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EVALUATION OF ROCKBURST POTENTIAL IN KIMBERLITE USING FRUIT FLY OPTIMIZATION 
ALGORITHM AND GENERALIZED REGRESSION NEURAL NETWORKS

OCENA STANU ZAGROŻENIA TĄPANIA I WYRZUTÓW SKAŁ W KIMEBERLITE 
Z WYKORZYSTANIEM ALGORYTMU MUSZKI OWOCOWEJ I SIECI NEURONOWEJ 

REALIZUJĄCEJ UOGÓLNIONĄ REGRESJĘ (GRNN)

Rockburst is a common engineering geological hazard. In order to evaluate rockburst liability in 
kimberlite at an underground diamond mine, a method combining generalized regression neural networks 
(GRNN) and fruit fly optimization algorithm (FOA) is employed. Based on two fundamental premises of 
rockburst occurrence, depth, σθ, σc, σt, B1, B2, SCF, Wet are determined as indicators of rockburst, which 
are also input vectors of GRNN model. 132 groups of data obtained from rockburst cases from all over the 
world are chosen as training samples to train the GRNN model; FOA is used to seek the optimal parameter 
σ that generates the most accurate GRNN model. The trained GRNN model is adopted to evaluate burst 
liability in kimberlite pipes. The same eight rockburst indicators are acquired from lab tests, mine site and 
FEM model as test sample features. Evaluation results made by GRNN can be confirmed by a rockburst 
case at this mine. GRNN do not require any prior knowledge about the nature of the relationship between 
the input and output variables and avoid analyzing the mechanism of rockburst, which has a bright prospect 
for engineering rockburst potential evaluation.

Keywords: Rockburst potential evaluation, Generalized regression neural networks (GRNN), Fruit fly 
algorithm, Backpropagation neural network (BPNN) 

Tąpnięcia skał są powszechnym i ogólnie znanym zagrożeniem dla środowiska geologicznego oraz 
dla budowli. Do oceny skłonności skał do tąpania w podziemnej kopalni diamentów w Kimberlite zasto-
sowano metodę stanowiącą połączenie sieci neuronowych realizujących uogólnioną regresję i algorytm 
muszki owocowej. W oparciu o dwie podstawowe przesłanki wystąpienia tąpnięcia, głębokość oraz σθ, 
σc, σt, wielkości B1, B2, SCF, Wet określone zostały jako wskaźniki wystąpienia tąpnięcia i następnie wy-
korzystane jako wektory wejściowe w modelu sieci neuronowych GRNN. Zestawiono 132 zbiory danych 
o przypadkach tapnięć z całego świata i wykorzystano je jako zbiory uczące dla modelu sieci neuronowej 
realizującej uogólnioną regresję. Algorytm muszki owocowej wykorzystano do znalezienia optymalnej 
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wartości parametru σ który umożliwi wygenerowanie najbardziej dokładnego modelu sieci neuronowej 
GRNN. Po treningu, model sieci GRNN wykorzystany został do oceny możliwości wystąpienia tąpnięcia 
w Kimberlite. Te same osiem wskaźników oceny skłonności wyrzutowej skały otrzymano na podstawie 
badań laboratoryjnych, z analiz prowadzonych w kopalni oraz w oparciu o metodę elementów skończonych, 
wyniki te wykorzystano następnie jako próbki danych. Wyniki uzyskane przy zastosowaniu sieci neurono-
wych realizujących regresję uogólnioną potwierdzone zostały przez wyniki uzyskane w trakcie wyrzutu 
w kopalni. Metoda sieci neuronowych nie wymaga uprzedniej wiedzy o naturze zależności pomiędzy 
zmiennymi wejściowymi i wyjściowymi i pozwala uniknąć analiz mechanizmu wyrzutu i tąpnięcia, co jest 
cechą pożądaną z punktu widzenia inżynierów odpowiedzialnych za ocenę skłonności skał do wyrzutu.

Słowa kluczowe: ocena możliwości wystąpienia wyrzutów skał, sieć neuronowa realizująca regresję 
uogólnioną (GRNN), algorytm muszki owocowej, sieć neuronowa realizującą pro-
pagację wsteczną (BPNN)

1. Introduction

Rockburst is a sudden geodynamic event that occurs in underground mines under stress 
impaction and, oftentimes, results in equipment damages and life injuries or even deaths (He et 
al., 2017; Mansurov, 2001). Most of mining countries have records of rockburst events, includ-
ing China (Shi et al., 2005), Germany (Baltz & Hucke, 2008), Australia (Potvin et al., 2000), 
South Africa (Gibowicz, 2009), Canada (Blake & Hedley, 2003), Poland (Patyńska & Kabiesz, 
2009; Bukowska 2012), United States (Iannacchione & Zelanko, 1993) et al. Due to serious 
consequence caused by rockburst, the rockburst potential evaluation is of great importance in 
the design stage, during construction and mining production (J. Zhou et al., 2012). Based on 
the analysis of different aspects of the rockburst mechanism, such as strength, stiffness, energy, 
stability, damage-fracture, many researchers were able to put forward some rockburst potential 
evaluation methods. For example, Kidybinski (Kidybiński, 1981) used strain energy storage 
index as a burst liability criterion. Mitri (Mitri et al., 2011) developed an energy-based burst po-
tential index (BPI) to diagnose the burst proneness. Xie Heping (Xie & Pariseau, 1993) proposed 
a rockburst prediction method based on fractal dimension of rocks. However, influence factors 
of rockburst including mechanical condition, brittleness, energy-store condition, and mining or 
excavation methods, are complex. Furthermore, the relationships between rockburst intensity and 
these impact factors are highly non-linear, which makes the traditional, mechanism-based predica-
tion methods unable to create a precise evaluation for rockburst potential at underground mining. 
Hence, other researchers tried to analyze the relationship between rockburst control factors and 
rockburst intensity using some mathematical and statistical methods, such as fuzzy mathematics 
(W. Cai et al., 2016), neural network (Sun et al., 2009; Jia et al., 2013; Pu et al., 2018a; W. Gao, 
2015), support vector machine (J. Zhou et al. 2012; Pu et al. 2018c) and decision tree (Pu et al., 
2018b). These methods are more effective in processing non-linear problems, which train the 
model with existing data instead of discussing the rockburst mechanism. 

