

= meω2ejφ +
(
∆k22ux0 + tdi ∆k44ϕy0

)
pi + jωcHux0 (31)

with mi =

{
m +

(
tdi

)2
Id

}
; ki =

{
k22 + 2tdi k24 +

(
tdi

)2
k44

}
and Ri = RiRe + jRiIm .

Real terms of the above equation give

− iω (cE ) RiIm − (i − 1)ωcH RiIm − mω2eRe −
(
∆k22ux0 + tdi ∆k44ϕy0

)
pi

=

(
(iω)2mi + iω2Ip

(
tdi

)2
− ki

)
RiRe . (32)

Similarly, imaginary terms give

iω(cE )RiRe +
(
(i − 1)RiRe − ux0

)
ωcH − mω2eIm =(

(iω)2mi + iω2Ip
(
tdi

)2
− ki

)
RiIm . (33)

Further Equations (32) and (33) are rearranged in the matrix form for the iden-
tification of unknown parameters for various harmonics of the switching crack
function as

A x = b. (34)
In the identification, the unknown parameter vector is x =

{
cE cH eRe eIm

∆k22 ∆k44
}T and the details of other matrices, such as A and b, in the above

equation (34) are given in Appendix A (Equations (A8) and (A9)). To estimate x,
Equation (34) takes the following form

x =
(
ATA

)−1
ATb. (35)

The identification of x is reliable for multiple speeds of interest. On combining
for different spin speeds ω1, ω2, . . . , ωn, (with the assumption, parameters to be
estimated are speed-independent), Equation (34) may be written as



A (ω1)
A (ω2)

...

A (ωn)



x =




b (ω1)
b (ω2)
...

b (ωn)




. (36)
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Now the analysis and identification procedures developed in foregoing sections
are illustrated through numerical simulation.

5. Numerical simulations

A numerical simulation has been done through the Simulink model in MAT-
LABTM environment to obtain the time-domain data from EOMs, as in Equa-
tion (15). The Simulink block for the proposed rotor system is shown in Fig. 5.
The simulation runs for 8 s duration. Responses have been considered for complete
cycles (n) and incomplete cycles (in between (n−1) to n cycle) in the time domain
for the same speed of the rotor.

5.1. Time-domain and full-spectrum response

For the numerical simulation, initially, rotor system parameters are assumed,
which are summarized in Table 1. The generated responses have been considered
for n-complete cycles during 6 to 7 s duration. Initial 6 s response has been removed
to avoid transients. Time-domain signals have been generated for the value of ωt,
in which, ω = 2πn, where n is considered as an integer.

Table 1.
Assumed initial parameter of rotor model for the numerical solution

Parameters Value Unit
Mass of disc m 2 kg

Mass moment of inertia
Ip 0.0048 kg ·m2

Id 0.0024 kg ·m2

k22 5.779 × 105 N/m
Intact shaft stiffness k24 2.2016 × 104 N

k44 1.7613 × 104 Nm

Additive crack stiffness
∆k22 1.7337 × 105 N/m
∆k44 1.7612 × 103 Nm

External damping cE 27 Ns/m
Internal damping cH 20 Ns/m
Phase of unbalance φ 30 deg

Shaft deflection
ux0 3.57 × 10−5 m
ϕy0 −4.46 × 10−5 rad

Disc eccentricity e 3 × 10−5 m
Length of shaft l 0.36 m

a 0.20 m
b 0.16 m
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The time domain response generated through Simulink block for 20 Hz is
shown in Fig. 6. The plot shows both the vertical and horizontal displacement re-
sponses, orbit plots, and a vertical reference signal in Fig. 6a–6d, respectively. Orbit
plots show that, as the spin speed has increased, the unbalance force is dominating,
and looping due to multi-harmonics of crack forces is insignificant. The funda-
mental natural frequency (ωnf ) of the intact rotor system is 538 rad/s (85.63 Hz).

