
271Bull.  Pol.  Ac.:  Tech.  67(2)  2019

BULLETIN OF THE POLISH ACADEMY OF SCIENCES 
TECHNICAL SCIENCES, Vol. 67, No. 2, 2019
DOI: 10.24425/bpas.2019.128610

Abstract. The proper description of circuits supplied from an asymmetrical and sinusoidal voltage source, in which line parameters are in-
cluded, requires an adequate mathematical concept or theory. The authors of the publication present the mathematical concept of the currents’ 
asymmetrical components for three-phase four-wire systems, taking into account the impedance of the neutral conductor and the impedance 
of power transmission lines. In the new approach, four orthogonal current components were proposed in charge of its flow between the source 
and the load. The introduced distribution shows, regardless of the type of the voltage asymmetry (amplitude or phase), it is possible to set down 
the symmetrical active current and other components, i.e. reactive current, negative current and zero current, which will allow determining the 
reference current of the active filter.
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can be presented in the form of the instantaneous waveform or 
in the form of the norm.

In addition, the shown components are mutually orthogonal, 
and therefore their existence in the system is independent.

The authors of the publication demonstrate the possibility of 
using the mathematical concept of the currents’ asymmetrical 
components for three-phase four-wire systems to determine the 
reference current of an active power filter or active part of 
a hybrid power filter.

2.	 Currents’ asymmetrical components  
in three-phase four-wire systems at sinusoidal 
and asymmetric voltages

In compliance with the mathematical concept of the currents’ 
asymmetrical components (CAC), three voltage vectors can be 
defined in the supply system. The locations of these vectors are 
marked in Fig. 1.

According to Fig. 1, the vector of sinusoidal and asymmet-
rical instantaneous voltages u(t) on generator output terminals 
is described as follows [1]:
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where: 1 2 3, ,L L LU U U - rms values of the phase 
voltages, phases L1, L2 and L3 respectively, 

1 2 3( ), ( ), ( )L L Lu t u t u t - instantaneous values of the 
voltages, phases L1, L2 and L3 respectively, 1 - 
fundamental harmonic angular speed, U  - complex 
phase voltages vector, defined with the formula: 
 
  1 2 3 ,T

L L LU U U=U  (2) 
 
where: 1 2 3, ,L L LU U U - complex values of the phase 
voltages. 

On account of the voltage drop ( )( )Su t  at the 
impedance of the power transmission line, the vector 
of the instantaneous values of the phase voltages 

( )tLPEu  with respect to the protective earthing 
conductor (PE) is: 
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where: 1 2 2, ,L PE L PE L PEU U U - rms values of the phase 
voltages at the terminals of the load to the protecting 
earthing conductor, phases L1, L2 and L3 
respectively, 1 2 3( ), ( ), ( )L PE L PE L PEu t u t u t - instantaneous 
values of the same voltage, phases L1, L2 and L3 
respectively, 

1 2 3
, ,

L PE L PE L PEU U U   - values of the 

voltages phase angle at the terminals of the load, 
phases L1, L2 and L3 respectively, LPEU - complex 
phase voltages vector at the terminals of the load, 
defined with the equation: 
 
  1 2 3 ,T

L PE L PE L PEU U U=LPEU  (4) 
 
where: 1 2 3, ,L PE L PE L PEU U U - complex values of the 
phase voltages at the terminals of the load to the 
protecting earthing conductor. 

Taking into consideration the voltage drop at the 
impedance of the neutral conductor, which results in 
the occurrence of the voltage at the load's neutral 
point relative to ground ( )Nu t , the vector of 
instantaneous values of phase voltages with respect 
to the neutral conductor ( )tLNu  is defined as follows: 
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where: 1 2 3, ,L N L N L NU U U - rms values of the phase 
voltages at the load to the neutral conductor, phases 
L1, L2 and L3 respectively,

1 2 3
, ,

L N L N L NU U U   - values 

of the voltages phase angle at the load, phases L1, 
L2 and L3 respectively, LNU - complex phase 
voltages vector at the load, defined with the equation: 
 
  1 2 3 ,T

L N L N L NU U U=LNU  (6) 
 
where: 1 2 3, ,L N L N L NU U U - complex values of the 
phase voltages at the load to the neutral conductor. 

The vector of the instantaneous value of the line 
currents ( )ti  is defined in the same way as [1]:  
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1.	 Introduction

Transmission of electricity from sources to loads through the 
power systems, where it is transformed adequately to the needs 
of the consumer, is described by power theories or mathematical 
concepts [1‒7, 17]. Over 100 years of electrical energy trans-
mission, many different approaches have been created.

