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Abstract. This paper expands the M-K curve theory with examples of the most commonly mentioned pile-soil mechanics behaviours in the 
literature and their corresponding κ2 variations. A brief introduction shows the history of the Meyer-Kowalow theory and its basic assumptions. 
This is followed by the relationship between in situ investigation CPT results, with parameters C1, C2, Ct used to approximate the load-settlement 
curve according to the M-K theory. The Meyer-Kowalow curve satisfies asymptotic behaviour for small loads, where linear theory applies, and 
for limit loads, when pile displacement is out of control. Essential in the description are constant parameters C, which refer to the aggregated 
Winklers modulus, Ngr limit loads and k, which is crucial for static load test results. For this reason, the authors sought to calculate the κ value 
based upon soil mechanics principles. This article shows methods for checking statistical mathematical calculations, published earlier by Meyer 
using CPT investigations. It presents real case calculations and directions for future planned research.
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pile-bearing capacity. With increasing movement of the pile, toe 
capacity increases to the point where it may be more significant 
than skin friction resistance, although settlement is going to 
exceed the values permitted by the Codes in this case. Con-
siderable effort should be devoted to finding tools that would 
estimate the extreme value of skin friction capacity. The ex-
treme value of skin friction is the point at which the total pile 
capacity has the greatest usable value in terms of engineering 
and economical exploitation.

Bearing this in mind, Meyer and Kowalow’s objective was 
to find the curve that would allow one to describe the situation 
shown in the graph by Jean-Louis Briaud [25]. The authors of 
this paper focused on formulating a theory regarding the M-K 
curve (Meyer-Kowalow) that might be used to approximate 
the pile static load test curve. M-K curve parameters can be 
established using soil characteristics from field investigations. 
This may be the way to arrive at a more physical approach to 
the M-K curve, using equations of soil mechanics as a base.

2.	 M-K curve

In the literature there are plenty of results from experimental 
pile investigations. They provide examples of the relationship 
between the axial force at the head and pile settlement. The 
works by Chin [22] and Davisson [23] present methods of es-
timating the failure load of piles based on the static load test. 
They have their own limitations and do not fully describe the 
problem of the appropriate estimation of pile-bearing capacity. 
The curve presented by Chin [22] is a Meyer-Kowalow curve 
variation, where κ = 1; therefore, it cannot be used as a general 
example to cover this case. The base and shaft stress forming 
mechanisms, including increasing settlement, in the entire range 
of the load applied to the head of the pile lack theoretical un-
derpinnings.

1.	 Preface

The mechanism of pile base and shaft stress formation is a cru-
cial problem in estimating the pile-bearing capacity process. 
There are many authors, whose research has focused on this 
topic [1‒5, 9‒11, 13]. Most of these works revolve around the 
static load pile test, with fewer discussing an analytical ap-
proach to shaft and base resistance regarding soil mechanics 
behaviour. The pile static test is recommended as the primary 
method of verifying pile-bearing capacity. Most pile static test 
results indicate that dimensions could be changed, but no indi-
cation is given on how to prove it. There is lack of equational 
relationship between pile behaviour and soil characteristics that 
would allow for the conversion of pile dimensions with the use 
of the Q–s diagram for a given soil configuration.

Previous works have formulated theories with which to pre-
dict pile-bearing capacity using the results of CPT investigation 
[15, 16, 18, 19]. The authors [15] gathered the theories and 
subjected them to comparison. The author [17] compared the 
Eurocode 7 and Polish Code standard methods. All of these 
works prove that there is need for a comprehensive theory, 
which would allow for predicting pile-bearing capacity with 
greater accuracy. In these works, the description of the analyt-
ical curve describing the relationship between load and settle-
ment is lacking.

Jean-Louis Briaud [25] presented a graph, which allows the 
formulation of the following theory. While the entire bearing 
capacity is composed of aggregated toe and skin, it can be as-
sumed that skin friction, in earlier phases of pile settlement, 
reaches its extreme value and accounts for the principal part of 
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The course of the function of static load test curve extrap-
olated using M-K theory is shown on Fig. 1.