(a) (b)

(c) (d)

Fig. 6. Time-domain response generated at spin speed of 20 Hz: (a) vertical displacement, x,
versus time, (b) horizontal displacement, y, versus time, (c) orbit plot (x versus y) and

(d) vertical reference displacement, xref , versus time

Full-spectrum responses of the proposed rotor system have been generated
based on the time-domain responses. Responses of full spectrum show amplitude
and phase without and with phase compensation for a spin speed of 20 Hz in Fig. 7.
The full-spectrum amplitude for the complete and incomplete cycle of time domain
signals using the regression-based full spectrum and FFT-based full spectrum are
compared in Table 2 for a spin speed of 20 Hz. The amplitudes of the response
for both forward and backward whirling conditions of the rotor are found to be
similar for the complete cycle of signals with both the regression and FFT-based
full spectrums. However, the amplitudes for the incomplete cycle using the above
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Fig. 7. Full spectrum response at 20 Hz (a) amplitude and (b) phase without compensation,
(c) phase of reference signal and (d) phase with compensation

Table 2.
Comparison of full spectrum amplitudes at different harmonics based on the complete and

incomplete cycles of displacement signals at 20 Hz

Complete cycle Incomplete cycle
Frequency Regression based

(10−6 m)
FFT based
(10−6 m)

Regression based
(10−6 m)

FFT based
(10−6 m)

0 2.8563 2.8563 2.8563 2.8372

ω 5.5201 5.5201 5.5201 5.4937

2ω 3.7056 3.7056 3.7056 3.6788

3ω 2.5063 2.5063 2.5063 2.4855

5ω 0.5434 0.5434 0.5434 0.5339

7ω 0.0562 0.0562 0.0565 0.0448

−ω 1.2824 1.2824 1.2824 1.2711

−3ω 0.4943 0.4943 0.4943 0.4918

−5ω 0.2334 0.2334 0.2334 0.2283

mentioned twomethods have some difference. In fact, the full-spectrum amplitudes
generated through the regression-basedmethod for complete and incomplete cycles
of signals are found to be the same. However, the variation observed in amplitudes
by the FFT-based full spectrum for incomplete cycle case differs in only some
decimal points with that of the complete cycle.

The comparison of full-spectrum phase for the spin speed of 20 Hz for both
complete and incomplete cycles of signals using the regression and FFT-based



246 Dipendra Kumar Roy, Rajiv Tiwari

Table 3.
Comparison of full spectrum phases (θi ) at different harmonics based on the complete and

incomplete cycles of displacement signals at 20 Hz

Complete cycle Incomplete cycle
Frequency Regression based

(rad)
FFT based

(rad)
Regression based

(rad)
FFT based

(rad)
0 0.0616 0.0616 0.0616 0.0604

ω 0.1597 0.1597 0.5432 0.2557

2ω −0.0219 −0.0219 0.7450 0.1696

3ω −0.0572 −0.0572 1.0932 0.2298

5ω 0.1114 0.1114 2.0289 0.5827

7ω −3.1028 −3.1028 −0.4184 −2.3554

−ω 0.0162 0.0162 −0.3673 −0.0827

−3ω −3.0657 −3.0657 2.0670 2.9361

−5ω 3.0089 3.0089 1.0914 2.5459

method is provided in Table 3. The values of phase for the complete cycle con-
sidering the two methods are found to be similar, and these are correct values.
In the case of an incomplete cycle, these values of phase show appreciable varia-
tion with respect to correct values using both regression and FFT-based methods.
So, in order to remove the variation caused by the leakage error, the complete
cycles are collected with the help of a reference signal. In Table 4, the reference
signal full-spectrum phase angle is compared both with complete and incomplete

Table 4.
Comparison of full spectrum phases (ψi ) at different harmonics by the regression and FFT based

methods on the complete and incomplete cycles of reference signals at 20 Hz

Complete cycle Incomplete cycle
Frequency Regression based

10−14 (rad)
FFT based
10−14 (rad)

Regression based
(rad)

FFT based
(rad)