The description of the power theory is divided into two do-
mains, i.e. time and frequency domain. The description of the 
time domain, in view of the rapidity of calculations, is mainly 
used to control semiconductor devices in active or hybrid power 
filters [4‒6, 11‒18]. The most common time domain methods 
are [4‒6, 17]. The frequency domain description [1, 3], using 
the Fourier transform, causes delays in measuring circuit, but 
the approaches based on frequency description are more precise 
methods and also are used to generate the reference current of 
an active power filter [8‒10].

In the power theories or mathematical concepts cited above, 
the mathematical description, and, by extension, the obtained 
results are correct, on the assumption that the voltage supply 
is symmetrical.

This publication proposes a mathematical concept of cur-
rents’ asymmetrical components (CAC) for sinusoidal asym-
metric three-phase four-wire systems, taking into account the 
impedance of all four wires.

The concept assumes the decomposition of the line current 
into four components, i.e.: the active current, reactive current, 
negative current and the zero current. Each current component 
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where: UL1PE, UL2PE, UL3PE – rms values of the phase voltages, 
phases L1, L2 and L3 respectively, uL1(t), uL2(t), uL3(t) – instan-
taneous values of the voltages, phases L1, L2 and L3 respec-
tively, ω1 – fundamental harmonic angular speed, U – complex 
phase voltages vector, defined with the formula:
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According to figure 1, the vector of sinusoidal and 
asymmetrical instantaneous voltages ( )tu  on 
generator output terminals is described as follows [1]: 
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Taking into consideration the voltage drop at the 
impedance of the neutral conductor, which results in 
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where: 1 2 3, ,L N L N L NU U U - rms values of the phase 
voltages at the load to the neutral conductor, phases 
L1, L2 and L3 respectively,
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, ,

L N L N L NU U U   - values 

of the voltages phase angle at the load, phases L1, 
L2 and L3 respectively, LNU - complex phase 
voltages vector at the load, defined with the equation: 
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where: 1 2 3, ,L N L N L NU U U - complex values of the 
phase voltages at the load to the neutral conductor. 

The vector of the instantaneous value of the line 
currents ( )ti  is defined in the same way as [1]:  
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 – values of the voltages phase angle 
at the load, phases L1, L2 and L3 respectively, ULN – complex 
phase voltages vector at the load, defined with the equation:
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According to figure 1, the vector of sinusoidal and 
asymmetrical instantaneous voltages ( )tu  on 
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L2 and L3 respectively, LNU - complex phase 
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where: 1 2 3, ,L N L N L NU U U - complex values of the 
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The vector of the instantaneous value of the line 
currents ( )ti  is defined in the same way as [1]:  
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where: U ̲ L1N, U ̲ L2N, U ̲ L3N – complex values of the phase voltages 
at the load to the neutral conductor.

The vector of the instantaneous value of the line currents 
i(t) is defined in the same way as [1]:
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where: 1 2 3, ,L L LI I I -  rms values of the line currents, 
phases L1, L2 and L3 respectively, 1 2 3( ), ( ), ( )L L Li t i t i t - 
instantaneous values of the line currents, phases L1, 
L2 and L3 respectively, 

1 2 3
, ,

L L LI I I   - values of the 

phase angle of the line currents, phases L1, L2 and 
L3 respectively, I - complex values vector of the line 
currents, defined with the formula: 
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where: 1 2 3, ,L L LI I I - complex values of the line 

currents. 
In accordance with the mathematical concept of 

the Currents’ Asymmetrical Components the 
instantaneous value of the line current can be divided 
into four orthogonal components as follows [1, 2]: 
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where: ( )tai - vector of the instantaneous values of 
the active current, ( )tri - vector of the instantaneous 
values of the reactive current, ( )tni - vector of the 
instantaneous values of the negative current, ( )tzi - 
vector of the instantaneous values of the zero current. 

On the basis of the proposed concept, the total 
value of the current norm i expressed as follows: 
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where: ai - norm value of the active current vector, 

ri - norm value of the reactive current vector, ni - 

norm value of the negative current vector, zi - norm 
value of the zero current vector. 

The value of each of the four current components 
can be presented in the form of a vector norm or in 
the form of an instantaneous value vector. 

For generating the active current ai  the equivalent 
conductance is responsible, which in circuits supplied 
from an asymmetric voltage source (5) in accordance 

with the mathematical concept CAC assumes the 
form of an equation system, since the equivalent 
conductance must be calculated for each phase 
separately as follows: 
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where: *1, ,  - symmetrical rotation coefficient equal 

to 0 ,240 ,120  respectively, 1 2 3, ,L N L N L N   - actual 
voltage phase shift coefficients for L1, L2 and L3 
phases respectively, 1 2 3, ,L L LY Y Y - complex value of 
the phase admittance of the load. 