A neural network is an important method in the area of artificial intelligence and is an 
excellent solution of coping with non-linear problems based on its strong self-learning ability. 
Neural networks do not need any prior knowledge about the nature of the relationship between 
the input/output variables, which is one of the benefits they have compared to most empirical 
and statistical methods. After Einstein (Dershowitz & Einstein, 1984) introduced artificial intel-
ligence in rock mechanics in the 1980s, the neural network became widely used in rock and soil 
engineering (Ni et al., 1996; Nikbakhtan et al., 2015). 
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For rockburst potential evaluation, neural network has been an innovative approach based 
on its capability for operating non-linear relationship compared with traditional mechanism-based 
evaluation methods. Sun (Sun et al., 2009) combined fuzzy mathematics and a backpropagation 
neural network (BPNN) to evaluate rockburst liability in Sahelian coal mine. Dong (Dong et al., 
2013) achieved rockburst liability evaluation results by comparing three optimization algorithms 
which implemented on a support vector machine (SVM). Zhou (K. Zhou & Gu, 2004) employed 
a self-organization neural network which was trained by data gained from a geographical infor-
mation system (GIS) to assess burst liability at a deep metal mine. Zhang (Y. Zhang et al., 2017) 
built a rockburst pre-warning system with BPNN which fed by rock acoustic emission signals 
obtained from lab acoustic emission experiment. However, some defects were embedded into 
current researches. The performance of backpropagation neural network which were frequently 
used in current researches strongly relied on the determination of several hyper-parameters such 
as the number of layers, the study rate during gradient decent process. Researcher’s experience 
would have a big impact on prediction results. Furthermore, the number of training samples in 
many researches were insufficient (most of them were less than 50). The lack of training sample 
easily resulted in overfitting which means neural network performs well only for training samples 
but awfully for real test samples. Neural network cannot operate on label data directly, which 
requires rockburst categories must be converted to a numerical form when fed into model. Most 
current researches simply converted categories with an integer. For example, if rockburst has four 
categories ‘no’, ‘moderate’, ‘strong’ and ‘violent’, ‘1’, ‘2’, ‘3’, ‘4’ were assigned to each category 
respectively. But a problem was raised that this method endowed a natural ordered relationship 
among categories. However, there is no this kind of relationship among rockburst categories. 

In this paper, a novel generalized regression neural network (GRNN) was employed to 
build a relationship between rockburst levels and its indicators. A new optimization algorithm 
was employed to seek the unique parameter for GRNN. More than one hundred data collected 
from rockburst cases were used to train GRNN. Meanwhile, one-hot encoding was adopted to 
convert rockburst categories to numerical forms. Finally, this trained GRNN would be used to 
evaluate rockburst potential in two kimberlite pipes at a diamond mine.

2. Basic principle of GRNN

In general, frequently used neural networks include ordinary backpropagation neural network 
(BPNN), radial basis function neural network (RBFN), Hopfield neural network (HNN), recur-
rent neural network (RNN) and general regression neural network (GRNN). The core process of 
prediction with a neural network includes: choosing a suitable neural network, collecting training 
samples for the neural network, determining the input and output vectors based on the training 
sample, setting the parameters for the neural network, training the neural network, and prediction 
with the trained neural network. The key for neural network prediction lays in neural network 
selection and parameters (including hyper-parameters) setting. The less parameters subjectively 
determined by users, the more reliable the neural network is. The general regression neural 
network (GRNN has a fixed structure as long as the training samples are determined and only 
one subjective parameter is required which is suitable for prediction for engineering problems.

The GRNN is based on nonlinear regression theory (Specht, 1991). Compared to the tra-
ditional BPNN, the GRNN performs better at nonlinear mapping, and also, it can obtain more 
reasonable prediction results even if the training samples are inadequate (Cigizoglu & Alp, 
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2006). The GRNN has been successfully used to predict the load-bearing capacity of driven 
piles in cohesionless soils (Kiefa, 1998), estimate river suspended sediments (Cigizoglu & Alp, 
2006), predict settlements (Sivakugan et al., 1998), analyze rock mechanics testing (Tutumluer 
& Seyhan, 1998), and solve other engineering problems. 

GRNN is a variation radial basis neural network suggested by Specht (Specht, 1991). The  
x, y are both random variables, and f (x, y) represents its joint probability density function. When 
we designate X as the observed value of x, the regression of y on X is given by:
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In formula (2), n represents the number of training samples, d reflects the dimensions of 
the variable x (the number of features), σ represents a parameter called ‘spread’, which is the 
decisive factor GRNN. We use f̂ (X, Y ) to replace f (x, y), and then, combine (1) and (2) to for-
mula (3), where Yi refers the output of the ith training sample and Xi is the input feature vector 
of the ith training sample.
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GRNN includes a four-layer network structure, consists of input layer, pattern layer, sum-
mation layer, and output layer. The number of neuros for input layer (first layer) is the amount 
of features of a training sample while numbers of neuros for pattern layer equal the number of 
training samples.

Fig. 1. GRNN block diag ram 

After pattern units receive information from input units, formula (5) will be used to convert 
this information, and then transport results into summation units. Formulas (6) and (7) are used 
in summation units. At last, formula (8) is employed to obtain the final output result (Jia et al., 
2013). In GRNN, only one parameter, σ, needs to be set subjectively, which lowers the method’s 
subjectivity compared to other neural network models. The key point of using GRNN in predict-
ing an engineering problem is to determine a suitable σ.

3. The optimization of GRNN

In general, in order to determine σ, trial and error method is adopted, which usually results 
in a low efficiency and a weak precision. Actually, the most suitable σ is the one resulting in the 
lowest error between target and the output result of GRNN. Mathematically, the process of look-
ing for a suitable σ can be regarded as a process of seeking a minimal value of this error. In this 
paper, a novel Fruit Fly Optimization Algorithm (FOA) is employed for seeking an optimal σ.