0 0.0011 0 0.0006 0

ω −2.4634 −3.1921 0.3842 0.0960

2ω −4.8942 −6.3477 0.7686 0.1918

3ω −21.5703 −28.0384 1.1514 0.2879

5ω 1.9627 2.5495 1.9185 0.4798

7ω −31.3823 −40.7641 2.6866 0.6714

−ω 2.4303 3.1921 −0.3830 −0.0959

−3ω 21.5779 28.03841 −1.1503 −0.2879

−5ω −1.9625 −2.5495 −1.9175 −0.4798
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cycles of signals using methods mentioned above. The phase values of the refer-
ence signal on considering the complete cycle turn out to be zero (≈ 10−14) using
both methods, which confirms that there is no phase compensation required for a
complete cycle. In the case of incomplete cycles of signals, the phase angle shows
appreciable deviations, which are found to be dissimilar for both the methods. To
perform the phase compensation in the signal due to the FFT-based method also a
reference signal is required, as shown in Fig. 4.

The phase compensation for the incomplete cycle is done, and the phase values
obtained are found to be similar to those obtained from the complete cycle using
both methods, as given in Table 5. From these tables, it is seen that the phase com-
pensation is required if incomplete cycles are considered to avoid leakage errors.
Similarly, for different spin speeds, the amplitudes and phases are obtained, and
are used in equation (36) for multiple or combined speeds to obtain identification
parameters, as summarized in Table 6.

Table 5.
Comparison of phase compensation (θi − ψi ) at different harmonics by the regression and FFT

based methods on the complete and incomplete cycles of displacement signals at 20 Hz

Complete cycle Incomplete cycle
Frequency Regression based

(rad)
FFT based

(rad)
Regression based

(rad)
FFT based

(rad)
0 0.0616 0.0616 0.0609 0.0604

ω 0.1597 0.1597 0.1590 0.1597

2ω −0.0219 −0.0219 −0.0235 −0.0222

3ω −0.0572 −0.0572 −0.0581 −0.0581

5ω 0.1114 0.1114 0.1104 0.1029

7ω −3.1028 −3.1028 −3.1050 −3.0268

−ω 0.0162 0.0162 0.0157 0.0133

−3ω −3.0657 −3.0657 3.2173 −3.0591

−5ω 3.0089 3.0089 3.0089 3.0258

The results obtained using complete cycles of signals are found to be accu-
rate, whereas for incomplete cycles with phase compensation a small variation is
obtained between the assumed and identified parameters, except for the crack stiff-
ness due to tilting, ∆k44. To check the robustness of the identification algorithm,
different percentage of random white noise, i.e., 1%, 2%, and 5% are incorporated
in the time domain response of the rotor system, and the results are shown in Fig. 8.
The identified parameters, excluding ∆k44, shows very small variation (< 0.15%)
and (< 0.7%) with consideration of the complete cycle and incomplete cycles with
phase compensation, respectively, for the combined speed case. The parameter
∆k44 shows moderate variation even for the combined speed, i.e., (< 7%) and
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Table 6.
Parameters on combined speeds with noise addition

In
pu

ts
pe
ed

in
H
z Comparission

Parameters
cH

(Nsm−1)
cE

(Nsm−1)
e

(10−5 m)
φ

(deg.)
∆k22

(105 N/m)
∆k44

(103 Nm/rad)
Assumed value 20 27 3 30 1.7337 1.7613

noise Complete cycle

Co
m
bi
ne
d
sp
ee
d
20

:5
0
H
z
w
ith

in
cr
ea
m
en
to

f1
H
z

A*
and
B*

add 0%
variation

20.0000
(0.000%)

27.0000
(0.000%)

3.0000
(0.000%)

30.0000
(0.000%)

1.7338
(0.006%)

1.7596
(−0.009%)

add 1%
variation

20.0029
(0.014%)

26.9987
(−0.005%)

3.0000
(0.000%)

29.9999
(−0.000%)

1.7334
(−0.017%)

1.7835
(1.260%)

add 2%
variation

20.0058
(0.029%)

26.9974
(−0.009%)

3.0001
(0.003%)