Parameter C, used in the M-K curve, may be identified with 
Winkler modulus, as it aggregates toe and skin resistance during 
pile settlement. Later on in this paper, parameter C will be 
referred to as the reversed aggregated Winkler modulus. Pa-
rameter C consists of two factors: C1 which stems from toe 
settlement, and Ct which stems from skin settlement. The exact 
derivation is shown in (30), which demonstrates a strict rela-
tionship between those factors.

The M-K curve equation is formulated as [6, 8‒11, 13]:

	 s = C ∙ Ngr ∙ 
1 ¡  N

Ngr

–κ

 ¡ 1

κ
� (1)

where: s – settlement of head of the pile [mm];
	 C	 – �parameter that is reversed aggregated Winklers mod-

ulus m
MN , which is specified later in the paper;

	 Ngr	 – axial force, M-K curve vertical asymptote [MN];
	 κ	 – �parameter showing the proportion of base and shaft 

resistance.
The M-K curve possesses a vertical asymptote, that is:

N = Ngr  and crosswise� (2)

s = C ∙ N.� (3)

It can be proven that:

lim s(N)
N → 0

 = C ∙ N  and� (4)

lim s(N)
N → Ngr

 = 1 .� (5)

This means that the M-K curve depicts the physical aspects 
of the analysed mechanism of pile settlement under axial load 
applied at the top of the pile. For N → 0, small displacement 

and linear relationship of load settlement are observed. For 
N → Ngr, settlement increases out of control and the pile loses 
its bearing capacity.

The principal task of the M-K curve approximation is to 
estimate Ngr value and predict the mobilisation of pile base 
and shaft capacity. The first step is to estimate the M-K curve 
parameters using static load test results. The output results are 
{Qi; si} resultant values. Mathematical analysis can be applied 
to arrive at the solution of this task.

This problem has been the focus of many works [6, 7]. Their 
outcome states that with the set of values {Qi; si} the M-K 
curve parameters: C, Ngr, κ can be established.

The main problem addressed in this article is to analyse 
whether the M-K curve parameters can be found based on in-
situ investigation results with the application of a theory of soil 
mechanics. For small loads, when the correlation between load 
and settlement is linear, the C parameter represents the reversed 
aggregated Winkler modulus [12]. Due to this fact, we can cal-
culate its value using a solution proposed by Bousinessq [6, 13].

In Fig. 2, the distribution of shaft and base pile stress is 
presented.

Fig. 1. Scheme of the M-K static load test curve

Fig. 2. Distribution of load and stress within pile-soil interaction
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It can be proven that: 
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                            (5) 

This means that the M-K curve depicts the physical 
aspects of the analysed mechanism of pile settlement under 
axial load applied at the top of the pile. For N ® 0, small 
displacement and linear relationship of load settlement are 
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The basic assumption of this article, proposed in this 
diagram, is that shaft stress is the result of soil displacement 
around the pile. In the literature, there are many approaches 
to the representation of the foundation-soil interaction 
mechanism and stress distribution. Most numerical 
methods make use of the Winkler modulus, which is widely 
debated in the paper [21]. Some use statistical methods [20, 
24]. A diagram proposing the application of the Winkler 
modulus is presented in the work [14].  

The article by Meyer and Siemaszko analyses a case in 
which a reaction in the base of a pile is caused by pile and 
soil interaction. The authors propose that soil displacement 
and, therefore, shaft stress is caused by settlement s at the 
surface, which occurs after loading the head of the pile with 
load N2. This displacement is captured by equation [6, 13]: 

                                 (6) 

                     (7) 

Where: l – horizontal soil displacement range [m]; 
G – shear modulus, according to Kirchoff [MPa]; 
u – Poisson constant; 
t – skin stress on the surface of the pile shaft [MPa]. 
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The basic assumption of this article, proposed in this di-
agram, is that shaft stress is the result of soil displacement 
around the pile. In the literature, there are many approaches 
to the representation of the foundation-soil interaction mech-
anism and stress distribution. Most numerical methods make 
use of the Winkler modulus, which is widely debated in the 
paper [21]. Some use statistical methods [20, 24]. A diagram 
proposing the application of the Winkler modulus is presented 
in the work [14].