FOA was first applied to evaluate corporate performance in economics (Pan, 2011). Ac-
cording to simulations of a fruit fly’s searching for food, the FOA can obtain the extreme value 
of a function. In the process of seeking an optimal σ for GRNN, the decision function is the error 
between the target and the prediction value, which means that this σ can result in a minimal value 
of the decision function. Here, the cross entropy (C.H. Li & Lee, 1993) was adopted to show the 
error between prediction values and targets. Minimizing cross entropy leads to good classifiers. 
Formula (9) demonstrates a cross entropy. Where yi is the prediction result while yi' is the target. 
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The MATLAB software (Manual 1995) helps us with performing this procedure. The steps 
are as follows:

Step 1: Determine the fruit flies’ population size and the maximum number of iterations. 
Randomly initialize of the fruit flies’ original location.

Step 2: Fruit flies start seeking food. Calculate the distance between the fruit fly individuals 
and the original point and calculate the decision value of flavor which is the reciprocal 
of this distance. This decision value of flavor is actually σ. 

Step 3: The σ obtained in Step 2 is plugged into a GRNN training box in MATLAB (func-
tion statement: net = newgrnn (P,T,σ), where P and T represent input vector and output 
vector respectively). After GRNN training, function ‘sim’ will be used for simulation. The 
cross entropy between the simulation output vector and the targets will be represented 
as a decision function.

Step 4: The value of σ, which results in a minimum value of the decision function will be 
found out.

Step 5: Record this σ and corresponding coordinates (X, Y). At this time, the fruit fly popu-
lation will fly to this location (X, Y).

Step 6: Iterative optimization. Step 2 to Step 4 will be executed repetitively. Every time, 
we will check if the obtained minimum value of the decision function is lower than the 
previous one. If yes, Step 5 will be executed. Figure 2 shows the flow of optimized 
GRNN using FOA.

Fig. 2. The flow of optimized GRNN using FOA
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4. Rockburst prediction with GRNN

The mechanism of rockburst is very complex and is influenced by many factors. Funda-
mentally, the rockburst occurrence has to meet two necessary requirements: the rock has to have 
the capability to accumulate strain energy and the environment should be favorable to stress 
concentration (M. Cai, 2016). Many single factor evaluation methods have been put forward 
aiming to estimate rockburst potential based on these two basic requirements. This includes the 
Cover Depth (D) (S.P. Singh, 1989), Strain Energy Storage Index (Wet) (Kidybiński, 1981), Stress 
Concentration Factor (SCF = σθ /σc) (Martin et al. 1999), rock brittleness index B1(B1 = σc /σt) (Zhu 
et al. 1996), rock brittleness index B2(B2 = (σc – σt)/(σc + σt)) (S. Singh 1987). Some indicators 
reflect the capability of stress storage while others represent stress concentration around under-
ground excavations. In order to evaluate burst liability, the indicators which account for two basic 
requirements of rockburst occurrence should be combined. In this paper, eight indicators: depth 
(D), maximum shear stress around tunnel wall (σθ), uniaxial compressive strength (σc), uniaxial 
tensile stress (σt), rock brittleness index B1, rock brittleness index B2, Stress Concentration Fac-
tor (SCF), Strain Energy Storage Index (Wet) were working together to determine burst liability 
in kimberlite. These eight indicators constitute input features of a training sample for GRNN.

Most researchers divided rockburst activities into four levels (no rockburst, moderate 
rockburst, strong rockburst and violent rockburst) based on damage intensity, violence and scale 
(Russenes, 1974; Tan, 1992; Y. Wang et al., 1998). These four levels are labels (output vector) 
of GRNN. However, many machine learning algorithms including GRNN cannot operate using 
label data directly. They require all input variables and output variables to be numeric, which 
means the label data must be converted to a numerical form (Brownlee, 2018). Two ways can 
be adopted to convert the label data to a numerical form. The common method is the integer 
encoding which means each unique category is assigned an integer value. For example, we can 
assign ‘0’ to ‘no rockburst’, ‘1’ to ‘moderate rockburst’ and so on. However, integer encoding 
may result in poor performance or unexpected results because it assumes a natural ordering be-
tween categories when operating variables without such ordinal relationship such as rockburst 
levels. Alternatively, we can use one-hot encoding which means applying a binary variable for 
each category. In this case, ‘no rockburst’ can be encoded as [1 0 0 0 ]; ‘moderate rockburst’ can 
be encoded as [0 1 0 0 ] and so on. 

In this study, 132 groups of data which came from rockburst cases from all over the world 
were chosen as training samples. Table 1 shows data where rockburst levels had been converted 
to one-hot encodings. 

Data groups 1 to 100 are used as training samples while groups 101 to 132 are used as valida-
tion samples for parameter optimization. To avoid different units among eight features of training 
sample, data normalization was conducted to locate each feature in range [0,1]. Formula (10) was 
adopted to conduct normalization. Random initialization of fruit flies’ location is in range [0,1]. 
After normalization, a typical training sample (case one) is like this: an eight-dimensional input 
vector (0.063 0.296 0.617 0.684 0.901 0.162 0.735 0.281 ) as well as the output vector (0 0 1 0). 
The fruit fly group consists of 20 individuals. The number of iteration is 100. Figure 3 shows 
optimization process and fruit flies’ locations. After 100 iterations, the minimum value of error 
stabilizes at 0.679. The corresponding σ is 0.192.

 
* min

max min

x xx
x x

  (10)



286
TA

B
LE

 1
D

at
a 

se
t o

f t
r   a

in
in

g 
sa

m
pl

es

C
as

e 
nu

m
be

r
R

oc
k 

ty
pe

D
ep

th
/m

σ θ
/M

Pa
σ c

/M
Pa

σ t
/M

Pa
SC

F
B 1

B 2
W

et
B

ur
st

 R
an

ki
ng

O
ne

-h
ot

 
en

co
di

ng
D

at
a

so
ur

ce
1

G
ra

no
di

or
ite

20
0

90
17

0
11

.3
0.