29.9997
(−0.001%)

1.7330
(−0.040%)

1.8074
(2.617%)

add 5%
variation

20.0147
(0.073%)

26.9937
(0.023%)

3.0003
(0.010%)

29.9994
(−0.002%)

1.7319
(−0.104%)

1.8792
(6.694%)

Incomplete cycle

A* add 0% 19.7199 −22.3227 4.0062 77.03739 12.6407 −713.9713

B*

add 0%
variation

19.8639
(−0.680%)

27.0806
(0.298%)

2.9993
(−0.023%)

29.9329
(−0.223%)

1.7341
(0.023%)

1.7445
(−0.954%)

add 1%
variation

19.8643
(−0.678%)

27.0803
(0.297%)

2.9994
(−0.020%)

29.9329
(−0.223%)

1.7339
(0.011%)

1.7583
(−0.170%)

add 2%
variation

19.8646
(−0.677%)

27.0800
(0.296%)

2.9994
(−0.020%)

29.9329
(−0.223%)

1.7336
(−0.006%)

1.7721
(0.613%)

add 5%
variation

19.8655
(−0.672%)

27.0790
(0.292%)

2.9996
(−0.013%)

29.9328
(−0.224%)

1.7330
(−0.040%)

1.8136
(2.969%)

A* – without phase compensation, B* – with phase compensation

(< 3%) for the complete cycle and incomplete cycles with phase compensation,
respectively, as shown in Fig. 8.

6. Conclusions

The identification of internal viscous damping due to a combination of rubbing
of crack surfaces and hysteretic (shaft material) in a simple rotor with an offset disc
has been performed in the present work. In the present numerical simulation, the
rotor was run much below the first critical speed, so it is expected that contribution
from the shaftmaterial dampingwould be insignificant because of the rigid behavior
of the uncracked shaft portion, but rubbing of crack front is expected due to
relatively heavy disc during rotation of the shaft. The estimates of internal viscous
damping can give an indication of the presence of a crack in a rotor system.
In addition, the estimation of other system parameters, i.e., the viscous external
damping, unbalance, and loss of stiffness has also been performed. For the present
rotor system, the responses are generated through the SIMULINK model, which
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(a) (b)

(c) (d)

(e) (f)

Fig. 8. Percentage error of identification parameters versus percentage addition of noise for
(a) internal damping, (b) external damping, (c) eccentricity, (d) phase of unbalance, (e) additive

crack stiffness due to transverse force, and (f) additive crack stiffness due to moment

is then transformed to full spectrum through the regression-based and FFT-based
methods. In FFT-based method, the phase ambiguity is found and, for the phase
compensation, multi-frequency reference signals are used for both complete and
incomplete cycle of signal cases. A comparison is made between the estimates, with
two full-spectrum generation methods. It is found to be excellent while taking the
measurement of the complete cycle and also with phase compensation while taking
a measurement of an incomplete cycle. The noise in the measurement test signifies
the robustness of the identification algorithm. It is found to be performing well
with the responses at combined rotor speeds, except for ∆k44, which has slightly
higher variation. The present identification algorithm can be extended to a more
realistic, the multi-degrees-of-freedom rotor-bearing system, using finite element
method.
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A. Appendix A: System matrices and vectors

The details of the matrices and vectors mentioned in equation (1) are given as

M =



m 0 0 0
m 0 0

Id 0
sym Id



; CE =



c22 0 c24 0
0 c33 0 c35

c42 0 c44 0
0 c53 0 c55



;

K =



k22 0 k24 0
k33 0 k35

k44 0
sym k55



; G =



0 0 0 0
0 0 0 0
0 0 0 Ip
0 0 −Ip 0



;

funb =




meω2 cos (ωt + φ)
meω2 sin (ωt + φ)

0
0




; fst =




mg

0
0
0




; q =




x
y

ϕy
ϕx




and q = qv + q0

(A1)

where, m is the mass of disc, Id is the diametral mass moment of inertia of the disc,
Ip is the polar mass moment of inertia of the disc, ci j and ki j represent the external
viscous damping and the shaft stiffness in the rotor system, respectively. Subscripts
i and j can take values 2, 3, 4 or 5, where 2 and 3 represent shear force direction, and
4 and 5 represent moment directions (refer Fig. 3). 1 and 6 direction represent axial
force and torque, respectively; and these effects have been ignored in the present
study. Vector q0 contains the transverse translatory and angular displacements of
the disc due to the gravity force, qv contains the transverse translatory and angular
displacements of the disc due to dynamic forces on the rotor.