On the grounds of the equivalent phases 
conductance (11), the value of the active current 
vector norm ai  is given as follows: 
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where: p1 - coefficients rotation vector of the positive 
sequence is equal: 
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The presence of reactive current ri  in the system 

is the result of the occurrence of equivalent 
susceptance in each phase in accordance with the 
system of equations:  
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On the grounds of the equivalent phases 

susceptance (15) the value of the reactive current 

� (7)

where: IL1, IL2, IL3 – rms values of the line currents, phases 
L1, L2 and L3 respectively, iL1(t), iL2(t), iL3(t) – instantaneous 
values of the line currents, phases L1, L2 and L3 respectively, 
ϕIL1

,  ϕIL2
, ϕIL3

 – values of the phase angle of the line currents, 
phases L1, L2 and L3 respectively, I – complex values vector 
of the line currents, defined with the formula:
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sequence is equal: 
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is the result of the occurrence of equivalent 
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On the grounds of the equivalent phases 

susceptance (15) the value of the reactive current 

,� (8)

where: I ̲ L1, I ̲ L2, I ̲ L3 - complex values of the line currents.

Fig. 1. Power-supply system with indicated asymmetrical sinusoidal 
voltage vectors
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In accordance with the mathematical concept of the cur-
rents’ asymmetrical components the instantaneous value of the 
line current can be divided into four orthogonal components as 
follows [1, 2]:
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voltage phase shift coefficients for L1, L2 and L3 
phases respectively, 1 2 3, ,L L LY Y Y - complex value of 
the phase admittance of the load. 

On the grounds of the equivalent phases 
conductance (11), the value of the active current 
vector norm ai  is given as follows: 
 

( )1 2 3

2 2 2
1 2 33

L L Le L N e L N e L NG U G U G U=  + +ai  (12) 

 
and a vector of the instantaneous complex values of 
the active current ( )tai  is: 
 

 
( )  1 2 3

1
1 2 3

( ) 2 Re

L L Le L N e L N e L N
j tG U G U G U

t

e + +

=a

p

i

1
 (13) 
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sequence is equal: 
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The presence of reactive current ri  in the system 

is the result of the occurrence of equivalent 
susceptance in each phase in accordance with the 
system of equations:  
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On the grounds of the equivalent phases 

susceptance (15) the value of the reactive current 

� (9)

where: ia(t) – vector of the instantaneous values of the active 
current, ir(t) – vector of the instantaneous values of the reac-
tive current, in(t) – vector of the instantaneous values of the 
negative current, iz(t) – vector of the instantaneous values of 
the zero current.

On the basis of the proposed concept, the total value of the 
current norm kik expressed as follows:
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where: 1 2 3, ,L L LI I I -  rms values of the line currents, 
phases L1, L2 and L3 respectively, 1 2 3( ), ( ), ( )L L Li t i t i t - 
instantaneous values of the line currents, phases L1, 
L2 and L3 respectively, 

1 2 3
, ,

L L LI I I   - values of the 

phase angle of the line currents, phases L1, L2 and 
L3 respectively, I - complex values vector of the line 
currents, defined with the formula: 
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where: 1 2 3, ,L L LI I I - complex values of the line 

currents. 
In accordance with the mathematical concept of 

the Currents’ Asymmetrical Components the 
instantaneous value of the line current can be divided 
into four orthogonal components as follows [1, 2]: 
 
 ( ) ( ) ( ) ( ) ( )t t t t t= + + +a r n zi i i i i  (9) 
 
where: ( )tai - vector of the instantaneous values of 
the active current, ( )tri - vector of the instantaneous 
values of the reactive current, ( )tni - vector of the 
instantaneous values of the negative current, ( )tzi - 
vector of the instantaneous values of the zero current. 

On the basis of the proposed concept, the total 
value of the current norm i expressed as follows: 
 

 2 2 2 2= + + +a r n zi i i i i  (10) 
 
where: ai - norm value of the active current vector, 

ri - norm value of the reactive current vector, ni - 

norm value of the negative current vector, zi - norm 
value of the zero current vector. 

The value of each of the four current components 
can be presented in the form of a vector norm or in 
the form of an instantaneous value vector. 