53
15

.0
4

0.
88

9
ST

R
O

N
G

[0
 0

 1
 0

]
2

Sy
en

ite
19

4
90

22
0

7.
4

0.
41

29
.7

3
0.

93
7.

3
M

O
D

ER
AT

E
[0

 1
 0

 0
]

3
G

ra
no

di
or

ite
40

0
62

.6
16

5
9.

4
0.

38
17

.5
3

0.
89

9
M

O
D

ER
AT

E
[0

 1
 0

 0
]

4
G

ra
ni

te
30

0
55

.4
17

6
7.

3
0.

32
24

.1
1

0.
92

9.
3

ST
R

O
N

G
[0

 0
 1

 0
]

5
D

ol
om

iti
c

Li
m

es
to

ne
40

0
30

88
.7

3.
7

0.
34

23
.9

7
0.

92
6.

6
ST

R
O

N
G

[0
 0

 1
 0

]
6

G
ra

ni
te

70
0

48
.7

5
18

0
8.

3
0.

27
21

.6
9

0.
91

5
ST

R
O

N
G

[0
 0

 1
 0

]
7

Q
ua

rtz
ite

25
0

80
18

0
6.

7
0.

44
26

.8
7

0.
93

5.
5

M
O

D
ER

AT
E

[0
 1

 0
 0

]
8

Q
ua

rtz
D

io
rit

e
89

0
89

23
6

8.
3

0.
38

28
.4

3
0.

93
5

ST
R

O
N

G
[0

 0
 1

 0
]

9
M

ar
bl

e
15

0
98

.6
12

0
6.

5
0.

82
18

.4
6

0.
9

3.
8

ST
R

O
N

G
[0

 0
 1

 0
]

(Y
. W

an
g 

et
 a

l. 
19

98
)

10
B

io
tit

e 
gr

an
ite

 p
or

ph
yr

y
20

3
91

.2
3

15
7.

63
11

.9
6

0.
58

13
.1

8
0.

86
6.

27
V

IO
LE

N
T

[0
 0

 0
 1

]
11

B
io

tit
e 

gr
an

ite
 p

or
ph

yr
y

82
7

66
.7

7
14

8.
48

8.
47

0.
45

17
.5

3
0.

89
5.

08
M

O
D

ER
AT

E
[0

 1
 0

 0
]

12
B

io
tit

e 
gr

an
ite

 p
or

ph
yr

y
89

6
51

.5
13

2.
05

6.
33

0.
39

20
.8

6
0.

91
4.

63
ST

R
O

N
G

[0
 0

 1
 0

]
13

B
io

tit
e 

gr
an

ite
 p

or
ph

yr
y

11
17

35
.8

2
12

7.
93

4.
43

0.
28

28
.9

0.
93

3.
67

M
O

D
ER

AT
E

[0
 1

 0
 0

]
14

B
io

tit
e 

lim
es

to
ne

11
24

21
.5

10
7.

52
2.

98
0.

2
36

.0
4

0.
95

2.
29

N
O

N
E

[1
 0

 0
 0

]
15

B
io

tit
e 

lim
es

to
ne

11
40

18
.3

2
96

.4
1

2.
01

0.
19

47
.9

3
0.

96
1.

87
N

O
N

E
[1

 0
 0

 0
]

16
B

io
tit

e 
lim

es
to

ne
98

3
11

0.
3

16
7.

19
12

.6
7

0.
66

13
.2

0.
86

6.
83

V
IO

LE
N

T
[0

 0
 0

 1
]

17
B

io
tit

e 
lim

es
to

ne
85

3
26

.0
6

11
8.

46
3.

51
0.

22
33

.7
5

0.
94

2.
89

M
O

D
ER

AT
E

[0
 1

 0
 0

]
(L

. Z
ha

ng
 e

t a
l. 

20
10

)
18

B
io

tit
e 

gr
an

ite
 p

or
ph

yr
y

64
4

16
.6

2
15

6.
86

10
.6

6
0.

11
14

.7
1

0.
87

4.
83

ST
R

O
N

G
[0

 0
 1

 0
]

19
B

io
tit

e 
gr

an
ite

 p
or

ph
yr

y
69

2
16

.4
7

15
6.

9
10

.3
3

0.
11

15
.1

9
0.

88
4.

39
ST

R
O

N
G

[0
 0

 1
 0

]
20

B
io

tit
e 

gr
an

ite
 p

or
ph

yr
y

97
0

16
.4

3
15

7.
95

11
.0

6
0.

1
14

.2
8

0.
87

4.
99

V
IO

LE
N

T
[0

 0
 0

 1
]

21
B

io
tit

e 
gr

an
ite

 p
or

ph
yr

y
85

0
16

.3
15

5.
28

10
.6

3
0.

11
14

.6
1

0.
87

4.
4

ST
R

O
N

G
[0

 0
 1

 0
]

(J
. Z

ha
ng

 e
t a

l. 
20

11
)

22
B

io
tit

e 
gr

an
ite

 p
or

ph
yr

y
17

4
15

.9
7

11
4.

07
11

.9
6

0.
14

9.
54

0.
81

2.
4

N
O

N
E

[1
 0

 0
 0

]
23

B
io

tit
e 

gr
an

ite
 p

or
ph

yr
y

27
5

19
.1

4
10

6.
31

11
.9

6
0.

18
8.

89
0.

8
2.

07
N

O
N

E
[1

 0
 0

 0
]

24
B

io
tit

e 
gr

an
ite

 p
or

ph
yr

y
18

7
12

.9
6

11
7.

81
11

.9
6

0.
11

9.
85

0.
82

2.
49

N
O

N
E

[1
 0

 0
 0

]
25

B
io

tit
e 

gr
an

ite
 p

or
ph

yr
y

26
7

31
.0

5
14

7.
85

11
.9

6
0.

21
12

.3
6

0.
85

3
ST

R
O

N
G

[0
 0

 1
 0

]
26

B
io

tit
e 

gr
an

ite
 p

or
ph

yr
y

21
5

29
.0

9
13

8.
5

11
.9

6
0.