Equation (6) in expanded form takes the following form

fcd (t) =



cE + cH 0 0 0
0 cE + cH 0 0
0 0 0 0
0 0 0 0






ẋ
ẏ

ϕ̇y

ϕ̇x




+ ω



0 cH 0 0
−cH 0 0 0

0 0 0 0
0 0 0 0






x
y

ϕy

ϕx




. (A2)

Herein, it is assumed that c22 = c33 = cE and the value of c44, c55, c35, c24, c42, and
c53 are taken to be zero.

The details of the matrices mentioned in equation (7) are given as

CE =



cE 0 0 0
0 cE 0 0
0 0 0 0
0 0 0 0



; CH =



cH 0 0 0
0 cH 0 0
0 0 0 0
0 0 0 0



; C1H =



0 cH 0 0
−cH 0 0 0

0 0 0 0
0 0 0 0



. (A3)
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Detail of the static deflection Kq0 = fst , for Equation (8)



k22 0 k24 0
k33 0 k35

k44 0
sym k55






ux0

uy0

ϕy0

ϕx0




=




mg

0
0
0




(A4)

After expanding the above matrix, we get

ux0 =
mgk44

k44k22 − k2
24

uy0 = 0

ϕy0 =
mgk24

k2
24 − k44k22

ϕx0 = 0




and q(t) = qv (t) + q0

where, qv (t) =




ux (t)
uy (t)
ϕy (t)
ϕx (t)




and q0 =




ux0

0
ϕy0

0




. (A5)

The details of the vector matrices mentioned in equation (23) are given as

A1n×9 (t) =



1 ejωt1 ej2ωt1 ej3ωt1 ej5ωt1 ej7ωt1 e−jωt1 e−j3ωt1 e−j5ωt1

1 ejωt2 ej2ωt2 ej3ωt2 ej5ωt2 ej7ωt2 e−jωt2 e−j3ωt2 e−j5ωt2

1 ejωt3 ej2ωt3 ej3ωt3 ej5ωt3 ej7ωt3 e−jωt3 e−j3ωt3 e−j5ωt3

. . . . . . . . .

. . . . . . . . .

1 ejωtn ej2ωtn ej3ωtn ej5ωtn ej7ωtn e−jωtn e−j3ωtn e−j5ωtn



;

vi9×1 =




v0

v1

v2

v3

v5

v7

v−1

v−3

v−5




and vn×1(t) =




v(t1)

v(t2)

v(t3)
...

v(tn)




.

(A6)
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The details of the matrices and quantities mentioned in equation (26) are
given as



Mmm 0
0 Mss


=



m 0
0 Id


;



Cmm Cms

Csm Css


=



cE 0
0 0


;



0 0
0 Gss


=



0 0
0 −Ip


;



Kmm Kms

Ksm Kss


=



k22 k23

k32 k33


;



CHmm 0
0 0


=



cH 0
0 0


;




qmm

qss



=



Ri

φi




and




fi
0



=




∆k22ux0

i=n∑
i=−n

pi

0




+



meω2ejϕ

0


i=1

+



ωcHux0ej π2

0


i=0

(A7)

The details of the remaining matrices and quantities mentioned in equation (34)
are given as