For generating the active current ai  the equivalent 
conductance is responsible, which in circuits supplied 
from an asymmetric voltage source (5) in accordance 

with the mathematical concept CAC assumes the 
form of an equation system, since the equivalent 
conductance must be calculated for each phase 
separately as follows: 
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where: *1, ,  - symmetrical rotation coefficient equal 
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voltage phase shift coefficients for L1, L2 and L3 
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vector norm ai  is given as follows: 
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where: p1 - coefficients rotation vector of the positive 
sequence is equal: 
 

 *1
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The presence of reactive current ri  in the system 

is the result of the occurrence of equivalent 
susceptance in each phase in accordance with the 
system of equations:  
 

 

 

 

 

1

2

3

1 1

2 2

*
3 3

1 Im 1
3
1 Im
3
1 Im
3

L

L

L

e L N L

e L N L

e L N L

B Y

B Y

B Y





 

 =

 =

 =

 (15) 

 
On the grounds of the equivalent phases 

susceptance (15) the value of the reactive current 
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where: kiak – norm value of the active current vector, kirk 
– norm value of the reactive current vector, kink – norm value 
of the negative current vector, kizk – norm value of the zero 
current vector.

The value of each of the four current components can be 
presented in the form of a vector norm or in the form of an 
instantaneous value vector.

For generating the active current ia the equivalent conduc-
tance is responsible, which in circuits supplied from an asym-
metric voltage source (5) in accordance with the mathematical 
concept of CAC assumes the form of an equation system, since 
the equivalent conductance must be calculated for each phase 
separately as follows:
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On the basis of the proposed concept, the total 
value of the current norm i expressed as follows: 
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to 0 ,240 ,120  respectively, 1 2 3, ,L N L N L N   - actual 
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phases respectively, 1 2 3, ,L L LY Y Y - complex value of 
the phase admittance of the load. 

On the grounds of the equivalent phases 
conductance (11), the value of the active current 
vector norm ai  is given as follows: 
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where: p1 - coefficients rotation vector of the positive 
sequence is equal: 
 

 *1
T

  =  
p1  (14) 

 
The presence of reactive current ri  in the system 

is the result of the occurrence of equivalent 
susceptance in each phase in accordance with the 
system of equations:  
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On the grounds of the equivalent phases 

susceptance (15) the value of the reactive current 

� (11)

where: 1, α, α* – symmetrical rotation coefficient equal to 
0°, 240°, 120° respectively, αL1N, αL2N, αL3N – actual voltage 
phase shift coefficients for L1, L2 and L3 phases respectively, 
Y ̲ L1, Y ̲ L2, Y ̲ L3 – complex value of the phase admittance of the 
load.

On the grounds of the equivalent phases conductance (11), 
the value of the active current vector norm kiak is given as 
follows:
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where: 1 2 3, ,L L LI I I -  rms values of the line currents, 
phases L1, L2 and L3 respectively, 1 2 3( ), ( ), ( )L L Li t i t i t - 
instantaneous values of the line currents, phases L1, 
L2 and L3 respectively, 
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into four orthogonal components as follows [1, 2]: 
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where: ( )tai - vector of the instantaneous values of 
the active current, ( )tri - vector of the instantaneous 
values of the reactive current, ( )tni - vector of the 
instantaneous values of the negative current, ( )tzi - 
vector of the instantaneous values of the zero current. 

On the basis of the proposed concept, the total 
value of the current norm i expressed as follows: 
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where: ai - norm value of the active current vector, 

ri - norm value of the reactive current vector, ni - 

norm value of the negative current vector, zi - norm 
value of the zero current vector. 

The value of each of the four current components 
can be presented in the form of a vector norm or in 
the form of an instantaneous value vector. 

For generating the active current ai  the equivalent 
conductance is responsible, which in circuits supplied 
from an asymmetric voltage source (5) in accordance 

with the mathematical concept CAC assumes the 
form of an equation system, since the equivalent 
conductance must be calculated for each phase 
separately as follows: 
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to 0 ,240 ,120  respectively, 1 2 3, ,L N L N L N   - actual 
voltage phase shift coefficients for L1, L2 and L3 
phases respectively, 1 2 3, ,L L LY Y Y - complex value of 
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conductance (11), the value of the active current 
vector norm ai  is given as follows: 
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where: p1 - coefficients rotation vector of the positive 
sequence is equal: 
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The presence of reactive current ri  in the system 

is the result of the occurrence of equivalent 
susceptance in each phase in accordance with the 
system of equations:  
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On the grounds of the equivalent phases 

susceptance (15) the value of the reactive current 
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and a vector of the instantaneous complex values of the active 
current ia(t) is:
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where: 1 2 3, ,L L LI I I -  rms values of the line currents, 
phases L1, L2 and L3 respectively, 1 2 3( ), ( ), ( )L L Li t i t i t - 
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L2 and L3 respectively, 
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L L LI I I   - values of the 
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L3 respectively, I - complex values vector of the line 
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In accordance with the mathematical concept of 

the Currents’ Asymmetrical Components the 
instantaneous value of the line current can be divided 
into four orthogonal components as follows [1, 2]: 
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the active current, ( )tri - vector of the instantaneous 
values of the reactive current, ( )tni - vector of the 
instantaneous values of the negative current, ( )tzi - 
vector of the instantaneous values of the zero current. 