21
11

.5
8

0.
84

2.
77

N
O

N
E

[1
 0

 0
 0

]
27

B
io

tit
e 

gr
an

ite
 p

or
ph

yr
y

27
2

32
.4

14
0.

88
11

.9
6

0.
23

11
.7

8
0.

84
2.

86
M

O
D

ER
AT

E
[0

 1
 0

 0
]

28
B

io
tit

e 
gr

an
ite

 p
or

ph
yr

y
64

4
34

.8
9

15
1.

7
10

.6
6

0.
23

14
.2

3
0.

87
3.

17
M

O
D

ER
AT

E
[0

 1
 0

 0
]

29
B

io
tit

e 
gr

an
ite

 p
or

ph
yr

y
69

2
16

.2
1

13
5.

07
10

.3
3

0.
12

13
.0

8
0.

86
2.

49
M

O
D

ER
AT

E
[0

 1
 0

 0
]

30
B

io
tit

e 
gr

an
ite

 p
or

ph
yr

y
97

0
30

.5
6

16
0.

83
11

.0
6

0.
19

14
.5

4
0.

87
3.

63
V

IO
LE

N
T

[0
 0

 0
 1

]



287
31

B
io

tit
e 

gr
an

ite
 p

or
ph

yr
y

11
07

19
.3

6
11

3.
87

4.
43

0.
17

25
.7

0.
93

2.
38

M
O

D
ER

AT
E

[0
 1

 0
 0

]
32

B
io

tit
e 

lim
es

to
ne

12
05

33
.1

5
10

6.
94

2.
98

0.
31

35
.8

9
0.

95
2.

15
ST

R
O

N
G

[0
 0

 1
 0

]
33

B
io

tit
e 

lim
es

to
ne

11
84

9.
74

88
.5

1
2.

98
0.

11
29

.7
0.

93
1.

77
N

O
N

E
[1

 0
 0

 0
]

34
B

io
tit

e 
lim

es
to

ne
13

73
11

.7
5

83
.9

6
2.

98
0.

14
28

.1
7

0.
93

2.
15

N
O

N
E

[1
 0

 0
 0

]
35

B
io

tit
e 

lim
es

to
ne

16
89

39
.9

4
11

7.
48

2.
98

0.
34

39
.4

2
0.

95
2.

37
M

O
D

ER
AT

E
[0

 1
 0

 0
]

36
B

io
tit

e 
lim

es
to

ne
16

06
39

.8
2

12
8.

46
2.

98
0.

31
43

.1
1

0.
95

2.
4

ST
R

O
N

G
[0

 0
 1

 0
]

37
B

io
tit

e 
lim

es
to

ne
12

20
46

.2
2

14
0.

07
2.

01
0.

33
69

.6
9

0.
97

3.
29

M
O

D
ER

AT
E

[0
 1

 0
 0

]
38

B
io

tit
e 

lim
es

to
ne

92
0

30
.9

5
12

3.
79

12
.6

7
0.

25
9.

77
0.

81
2.

57
M

O
D

ER
AT

E
[0

 1
 0

 0
]

39
B

io
tit

e 
lim

es
to

ne
78

5
40

.9
9

18
6.

3
12

.6
7

0.
22

14
.7

0.
87

4.
1

ST
R

O
N

G
[0

 0
 1

 0
]

40
B

io
tit

e 
lim

es
to

ne
77

2
20

.8
2

12
2.

47
12

.6
7

0.
17

9.
67

0.
81

2.
81

M
O

D
ER

AT
E

[0
 1

 0
 0

]
41

B
io

tit
e 

lim
es

to
ne

64
4

36
.0

9
16

4.
05

12
.6

7
0.

22
12

.9
5

0.
86

3.
59

ST
R

O
N

G
[0

 0
 1

 0
]

(C
. Z

ha
ng

 e
t a

l. 
20

11
)

42
Sa

nd
st

on
e

92
0

34
.1

5
54

.2
12

.1
0.

63
4.

48
0.

63
3.

17
M

O
D

ER
AT

E
[0

 1
 0

 0
]

(T
an

g 
et

 a
l. 

20
03

)
43

G
ra

ni
te

10
00

60
13

5
15

.0
4

0.
44

8.
98

0.
8

4.
86

M
O

D
ER

AT
E

[0
 1

 0
 0

]
44

M
ar

bl
e

10
00

60
66

.4
9

9.
72

0.
9

6.
84

0.
74

2.
15

M
O

D
ER

AT
E

[0
 1

 0
 0

]
45

M
ig

m
at

ite
10

00
60

10
6.

38
11

.2
0.

56
9.

5
0.

81
6.

11
M

O
D

ER
AT

E
[0

 1
 0

 0
]

46
Pe

rid
ot

ite
10

00
60

86
.0

3
7.

14
0.

7
12

.0
5

0.
85

2.
85

M
O

D
ER

AT
E

[0
 1

 0
 0

]
47

Lh
er

zo
lit

e
10

00
60

14
9.

19
9.

3
0.

4
16

.0
4

0.
88

3.
5

M
O

D
ER

AT
E

[0
 1

 0
 0

]
(Y

i e
t a

l. 
20

10
)

48
A

m
ph

ib
ol

ite
10

00
60

13
6.

79
10

.4
2

0.
44

13
.1

3
0.

86
2.

12
M

O
D

ER
AT

E
[0

 1
 0

 0
]

49
Sa

nd
st

on
e

75
0

63
.8

11
0

4.
5

0.
58

24
.4

0.
92

6.
31

ST
R

O
N

G
[0

 0
 1

 0
]

50
D

ol
om

ite
75

0
2.

6
20

3
0.

13
6.

67
0.

74
1.

39
N

O
N

E
[1

 0
 0

 0
]

51
Ph

os
ph

at
e 

ro
ck

75
0

44
.4

12
0

5
0.

37
24

0.
92

5.
1

M
O

D
ER

AT
E

[0
 1

 0
 0

]
52

R
ed

 S
ha

le
75

0
13

.5
30

2.
67

0.
45

11
.2

0.
84

2.
03

M
O

D
ER

AT
E

[0
 1

 0
 0

]
53

Sa
nd

st
on

e
70

0
70

.4
11

0
4.