A =



0 ωR0Im 0 0 −ux0p0 −td0 ϕy0p0

−ωR1Im 0 −mω2 0 −ux0p1 −td1 ϕy0p1

−2ωR2Im −ωR1Im 0 0 −ux0p2 −td2 ϕy0p2

−3ωR3Im −2ωR3Im 0 0 −ux0p3 −td3 ϕy0p3

−5ωR5Im −4ωR5Im 0 0 −ux0p5 −td5 ϕy0p5

−7ωR7Im −6ωR7Im 0 0 −ux0p7 −td7 ϕy0p7

ωR−1Im 2ωR−1Im 0 0 −ux0p−1 −td
−1ϕy0p−1

3ωR−3Im 4ωR−3Im 0 0 −ux0p−3 −td
−3ϕy0p−3

5ωR−5Im 6ωR−5Im 0 0 −ux0p−5 −td
−5ϕy0p−5

0 −ω
(
R0Re + ux0

)
0 0 0 0

ωR1Re 0 0 −mω2 0 0
2ωR2Re ωR2Re 0 0 0 0
3ωR3Re 2ωR3Re 0 0 0 0
5ωR5Re 4ωR5Re 0 0 0 0
7ωR7Re 6ωR7Re 0 0 0 0
−ωR−1Re −2ωR−1Re 0 0 0 0
−3ωR−3Re −4ωR−3Re 0 0 0 0
−5ωR−5Re −6ωR−5Re 0 0 0 0



(A8)
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and

b =




−k0R0Re(
ω2m1 + ω

2Ip
(
td1

)2
− k1

)
R1Re(

4ω2m2 + 2ω2Ip
(
td2

)2
− k2

)
R2Re(

9ω2m3 + 3ω2Ip
(
td3

)2
− k3

)
R3Re(

25ω2m5 + 5ω2Ip
(
td5

)2
− k5

)
R5Re(

49ω2m7 + 7ω2Ip
(
td7

)2
− k7

)
R7Re(

ω2m−1 − ω
2Ip

(
td
−1

)2
− k−1

)
R−1Re(

9ω2m−3 − 3ω2Ip
(
td
−3

)2
− k−3

)
R−3Re(

25ω2m−5 − 5ω2Ip
(
td
−5

)2
− k−5

)
R−5Re

−k0R0Im(
ω2m1 + ω

2Ip
(
td1

)2
− k1

)
R1Im(

4ω2m2 + 2ω2Ip
(
td2

)2
− k2

)
R2Im(

9ω2m3 + 3ω2Ip
(
td3

)2
− k3

)
R3Im(

25ω2m5 + 5ω2Ip
(
td5

)2
− k5

)
R5Im(

49ω2m7 + 7ω2Ip
(
td7

)2
− k7

)
R7Im(

ω2m−1 − ω
2Ip

(
td
−1

)2
− k−1

)
R−1Im(

9ω2m−3 − 3ω2Ip
(
td
−3

)2
− k−3

)
R−3Im(

25ω2m−5 − 5ω2Ip
(
td
−5

)2
− k−5

)
R−5Im




. (A9)

Reduction matrices with exclusion of the slave DOFs for Equation (30) according
Equation (29) are given as

MD =
(
TD

)T 

Mmm 0
0 Mss


TD =



m +
(
tdi

)2
Id 0

0 m +
(
tdi

)2
Id


; (A10)

KD =
(
TD
i

)T 

Kmm Kms

Ksm Kss


TD
i

=



k22 + 2tdi k24 +
(
tdi

)2
k44 0

0 k22 + 2tdi k24 +
(
tdi

)2
k44


; (A11)
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CD =
(
TD
i

)T 

Cmm Cms

Csm Css


TD
i =



cE 0
0 cE


; (A12)

CD
H =

(
TD
i

)T 

CHmm 0
0 0


TD
i =



cH 0
0 cH


; (A13)

GD =
(
TD
i

)T 

0 0
0 Gss


TD
i =



−Ip
(
tdi

)2
0

0 −Ip
(
tdi

)2


; (A14)

fD =
(
TD
i

)T 


fm
fs



=



meω2 cos(φ)
meω2 sin(φ)




+



(
∆k22ux0 + tdi ∆k44ϕy0

)
pi

0



− ω




0
−cHux0



. (A15)
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