The article by Meyer and Siemaszko analyses a case in 
which a reaction in the base of a pile is caused by pile and soil 
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interaction. The authors propose that soil displacement and, 
therefore, shaft stress is caused by settlement s at the surface, 
which occurs after loading the head of the pile with load N2. 
This displacement is captured by equation [6, 13]:

	 s =  τ
G

 ∙ l � (6)

	 G = 
Et

2(1 + v)
� (7)

where: l – horizontal soil displacement range [m];
	 G	 – shear modulus, according to Kirchoff [MPa]; 
	 υ	 – Poisson constant;
	 τ	 – skin stress on the surface of the pile shaft [MPa].

In previous work by Meyer [6], it has been proven that the 
range of soil displacement l, based on linear elasticity, can be 
presented as:

	 l = D ∙ 
1 + 3 ln

Ã
4h
D

!

2(1 + v)
� (8)

where: h – pile length [m];
	 D	 – pile diameter [m].
It can be proven that in terms of practical engineering calcula-
tions, the equation can be simplified:

	 l ∙ 2 ∙ (1 + v) = 3,68 ∙ 
³

h
D

0́,215
 ∙ D .� (9)

If:

	 10 <  h
D

 < 40.� (10)

Equation (6) can be presented now as:

	 τ = 
1

1.738 ∙  h
D

1/3
 ¢ 

Et ∙ s
D

.� (11)

For further analysis it is convenient to note it as:

	 T = 
h

0
∫τ ∙ πD ∙ dz .� (12)

For practical engineering calculations, upon analysing labo-
ratory and field results [2, 3, 11, 12], the following can be 
assumed:

	 Eτ = 4 ∙ β ∙ qc(z)� (13)

where: qc(z) – cone resistance at “z” depth [MPa];
β = 1÷2 – parameter depending on pile boring tech-
nology used.

Moreover, it is assumed that the average cone resistance of the 
pile length is:

	
h

0
∫qc(z) ∙ dz =  q–c ∙ h .� (14)

After sorting all the equations (11‒14), the following can be 
obtained:

	 T = 
4π  ¢ β
3,68

 ∙ 
³

h
D

0́,785
 ∙ D ∙ s ∙ q–c .� (15)

The above equation (15) can be used to estimate the shaft 
resistance of the pile, with the known distribution of vertical 
cone resistance qc(z). In (15), the following symbols are used: 
relationship between length and diameter of a pile h/D, diameter 
of pile D, settlement of pile s, average vertical CPT measure-
ment q–c. The equation structure shows that pile shaft resistance 
is directly proportional to all values mentioned beforehand.

Pile base resistance is the second value that describes the 
bearing capacity of a pile. Pile base resistance is the reaction 
of soil to load N1.

Experimental analysis [26] shows that the loading pile 
causes areas of plastic soil to form under the pile base, as shown 
in Fig. 3, whose diameter is Dp > D. The assumption is made:

	 s =  4
π

 ¢  N1

Ep ¢ Dp
� (16)

where: Ep – soil elastic modulus under pile base [MPa];
	 N1	– load value at the pile base [MN];
	 Dp	– plastic soil area diameter [m].

Fig. 3. Scheme of base settlement of a pile [8]
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The soil elastic modulus was estimated based on EC7 and 
experimental results [27, 28]. The following is obtained:

	 Ep = 4 ∙ qb ∙  1 +  1
4

qb
1/3 � (17)

qb – cone resistance representing soil under pile base.