5
0.

64
24

.4
0.

92
6.

31
ST

R
O

N
G

[0
 0

 1
 0

]
54

D
ol

om
ite

70
0

3.
8

20
3

0.
19

6.
67

0.
74

1.
39

N
O

N
E

[1
 0

 0
 0

]
55

Ph
os

ph
at

e 
ro

ck
70

0
57

.6
12

0
5

0.
48

24
0.

92
5.

1
ST

R
O

N
G

[0
 0

 1
 0

]
56

R
ed

 S
ha

le
70

0
19

.5
30

2.
67

0.
65

11
.2

0.
84

2.
03

ST
R

O
N

G
[0

 0
 1

 0
]

57
Sa

nd
st

on
e

60
0

81
.4

11
0

4.
5

0.
74

24
.4

0.
92

6.
31

V
IO

LE
N

T
[0

 0
 0

 1
]

58
D

ol
om

ite
60

0
4.

6
20

3
0.

23
6.

67
0.

74
1.

39
N

O
N

E
[1

 0
 0

 0
]

59
Ph

os
ph

at
e 

ro
ck

60
0

73
.2

12
0

5
0.

61
24

0.
92

5.
1

ST
R

O
N

G
[0

 0
 1

 0
]

60
R

ed
 S

ha
le

60
0

30
30

2.
67

1
11

.2
0.

84
2.

03
V

IO
LE

N
T

[0
 0

 0
 1

]
(Y

an
g 

et
 a

l. 
20

10
)

61
Li

m
es

to
ne

51
0

15
.2

53
.8

5.
56

0.
28

9.
68

0.
81

1.
92

N
O

N
E

[1
 0

 0
 0

]
62

D
io

rit
e

51
0

88
.9

14
2

13
.2

0.
63

10
.7

0.
83

3.
62

V
IO

LE
N

T
[0

 0
 0

 1
]

63
Ir

on
 o

re
51

0
59

.8
2

85
.8

7.
31

0.
7

11
.7

0.
84

2.
78

ST
R

O
N

G
[0

 0
 1

 0
]

64
Sk

ar
n

51
0

32
.3

67
.4

6.
7

0.
48

10
.1

0.
82

1.
1

N
O

N
E

[1
 0

 0
 0

]
(L

. Z
ha

ng
 a

nd
 L

i 2
00

9)
65

D
ol

om
iti

c 
lim

es
to

ne
22

5
30

.1
88

.7
3.

7
0.

34
23

.9
7

0.
92

6.
6

V
IO

LE
N

T
[0

 0
 0

 1
]



288
66

G
ra

ni
te

37
5

18
.8

17
1.

5
6.

3
0.

11
27

.2
2

0.
93

7
N

O
N

E
[1

 0
 0

 0
]

67
Li

m
es

to
ne

43
5

34
14

9
5.

9
0.

23
25

.2
5

0.
92

7.
6

M
O

D
ER

AT
E

[0
 1

 0
 0

]
68

C
la

y 
sa

nd
st

on
e

25
0

38
.2

53
3.

9
0.

72
13

.5
9

0.
86

1.
6

N
O

N
E

[1
 0

 0
 0

]
69

M
ar

bl
e

10
0

11
.3

90
4.

8
0.

13
18

.7
5

0.
9

3.
6

N
O

N
E

[1
 0

 0
 0

]
70

Li
m

es
to

ne
30

0
92

26
3

10
.7

0.
35

24
.5

8
0.

92
8

M
O

D
ER

AT
E

[0
 1

 0
 0

]
71

D
io

rit
e

33
0

62
.4

23
5

9.
5

0.
27

24
.7

4
0.

92
9

V
IO

LE
N

T
[0

 0
 0

 1
]

72
G

ra
ni

te
22

3
43

.4
13

6.
5

7.
2

0.
32

18
.9

6
0.

9
5.

6
V

IO
LE

N
T

[0
 0

 0
 1

]
73

D
ia

st
at

ite
 a

no
rth

os
e

42
5

11
10

5
4.

9
0.

1
21

.4
3

0.
91

4.
7

N
O

N
E

[1
 0

 0
 0

]
(F

en
g 

an
d 

W
an

g 
19

94
)

74
M

ar
bl

e
42

8
18

.7
81

.2
10

.6
0.

23
7.

66
0.

77
1.

5
N

O
N

E
[1

 0
 0

 0
]

75
M

ar
bl

e
51

0
23

.6
82

.8
11

.2
0.

29
7.

39
0.

76
1.

5
N

O
N

E
[1

 0
 0

 0
]

76
G

ra
ni

te
Po

rp
hy

ry
46

0
28

.6
12

3.
6

11
.5

0.
23

10
.7

5
0.

83
2.

5
N

O
N

E
[1

 0
 0

 0
]

77
G

ra
ni

te
Po

rp
hy

ry
58

0
72

12
0.

5
14

.9
0.

6
8.

09
0.

78
2.

5
N

O
N

E
[1

 0
 0

 0
]

78
D

io
rit

e
46

0
29

.8
13

2.
2

7.
8

0.
23

16
.9

5
0.

89
4.

6
N

O
N

E
[1

 0
 0

 0
]

79
D

io
rit

e
53

0
44

.6
13

0.
5

11
.0

9
0.

34
11

.7
7

0.
84

4.
6

N
O

N
E

[1
 0

 0
 0

]
80

D
io

rit
e

56
9

66
.1

13
5.

2
10

.9
0.

49
12

.4
0.

85
4.

6
M

O
D

ER
AT

E
[0

 1
 0

 0
]

81
D

io
rit

e
65

0
99

.4
12

9.
5

11
.3

0.
77

11
.4

6
0.

84
4.

6
M

O
D

ER
AT

E
[0

 1
 0

 0
]

82
D

io
rit

ic
Po

rp
hy

rit
e

51
5

33
.6

15
6.

3
10

.2
0.