On the basis of the proposed concept, the total 
value of the current norm i expressed as follows: 
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where: ai - norm value of the active current vector, 

ri - norm value of the reactive current vector, ni - 

norm value of the negative current vector, zi - norm 
value of the zero current vector. 

The value of each of the four current components 
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For generating the active current ai  the equivalent 
conductance is responsible, which in circuits supplied 
from an asymmetric voltage source (5) in accordance 

with the mathematical concept CAC assumes the 
form of an equation system, since the equivalent 
conductance must be calculated for each phase 
separately as follows: 
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where: *1, ,  - symmetrical rotation coefficient equal 

to 0 ,240 ,120  respectively, 1 2 3, ,L N L N L N   - actual 
voltage phase shift coefficients for L1, L2 and L3 
phases respectively, 1 2 3, ,L L LY Y Y - complex value of 
the phase admittance of the load. 
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conductance (11), the value of the active current 
vector norm ai  is given as follows: 
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where: p1 - coefficients rotation vector of the positive 
sequence is equal: 
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The presence of reactive current ri  in the system 

is the result of the occurrence of equivalent 
susceptance in each phase in accordance with the 
system of equations:  
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On the grounds of the equivalent phases 

susceptance (15) the value of the reactive current 
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where: 1p – coefficients rotation vector of the positive sequence 
is equal:
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On the basis of the proposed concept, the total 
value of the current norm i expressed as follows: 
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where: ai - norm value of the active current vector, 

ri - norm value of the reactive current vector, ni - 

norm value of the negative current vector, zi - norm 
value of the zero current vector. 

The value of each of the four current components 
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For generating the active current ai  the equivalent 
conductance is responsible, which in circuits supplied 
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with the mathematical concept CAC assumes the 
form of an equation system, since the equivalent 
conductance must be calculated for each phase 
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where: *1, ,  - symmetrical rotation coefficient equal 

to 0 ,240 ,120  respectively, 1 2 3, ,L N L N L N   - actual 
voltage phase shift coefficients for L1, L2 and L3 
phases respectively, 1 2 3, ,L L LY Y Y - complex value of 
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component of the negative current ni  responds the 
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where: n1 - coefficients rotation vector of the negative 
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where: z1 - coefficients rotation vector of the zero 
sequence is equal: 
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3. Three-phase four-wire circuit powered 
by sinusoidal and asymmetrical 
voltages - the calculation example 

The authors of the publication in the calculation 
example presented in figure 2 assume an unbalanced 
linear load supplied from a sinusoidal asymmetric 
voltage source. The impedance of the power 
transmission line wires is ( )0,1 0,015j+  . The 
impedance of the power transmission line gives rise 
to the asymmetry of the voltage at the load's terminals 
and the voltage asymmetry on the load's elements - 
table 1. 

All computations were performed for the frequency 
of the power grid equal to 50f Hz= . 
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For the presence of the currents’ asymmetry two consecutive 
components are responsible. For the component of the negative 
current in responds the negative admittance, which is described 
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Based on (18) the value of the negative current vector norm 
kink is given as:
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where: 1n – coefficients rotation vector of the negative sequence 
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3.	 Three-phase four-wire circuit powered by 
sinusoidal and asymmetrical voltages  
– the calculation example

The authors of the publication in the calculation example pre-
sented in Fig. 2 assume an unbalanced linear load supplied from 

a sinusoidal asymmetric voltage source. The impedance of the 
power transmission line wires is (0,1 + j0,015)Ω. The imped-
ance of the power transmission line gives rise to the asymmetry 
of the voltage at the load’s terminals and the voltage asymmetry 
on the load’s elements – Table 1.

All computations were performed for the frequency of the 
power grid equal to f  = 50 Hz.

Table 1 lists the voltage values at the terminals of the gen-
erator (1), at the terminals of the load (2), and at the load (3).

Table 1
The list of the phase voltages in analyzed system

Voltage Phase L1 Phase L2 Phase L3

U ̲ 230e j3° 240e– j116° 220e j127°

U ̲ LPE 227,27e j3,88° 234,77e– j116,39° 201,7e j119,42°

U ̲ LN 259,12e j5,34° 214,43e– j109,93° 196,49e j110,19°

The waveform of the instantaneous value of the voltage at 
the terminals of the generator (1) is shown in Fig. 3.