The value of Dp was estimated using numerical methods and ex-
perimental results [26]. For practical engineering calculations, 
the following relationship was examined:

	 Dp = D ∙  1 + 
2qb

1 + qb
� (18)

or its more general form:

	 Dp = D ∙ f (κ2) .� (19)

In which [27]

	 f (κ) = 1 + ln(1 + κ2) .� (20)

Based on (16) and (17), the following is obtained:

	 N1 = π
4

 ∙ s ∙ Dp ∙ 4 ∙ qb ∙  1 +  1
4

qb
1/3 .� (21)

Under these assumptions, the relationship between shaft resis-
tance and toe resistance can be shown as:

	 T
N1

 = 
4β

3,68
 ∙ 
³

h
D

0́,785
 ∙ 

q–c

qb
 ∙ 

D
Dp

 ∙ 
1

1 +  1
4 qb

1
3

.� (22)

Equation (22) is a basic relationship, which shows the propor-
tional share of shaft and toe pile resistance for minor loads with 
respect to the linear elasticity theory. That equation shows also 
the values of the reversed aggregated Winkler modulus for the 
shaft and toe of the pile.

3.	 Relationship between M-K curve parameters

Based on laboratory research [8], it can be assumed that the 
M-K curve allows for the definition of not only the Q–s curve of 
static load, but also the mobilisation of pile and shaft resistance. 
According to Fig. 2, an assumption can be made:

	 N2(s) = Ngr2 ∙  1 ¡  1 + 
κ2 ¢ s

Ngr2 ¢ C2

– 1
κ2

� (23)

	 N1(s) = Ngr1 ∙  1 ¡  1 + 
κ1 ¢ s

Ngr1 ¢ C1

– 1
κ1

.� (24)

In equations (23‒29) there are additional parameters:
●	C1 – �reversed aggregated Winklers modulus for N1 force at 

the pile base m
MN ;

●	C2 – �reversed aggregated Winklers modulus for N2 force at 
the head of the pile m

MN ;
●	 N1, N2 are loads respectively at the base and head of the 

pile [MN].
Furthermore, there is κ1 for s =  f (N1) and κ2 for s =  f (N2). 

T is the symbol for mobilising shaft resistance [MN]. According 
to C1 and C2 parameters, the Ct parameter is added, which 
corresponds to T force m

MN .

In classical mechanics, the Winklers modulus is related to 
pile settlement caused by load at the head of the pile. The ag-
gregated Winklers modulus presented in this article includes 
shaft resistance of a pile. Relationship T/N1

 (22) is considered 
to be a contributing factor of aggregated Winklers modulus.

Pile-bearing capacity [28] analysis proves that shaft resis-
tance is more significant than toe resistance, while toe resistance 
value is around 20% that of pile head load. Further analysis of 
this pile-bearing capacity mechanism leads to the implementa-
tion of the C1, C2, Ct coefficients later on in this article.

In consequence, the shaft resistance equation assumes the 
following form:

	 T(s) = N2(s) ¡ N1(s).� (25)

Figure 4 shows curves estimated with (23‒25).

Fig. 4. Graph of functions describing pile base and shaft resistance for 
static load test results Q–s
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According to the linear elastic theory, the displacement for 
small loads range is:

	 lim N2(s)
s → 0

 =  s
C2

� (26)

	 lim N1(s)
s → 0

 =  s
C1

� (27)
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and:

	 lim T(s)
s → 0

 =  s
C2

 ¡  s
C1

.� (28)

For further analysis, it is convenient to formulate:

	 lim T(s)
s → 0

 =  s
C2

 ¡  s
C1

 =  s
Ct

� (29)

then

	 1
C2

 =  1
C1

 +  1
Ct

.� (30)

These steps added the following parameters to the pile and soil 
mechanics description: C1, C2, Ct .
All of these parameters constitute the reversed aggregated Win-
kler modulus and are correlated with soil reaction to the forces 
N1, N2, T respectively.

With respect to the analysis of (25÷29), there are additional 
relationships that can be used [8]:

	
C1

C2
 = (1 + κ2)

2,� (31)

	 κ1 =  ln (1 + κ2) ,� (32)

and under average conditions

	 Ngr1 = Ngr2 ∙ 
1 + κ1

(1 + κ2)
2

.� (33)

Additionally, (30) yields:

	
C1

C2
 = 1 + 

C1

Ct
.� (34)

From (21), stems the following:

	
N1

s
 = C1

–1 = πDpqb ∙  1 +  1
4

qb
1/3 .� (35)

From (15), stems the following:

	
T
s

 = Ct
–1 = 

4π  ¢ β
3,68

 ∙ 
³ h

D

0́,785
 ∙ D ∙ q–c .� (36)

Therefore, (34) can be presented as:

	
C1

C2
 = 1 + 

T
N1

.� (37)

and, finally, the following relationship is obtained:

	
C1

C2
 = 1 + 

4β
3,68

 ∙ 
³

h
D

0́,785
 ∙ 

q–c

qb
 ∙ 

D
Dp

 ∙ 
1

1 +  1
4  ∙ qb

1
3

.� (38)

Substituting (31) for the above relationships, κ2 can be esti-
mated as follows:

	

(1 + κ2)
2 ¡ 1 = 1 + 

4β
3,68

 ∙ 
³

h
D

0́,785
 ∙ 

q–c

qb
 ∙

(1 + κ2)
2 ¡ 1   ∙ 

D
Dp

 ∙ 
1

1 +  1
4  ∙ qb

1
3

.
� (39)

Upon combining the formulas listed above, the C1/C2
 re-

lationship is obtained, which varies according to the pile soil 
mechanism conditions. It allows for the estimation of the value 
of κ2, that is responsible for showing the settlement increase 
rate in the M-K theory. The following is obtained:

	 (1 + κ2)
2 ¡ 1 = 

T
N1

.� (40)

Equations (39) and (40) together form the basic description of 
the shaft and base resistance relationship. This is based on static 
load tests for small displacements.

4.	 Practical application of κ2 equation

The previous section showed the method of estimating the κ2  
parameter with in-situ test results. Equation (39) contains Dp, 
which represents the diameter of the plastic soil area formed 
under the base of the pile. The first step was an attempt to apply 
the presented method in order to describe the most common 
schemes found in the literature of soil formation around the 
pile base. The practical applications of Dp schemes are shown 
on Fig. 5.

The examples shown in Fig. 5 differ from the mechanism of 
soil behaviour around the pile base when it reaches its plastic 
state. κ2 relationships, shown further in this section, present 
differences in values for different soil pile interactions. The 
structure of equations (42–45) show that κ2 value is dependent 
on H/D and q–c/qb ratios. The most probable case is the third [26] 
one. It indicates that there is movement of soil from the pile 
base to the lower shaft section.

Fig. 5. Various examples of soil behaviour under the base of a pile
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Substituting (31) for the above relationships, k2   can be 
estimated as follows: 
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Equations (39) and (40) together form the basic description 
of the shaft and base resistance relationship. This is based 
on static load tests for small displacements. 
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probable case is the third [26] one. It indicates that there is 
movement of soil from the pile base to the lower shaft 
section. 

The equations describing situations 1) to 4) are as 
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Based on each equation, the following k2  equations are 
derived: 
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The relationships shown above can be used not only to 
estimate the k2 value for given soil characteristics, but also 
when the soil conditions or pile dimensions are changed. 
Based on (39÷45), for practical engineering calculations, 
the M-K curve parameters can be estimated, derived from 
static load test curve approximations. 
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The equations describing situations 1) to 4) are as follows:

	

:1)   Dp = D

:2)   Dp = D 1 + 
2qb

1 + qb

:3)   Dp = D (1 + κ1)

:4)   Dp = D1

.� (41)

Based on each equation, the following κ2 equations are derived:
Case 1):

	 κ2 = 
4β

3,68
 ∙ 
³

h
D

0́,785
 ∙ 

q–c

qb
 ∙ 

1

1 +  1
4 qb

1
3

1/2

 ¡ 1� (42)

Case 2):

	

κ2 = 
4β

3,68
 ∙ 
³

h
D

0́,785
 ∙
–qc

qb
 ∙∙ 

κ2  ∙∙ 
1

Ã

1 +  2qb

1 + qb

!Ã

1 +  1
4 qb

1
3

!