21
15

.3
2

0.
88

5.
2

M
O

D
ER

AT
E

[0
 1

 0
 0

]

83
D

io
rit

ic
Po

rp
hy

rit
e

65
0

10
9.

5
15

5.
8

11
.7

7
0.

7
13

.2
4

0.
86

5.
2

ST
R

O
N

G
[0

 0
 1

 0
]

84
M

ag
ne

tit
e

52
0

26
.9

92
.6

9.
52

0.
29

9.
73

0.
81

3.
7

M
O

D
ER

AT
E

[0
 1

 0
 0

]
85

M
ag

ne
tit

e
55

0
38

.3
90

.1
10

.2
0.

43
8.

83
0.

8
3.

7
ST

R
O

N
G

[0
 0

 1
 0

]
86

M
ag

ne
tit

e
63

0
83

.9
95

.6
8.

69
0.

88
11

0.
83

3.
7

M
O

D
ER

AT
E

[0
 1

 0
 0

]
87

G
ra

ni
te

56
0

55
.9

12
6.

8
6.

56
0.

44
19

.3
3

0.
9

8.
1

V
IO

LE
N

T
[0

 0
 0

 1
]

88
G

ra
ni

te
67

0
10

9.
9

12
8.

5
9.

63
0.

86
13

.3
4

0.
86

8.
1

V
IO

LE
N

T
[0

 0
 0

 1
]

89
Sk

ar
n

57
0

59
.9

96
.5

8
0.

62
12

.0
6

0.
85

1.
8

M
O

D
ER

AT
E

[0
 1

 0
 0

]
90

Q
ua

rtz
fe

ld
sp

ar
 P

or
ph

yr
y

60
0

68
10

6.
8

6.
1

0.
64

17
.5

1
0.

89
7.

2
V

IO
LE

N
T

[0
 0

 0
 1

]
(X

u 
et

 a
l. 

20
08

)
91

Li
m

es
to

ne
68

2
50

.6
63

.8
3

5.
06

0.
79

12
.6

1
0.

85
2.

23
M

O
D

ER
AT

E
[0

 1
 0

 0
]

92
Li

m
es

to
ne

68
2

50
.6

85
.3

6
4.

91
0.

59
17

.3
8

0.
89

3.
41

M
O

D
ER

AT
E

[0
 1

 0
 0

]
93

Le
ad

-z
in

c
68

2
50

.6
10

4.
97

6.
18

0.
48

16
.9

9
0.

89
10

.9
V

IO
LE

N
T

[0
 0

 0
 1

]
94

Py
rit

e
68

2
50

.6
15

3.
1

10
.4

8
0.

33
14

.6
1

0.
87

3.
14

M
O

D
ER

AT
E

[0
 1

 0
 0

]
(S

. L
. L

i 2
00

0)
95

G
ne

is
si

c 
gr

an
ite

49
0

12
0.

8
15

1.
6

10
.1

0.
8

15
.0

1
0.

88
20

V
IO

LE
N

T
[0

 0
 0

 1
]

96
Po

rp
hy

rit
ic

 b
io

tit
e 

gr
an

ite
59

0
11

9.
32

13
8.

6
7.

74
0.

86
17

.9
1

0.
89

30
V

IO
LE

N
T

[0
 0

 0
 1

]
97

Po
rp

hy
rit

ic
 g

ra
ni

te
59

5
95

.6
7

12
7.

37
10

.5
1

0.
75

12
.1

2
0.

85
30

V
IO

LE
N

T
[0

 0
 0

 1
]

98
M

on
zo

gr
an

ite
78

4
11

4.
44

17
4.

71
14

.4
2

0.
66

12
.1

2
0.

85
10

V
IO

LE
N

T
[0

 0
 0

 1
]



289
99

M
on

zo
gr

an
ite

85
8

12
7.

6
14

5.
42

13
.7

0.
88

10
.6

1
0.

83
10

V
IO

LE
N

T
[0

 0
 0

 1
]

10
0

M
on

zo
gr

an
ite

95
1

12
6.

41
15

8.
03

14
.3

2
0.

8
11

.0
4

0.
83

10
V

IO
LE

N
T

[0
 0

 0
 1

]
10

1
M

on
zo

gr
an

ite
11

70
10

8.
53

11
3.

37
10

.4
3

0.
96

10
.8

7
0.

83
10

V
IO

LE
N

T
[0

 0
 0

 1
]

(J
. W

an
g 

et
 a

l. 
20

09
)

10
2

M
et

as
an

ds
to

ne
24

0
29

.0
4

12
4.

15
5

0.
23

24
.8

3
0.

92
4.

39
N

O
N

E
[1

 0
 0

 0
]

10
3

Sa
nd

y 
sl

at
e

43
7

40
.8

7
13

9
6

0.
29

23
.1

7
0.

92
0.

81
N

O
N

E
[1

 0
 0

 0
]

10
4

M
et

as
an

ds
to

ne
49

0
50

.0
9

12
4

5
0.

4
24

.8
0.

92
6.

53
M

O
D

ER
AT

E
[0

 1
 0

 0
]

10
5

Sa
nd

y 
sl

at
e

72
0

59
.0

9
88

.2
5

3.
6

0.
67

24
.5

1
0.

92
6.

14
ST

R
O

N
G

[0
 0

 1
 0

]
10

6
M

et
as

an
ds

to
ne

62
0

62
.1

3
12

4
5

0.
5

24
.8

0.
92

4.
62

M
O

D
ER

AT
E

[0
 1

 0
 0

]
10

7
Sa

nd
y 

sl
at

e
47

0
40

.9
88

.2
5

3.
6

0.
46

24
.5

1
0.

92
4.

61
M

O
D

ER
AT

E
[0

 1
 0

 0
]

10
8

Sa
nd

y 
sl

at
e

22
0

22
.9

3
88

.2
5

3.
6

0.
26

24
.5

1
0.

92
0.