Fig. 2. Circuit diagram for the calculation example

Fig. 3. The waveform of the instantaneous phase voltage at the termi-
nals of the generator

Fig. 4. The waveform of the instantaneous phase voltage at the ter-
minals of the load

Figure 4 shows the waveform of the instantaneous value of 
the voltage at the terminals of the load (2).

The waveform of the instantaneous value of the voltage at 
the load (3) is shown in Fig. 5.
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The load parameters, used in the circuit shown in Fig. 2, are 
summarized in Table 2.

Table 2 
The list of the parameters of the load

Load Phase L1 Phase L2 Phase L3

R 1,08 Ω 1,35 Ω 1,24 Ω

XL 2,45 Ω 1,88 Ω 3,25 Ω

XC 3,55 Ω 2,77 Ω 3,03 Ω

As a result of the calculations, in Table 3 the value of the 
admittance has been listed in two cases, i.e.:
1)	the phase admittance without impedance of the power trans-

mission line – Y ̲ ,
2)	the phase admittance with impedance of the power trans-

mission line – Y ̲ S.

Table 3 
The list of the admittance of the phase

Condition Phase L1 Phase L2 Phase L3

Y ̲ 0,17e– j62,45° 0,252e j2,29° 1,677e j61,26°

Y ̲ S 0,168e– j61,66° 0,246e j2,02° 1,567e j52,71°

Table 4 shows the list of the currents’ line values and current 
line norm.

Table 4 
The list of the currents’ line values

Current Phase L1 Phase L2 Phase L3

I ̲ 43,94e– j57,11° 54,08e– j107,64° 329,55e j171,45°

kik 336,838

Figure 6 presents the waveform of the instantaneous current 
value of the line – Table 4.

In accordance with the mathematical concept of the cur-
rents’ asymmetrical components for the obtained waveform 
of the line current – Table 4 – conform equivalent parameters 
(alternative) presented in Table 5, i.e.:
1)	equivalent conductance – Ge – equation (11),
2)	equivalent susceptance – B ̲ e – equation (15),

3)	negative admittance – Y ̲ n – equation (18),
4)	zero admittance – Y ̲ z – equation (22).

Table 5 
The list of the equivalent parameters (alternative)

Para. Phase L1 Phase L2 Phase L3

Ge 0,0307 0,0821 0,3484

B ̲ e – j0,0475 j0,018 j0,4372

Y ̲ n 0,031 ¡ j0,048 – 0,057 + j0,062 0,205 ¡ j0,052

Y ̲ z 0,031 ¡ j0,048 – 0,026 ¡ j0,08 – 0,553 + j0,083

On the basis of equivalent parameters – Table 5 – the values 
of the current components occurring in the CAC concept were 
calculated. Table 6 lists the values of the currents’ norms: active, 
passive, negative and zero, and the total norm of the current.

Table 6 
The list of the norms of the currents’ components  

and the total norm of the current

Norm of the currents Value of the currents

kiak 162,841

ki rk 134,187

kink 186,062

kizk 185,249

kik 336,838

According to (13), (17), (20) and (24), the values of the 
currents’ component are listed in Table 7.

Table 7 
The list of the complex values of the currents’ component

Cur. Phase L1 Phase L2 Phase L3

I ̲ a 94,02e j0° 94,02e– j120° 94,02e j120°

I ̲ r 77,47e j90° 77,47e– j30° 77,47e– j150°

I ̲ n 107,42e– j70,4° 107,42e j49,6° 107,42e j169,6°

I ̲ z 106,95e– j172,9° 106,95e– j172,9° 106,95e– j172,9°

Fig. 6. The waveform of the instantaneous current value of the lineFig. 5. The waveform of the instantaneous phase voltage at the load
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Based on the data presented in Table 7, the waveform of the 
instantaneous values has been prepared.

Figure 7 presents the waveform of the instantaneous value 
of the active current (13).

4.	 Application of the currents’ asymmetrical 
components concept

Mathematical concept of the currents’ asymmetrical compo-
nents could be used for the algorithm that generates the refer-
ence current of a potential active power filter or active part of 
a hybrid power filter. In order to obtain the reference current, 
use the following requirement:
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Using (26), in the analyzed case from figure 1, we 

obtained the waveform of the instantaneous value of 
the reference current shown in figure 11. 