1/2

 ¡ 1
� (43)

Case 3):

	 κ2 = 
4β

20,86
 ∙ 
³

h
D

0́,785
 ∙ 

q–c

qb
 ∙ 

1

1 +  1
4 qb

1
3

3/5

 ¡ 1� (44)

Case 4):

	 κ2 = 
4β

3,68
 ∙ 
³

h
D

0́,785
 ∙
–qc

qb
 ∙  D

D1
 ∙ 

1

1 +  1
4 qb

1
3

1/2

 ¡ 1� (45)

The relationships shown above can be used not only to estimate 
the κ2 value for given soil characteristics, but also when the soil 
conditions or pile dimensions are changed.
Based on (39÷45), for practical engineering calculations, the 
M-K curve parameters can be estimated, derived from static 
load test curve approximations.

The κ2 relationships can be used if we know the M-K curve 
parameters. They may be suitable for presenting the following 
relationships:
–	 N1(s) pile base resistance according to settlement;
–	 N2(s) load at the head of the pile according to settlement;
–	 T(s) pile shaft resistance according to settlement.

Only C, κ, Ngr parameters are needed for a proper estimation. 
C2, κ2, Ngr2 are obtained using mathematical statistics methods 
for the load-settlement curve [28], and also C1, κ1, Ngr1 which 

appears to be the main problem. According to [27], the fol-
lowing relationships can be used:

	
Ngr2

Ngr1

 = 
1 + κ1

(1 + κ2)
2

� (46)

	 C1 = 
1

πDqb ∙ (1 + κ2)
3
4 ∙ 
Ã

1 +  1
4 qb

1
3

! � (47)

	 C2 = C1/(1 + κ2)
2.� (48)

As a verification for pile base bearing capacity Ngr1, the 
following equation can be used:

	 Ngr1 =  1
2π

 ∙ qb ∙ D2 ∙ 
³

h
D

1́/3
.� (49)

5.	 Sample calculations

For a typical task, the results of a static load test are provided, 
giving the set {Qi; si}. With the use of statistical methods, the 
following are calculated: C2, Ngr2, κ2 based on the set {Qi; si}. 
The curve Q–s can be estimated. In order to estimate another 
N1 (s) and T (s) curve, the M-K curve parameters for the pile 
toe are needed.

	 κ1 =  ln (1 + κ2) ,� (32)

	 Ngr1 = Ngr2 ∙ 
1 + κ1

(1 + κ2)
2

.� (33)

For the calculation of Ngr1 the following equation is used [27]:

	 Ngr1 = 
C2

C1
 ∙ Ngr2 ∙  1 + 0,1435 ∙ 

³
H
D

1́/3
 ∙ κ2

0,5 .� (50)

With these values, N2 (s), N1 (s), T (s) curves can be plotted. 
Examples of curves with M-K constants values are presented 
in Fig. 6.

Table 1 presents real case values of static pile load tests. 
Table 2 shows the M-K approximation parameters for a real 
case pile that the authors used for their analysis.
The next step is verification with (49):

Ngr1 =  1
2π

 ¢ 16 ∙ 0,512 ∙ 
µ

11,5
0,51

¶1
3
 = 1871,21 kN.

There is a minor difference of 3% between values obtained with 
statistical calculations and (49) verification. It can be assumed 
that the values are correct.

Table 3 presents the values obtained during static pile load 
tests and the calculations of values N1(s), N2(s), T(s) obtained 
with (23‒25) for every settlement value.
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Figure 7 plots all graphs with Ngr1, Ngr2 results. The Ngr2 
value was obtained with statistical methods [27, 28] and Ngr1 
using equation (50), as presented earlier. Values were extrapo-
lated using M-K approximation to show extreme values of T(s).

Fig. 6. M-K approximation curves of pile resistance components with 
M-K constant values
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As a verification for pile base bearing capacity Ngr1,  the 
following equation can be used: 
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Table 1 presents real case values of static pile load tests. 
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Table 1 
Static pile load test results

Pile static load test results {Ni; si} values

Ni [kN] si [mm] Ni [kN] si [mm]