 
Fig. 11. The waveform of the instantaneous value of the reference 
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According to the information provided for [21, 22], 

i.e. including the non-zero impedance of the power 
source (condition of the supply voltage asymmetry), 
the currents are not orthogonal to each other and 
relative to the supply voltage. However, in 
publications [19, 20] it has been shown that having 
regard to the asymmetry of the supply voltage, it is 
possible to show the orthogonality of currents and 
voltages. 

In the CAC mathematical concept, the currents are 
mutually orthogonal, but are not orthogonal in relation 
to the voltage. 

Wherefore, making use of (29) the active and 
reactive current components are mutually orthogonal 
( ), 0=a ri i  

Scalar product (31) of the active current and the 
negative current is: 
 

� (26)

Using (26), in the analyzed case from Fig. 1, we obtained 
the waveform of the instantaneous value of the reference current 
shown in Fig. 11.

Fig. 7. The waveform of the instantaneous value of the active current

Fig. 8. The waveform of the instantaneous value of the reactive current

Fig. 9. The waveform of the instantaneous value of the negative current

Fig. 11. The waveform of the instantaneous value of the reference 
current

Figure 8 presents the waveform of the instantaneous value 
of the reactive current (17).

The waveform of the instantaneous value of the negative 
current (20) has been shown in Fig. 9.

Figure 10 shows the waveform of the instantaneous value 
of the zero current (24).

As has been shown in Figs. 7‒10, and on the basis of the data 
presented in Table 7, the decomposition of the currents in the CAC 
concept for systems with sinusoidal asymmetric voltage supply is 
the symmetrical decomposition in terms of the current’s amplitude 
and angular displacements between the individual phases.

Fig. 10. The waveform of the instantaneous value of the zero current

The generated waveform of the instantaneous value of the 
reference current i ref(t) should be added to the waveform of the 
instantaneous value of the line current i(t) as follows:
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According to the information provided for [21, 22], 

i.e. including the non-zero impedance of the power 
source (condition of the supply voltage asymmetry), 
the currents are not orthogonal to each other and 
relative to the supply voltage. However, in 
publications [19, 20] it has been shown that having 
regard to the asymmetry of the supply voltage, it is 
possible to show the orthogonality of currents and 
voltages. 

In the CAC mathematical concept, the currents are 
mutually orthogonal, but are not orthogonal in relation 
to the voltage. 

Wherefore, making use of (29) the active and 
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Fig. 12. The waveform of the instantaneous value of the current after 
compensation

Using (27), we obtained the waveform of the instantaneous 
value of the current after compensation, shown in Fig. 12.

According to the information provided for [21, 22], i.e. in-
cluding the non-zero impedance of the power source (condition 
of the supply voltage asymmetry), the currents are not orthog-
onal to each other and relative to the supply voltage. However, 
in publications [19, 20] it has been shown that having regard 
to the asymmetry of the supply voltage, it is possible to show 
the orthogonality of currents and voltages.

In the CAC mathematical concept, the currents are mutually 
orthogonal, but are not orthogonal in relation to the voltage.

Therefore, making use of (29) the active and reactive current 
components are mutually orthogonal (ia, i r) = 0

Scalar product (31) of the active current and the negative 
current is:

(ia, in) = Re{£(GeL1
UL1N + GeL2

UL2N + GeL3
UL3N) ¢ 1p

¤T ¢

(ia, in)  ¢ 
£
(Y ̲ n

L1UL1N + Y ̲ n
L2UL2N + Y ̲ n

L3UL3N + ) ¢ 1n
¤*} =

(ia, in) = Re{£(GeL1
UL1N + GeL2

UL2N + GeL3
UL3N) ¢ 1p

¤T ¢

(ia, in)  ¢ (Y ̲ n
L1UL1N + Y ̲ n

L2UL2N + Y ̲ n
L3UL3N)

* ¢ 1pT ¢ 1n*} =

(ia, in) = Re{£(GeL1
UL1N + GeL2

UL2N + GeL3
UL3N)

T ¢

(ia, in)  ¢ (Y ̲ n
L1UL1N + Y ̲ n

L2UL2N + Y ̲ n
L3UL3N)

* ¢ (1 + α + α*)} = 0.

The other components are also mutually orthogonal, so their 
scalar products (31) are equal:

(ia, i z) = 0, (in, i r) = 0, (i z, i r) = 0, (in, i z) = 0 .

6.	 Conclusion

As has been shown by the authors of this publication, it is 
possible to decompose the current into four orthogonal com-
ponents, i.e.: the active current, reactive current, negative cur-
rent and the zero current, with asymmetrical sinusoidal voltage 
supply.

The mathematical concept of the currents’ asymmetrical 
components for sinusoidal asymmetric three-phase four-wire 
systems takes into account the impedance of wires, i.e. power 
transmission line and neutral conductor, so that the used vector 
of the instantaneous voltages is not located at the terminals of 
the generator but is taken directly from the load’s phase ele-
ments – it is a vector of the actual voltages.

The proposed current decomposition makes it possible to 
define the reference current of a potential active power filter 
or hybrid power filter. The reference current generated in this 
way, after entering to the system, allows obtaining a wave-
form of the symmetrical active current of the fundamental 
harmonic.
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As can be seen, the waveform of the instantaneous value of 
the current after compensation ic(t) is equal to the waveform of 
the instantaneous value of the active current ia(t).

5.	 Orthogonality of the components

Sinusoidal waveforms are orthogonal [1, 2] in two cases:
1)	when, at any moment of the time, one of the existing wave-

forms has a zero value, while the other one has a non-zero 
value, thereby the product of their instantaneous values is 
always equal to zero:
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According to the information provided for [21, 22], 

i.e. including the non-zero impedance of the power 
source (condition of the supply voltage asymmetry), 
the currents are not orthogonal to each other and 
relative to the supply voltage. However, in 
publications [19, 20] it has been shown that having 
regard to the asymmetry of the supply voltage, it is 
possible to show the orthogonality of currents and 
voltages. 

In the CAC mathematical concept, the currents are 
mutually orthogonal, but are not orthogonal in relation 
to the voltage. 

Wherefore, making use of (29) the active and 
reactive current components are mutually orthogonal 
( ), 0=a ri i  

Scalar product (31) of the active current and the 
negative current is: 
 

,� (28)

2)	when, the trigonometric waveforms (sinusoidal) of the same 
frequency are shifted from each other by a quarter period 
(T/4 or π/2):
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If it is impossible to determine orthogonality from the defi-
nition, the dependency on the scalar product is used:
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which, after the solution of the equation is equal:
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current 

The generated waveform of the instantaneous 
value of the reference current ( )trefi  should be added 
to the waveform of the instantaneous value of the line 
current ( )ti  as follows: 
 

 ( )
( )
( )
( )

( ) ( )
( ) ( )
( ) ( )

1 1

2 2

3 3

1

2

3

L L

L L

L L

c L ref

c L ref

c L ref

i t i t i t

t i t i t i t

i t i t i t

  +
  = = +  
   +   

ci  (27) 

 
Using (27), we obtained the waveform of the 

instantaneous value of the current after 
compensation, shown in figure 12. 
 

 
Fig. 12. The waveform of the instantaneous value of the current 
after compensation 

As can be seen, the waveform of the 
instantaneous value of the current after compensation 
( )tci  is equal to the waveform of the instantaneous 

value of the active current ( )tai . 

5. Orthogonality of the components 

Sinusoidal waveforms are orthogonal [1, 2] in two 
cases: 
1) when, at any moment of the time, one of the 

existing waveforms has a zero value, while the 

other one has a non-zero value, thereby the 
product of their instantaneous values is always 
equal to zero: 

 ( ) ( ) 0x t y t   (28) 
 
2) when, the trigonometric waveforms (sinusoidal) of 

the same frequency are shifted from each other by 
a quarter period ( / 4T or / 2 ): 

 
( ) ( )

( ) ( )

2 sin

2 sin / 2

x t X t

y t Y t

 

  

= −

= − 





 (29) 

 
If it is impossible to determine orthogonality from 

the definition, the dependency on the scalar product 
is used: 
 

 ( ) ( ) ( )

   1 1

0

0

1,

1 2Re 2Re

T

T
j t j t

x y x t y t dtT

e e dtT
 

=

= 



 X Y

(30) 

 
which, after the solution of the equation is equal: 
 

 ( ) ( ) ( ) *

0

1
, Re

T
T T

h N

t t dt
T 

= = x y x y X Y (31) 

 
According to the information provided for [21, 22], 

i.e. including the non-zero impedance of the power 
source (condition of the supply voltage asymmetry), 
the currents are not orthogonal to each other and 
relative to the supply voltage. However, in 
publications [19, 20] it has been shown that having 
regard to the asymmetry of the supply voltage, it is 
possible to show the orthogonality of currents and 
voltages. 

In the CAC mathematical concept, the currents are 
mutually orthogonal, but are not orthogonal in relation 
to the voltage. 

Wherefore, making use of (29) the active and 
reactive current components are mutually orthogonal 
( ), 0=a ri i  

Scalar product (31) of the active current and the 
negative current is: 
 

.� (31)
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