120 0,31 1700 1,91

220 0,51 1800 2,35

320 0,81 1940 3,35

420 1,35 1060 3,71

500 1,25 1200 4,31

600 1,61

Table 2 
M-K approximation parameters

Pile properties M-K approximation results

H = 11,5 m C2 = 0,002376686

D = 0,51 m Ngr2 = 1900

CPT results ϰ2 = 0,080366011

qb = 16 kN/m2 C1 = 0,002774046

Ngr1 = 1814,926718

ϰ1 = 0,077299883

Table 3 
Calculation results of static load test values extrapolated 

with M-K approximation and bearing capacity 
components

Pile static load test results {Ni; si} values and 
bearing capacity components N1, N2, T values

si [mm] N2(s) [kN] N1(s) [kN] T(s) [kN]

0,30 121,8104 104,75239 17,058

0,50 198,3151 170,95785 27,3572

0,80 306,4828 265,14289 41,3399

1,00 374,4547 324,69375 49,7609

1,25 455,0479 395,68882 59,3591

1,60 560,2465 489,0279 71,2186

1,90 643,8427 563,77687 80,0658

2,35 758,8507 667,51723 91,3334

3,00 905,352 801,3405 104,011

3,70 1040,72 926,88845 113,832

4,31 1142,52 1022,6797 119,84

4,81 1216,256 1092,9016 123,355

5,30 1281,047 1155,2537 125,794

6,01 1363,442 1235,53 127,912

6,41 1404,578 1276,0676 128,51

6,91 1451,271 1322,495 128,776

7,43 1494,835 1366,2448 128,59

7,96 1534,574 1406,5594 128,015

8,40 1564,37 1437,0664 127,304

8,50 1570,77 1443,6517 127,118

9,23 1613,675 1488,1364 125,539

9,80 1642,973 1518,8748 124,098

10,00 1652,472 1528,9096 123,562

10,50 1674,599 1552,4285 122,17

11,01 1694,984 1574,2865 120,698

11,42 1709,929 1590,4369 119,492

12,01 1729,406 1611,6623 117,744

12,53 1744,792 1628,5823 116,209

12,90 1754,823 1639,6949 115,128

13,40 1767,282 1653,592 113,69

14,50 1790,811 1680,1615 110,65

15,10 1801,712 1692,6329 109,079

16,00 1815,917 1709,0667 106,851
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6.	 Conclusions

1)	 This work presents an analysis of the Meyer-Kowalow 
curve, used to approximate static load tests of pile data.

2)	 An assumption was made that for every {Qi; si} set obtained 
with a static pile load test, there is a set of values C2, Ngr2, 
κ2 obtained via statistical mathematical methods [27].

3)	 A detailed analysis of the principles of pile toe and pile shaft 
resistance formation for small load values within the linear 
soil mechanics rules took place. The results of this analysis 
indicate that in comparison to the classical approach of soil 
response modelling, there is a need for the implementation of 
aggregated Winkler modulus, which is a contributing factor 
not only to toe pile resistance, but shaft resistance as a result 
of soil deflection.

4)	 In this work, four examples of pile and soil interaction were 
presented in Fig. 5, with the third being laboratory tested 
[26] and deemed as the most probable to occur. This means 
that there is soil movement from under the pile base to lower 
parts of its shaft. The κ2 relationships (42‒45) presented can 

be used to verify the C2, Ngr2, κ2 values obtained with statis-
tics from the {Qi; si} set from the pile static test load. They 
may be useful for examining the accuracy of static pile load 
tests in addition to CPT verification, if results are available.

5)	 In practice, the application of the presented method allows 
the estimation of shaft and base resistance with settlement, 
when settlement is caused by load at the head of the pile. 
The presented example [25] suggests that T(s) can reach ex-
tremum and assumes that it can exceed the maximum shaft 
resistance value caused by friction.

6)	 Further analysis will be focused on implementing the pre-
sented method to estimate the resistance of piles made with 
various technologies and in various soil environments. There 
are expectations to learn more about Ngr2 estimation, and 
limit pile bearing-capacity calculation. A lot of attention will 
be paid in estimating the maximum allowable load that can 
be put at the head of the pile, in order not to exceed the sec-
ond limit state settlement value.

7)	 There is a plan to test piles in the field to obtain a set of 
{Qi; si} values and determine if there is need for verification 
with independent soil from in situ investigations.
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