81
N

O
N

E
[1

 0
 0

 0
]

(Z
. Z

ha
ng

 2
00

2)
10

9
A

m
ph

ib
ol

ite
 p

la
gi

og
ne

is
s

72
0

47
.5

86
.3

15
.6

0.
55

5.
53

0.
69

6.
3

ST
R

O
N

G
[0

 0
 1

 0
]

11
0

B
la

ck
 m

ic
a 

ob
liq

ue
 g

ne
is

s
72

0
47

.5
61

.1
5.

3
0.

78
11

.5
3

0.
84

7.
2

ST
R

O
N

G
[0

 0
 1

 0
]

11
1

C
op

pe
r o

re
72

0
47

.5
99

.2
7.

3
0.

48
13

.5
9

0.
86

8.
31

ST
R

O
N

G
[0

 0
 1

 0
]

11
2

D
ia

ba
se

72
0

47
.5

91
.3

14
.5

0.
52

6.
3

0.
73

21
ST

R
O

N
G

[0
 0

 1
 0

]
11

3
A

m
ph

ib
ol

ite
 p

la
gi

og
ne

is
s

78
0

67
.2

86
.3

15
.6

0.
78

5.
53

0.
69

6.
3

ST
R

O
N

G
[0

 0
 1

 0
]

11
4

B
la

ck
 m

ic
a 

ob
liq

ue
 g

ne
is

s
78

0
67

.2
61

.1
5.

3
1.

1
11

.5
3

0.
84

7.
2

ST
R

O
N

G
[0

 0
 1

 0
]

11
5

C
op

pe
r o

re
78

0
67

.2
99

.2
7.

3
0.

68
13

.5
9

0.
86

8.
31

ST
R

O
N

G
[0

 0
 1

 0
]

11
6

D
ia

ba
se

78
0

67
.2

91
.3

14
.5

0.
74

6.
3

0.
73

21
ST

R
O

N
G

[0
 0

 1
 0

]
11

7
A

m
ph

ib
ol

ite
 p

la
gi

og
ne

is
s

84
0

77
86

.3
15

.6
0.

89
5.

53
0.

69
6.

3
V

IO
LE

N
T

[0
 0

 0
 1

]
11

8
B

la
ck

 m
ic

a 
ob

liq
ue

 g
ne

is
s

84
0

77
61

.1
5.

3
1.

26
11

.5
3

0.
84

7.
2

V
IO

LE
N

T
[0

 0
 0

 1
]

11
9

C
op

pe
r o

re
84

0
77

99
.2

7.
3

0.
78

13
.5

9
0.

86
8.

31
V

IO
LE

N
T

[0
 0

 0
 1

]
12

0
D

ia
ba

se
84

0
77

91
.3

14
.5

0.
84

6.
3

0.
73

21
V

IO
LE

N
T

[0
 0

 0
 1

]
12

1
A

m
ph

ib
ol

ite
 p

la
gi

og
ne

is
s

90
0

22
5.

5
86

.3
15

.6
2.

61
5.

53
0.

69
6.

3
V

IO
LE

N
T

[0
 0

 0
 1

]
12

2
B

la
ck

 m
ic

a 
ob

liq
ue

 g
ne

is
s

90
0

22
5.

5
61

.1
5.

3
3.

69
11

.5
3

0.
84

7.
2

V
IO

LE
N

T
[0

 0
 0

 1
]

12
3

C
op

pe
r o

re
90

0
22

5.
5

99
.2

7.
3

2.
27

13
.5

9
0.

86
8.

31
V

IO
LE

N
T

[0
 0

 0
 1

]
12

4
D

ia
ba

se
90

0
22

5.
5

91
.3

14
.5

2.
47

6.
3

0.
73

21
V

IO
LE

N
T

[0
 0

 0
 1

]
12

5
A

m
ph

ib
ol

ite
 p

la
gi

og
ne

is
s

96
0

27
4.

3
86

.3
15

.6
3.

18
5.

53
0.

69
6.

3
V

IO
LE

N
T

[0
 0

 0
 1

]
12

6
B

la
ck

 m
ic

a 
ob

liq
ue

 g
ne

is
s

96
0

27
4.

3
61

.1
5.

3
4.

49
11

.5
3

0.
84

7.
2

V
IO

LE
N

T
[0

 0
 0

 1
]

12
7

C
op

pe
r o

re
96

0
27

4.
3

99
.2

7.
3

2.
77

13
.5

9
0.

86
8.

31
V

IO
LE

N
T

[0
 0

 0
 1

]
12

8
D

ia
ba

se
96

0
27

4.
3

91
.3

14
.5

3
6.

3
0.

73
21

V
IO

LE
N

T
[0

 0
 0

 1
]

12
9

A
m

ph
ib

ol
ite

 p
la

gi
og

ne
is

s
10

20
29

7.
8

86
.3

15
.6

3.
45

5.
53

0.
69

6.
3

V
IO

LE
N

T
[0

 0
 0

 1
]

13
0

B
la

ck
 m

ic
a 

ob
liq

ue
 g

ne
is

s
10

20
29

7.
8

61
.1

5.
3

4.
87

11
.5

3
0.

84
7.

2
V

IO
LE

N
T

[0
 0

 0
 1

]
13

1
C

op
pe

r o
re

10
20

29
7.

8
99

.2
7.

3
3

13
.5

9
0.

86
8.

31
V

IO
LE

N
T

[0
 0

 0
 1

]
13

2
D

ia
ba

se
10

20
29

7.
8

91
.3

14
.5

3.
26

6.
3

0.
73

21
V

IO
LE

N
T

[0
 0

 0
 1

]
(L

iu
 2

01
1)



290

F    ig. 3. The process of training GRNN with FOA

5. The rockburst prediction in kimberlite (at an underground 
diamond mine)

Kimberlite is the volcanic and volcanoclastic rock that sometimes bears diamonds. The 
analyzed case study comes from an underground diamond mine, located in northern, Canada., 
The statistical simulation of the rockburst potential of kimberlite was performed on samples 
obtained from two kimberlite pipes at this mine.

Fig. 4. View of typical open stope at the analyzed underground diamond mine (Photo by authors)
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To determine the rockburst potential, twelve groups of kimberlite specimens from twelve 
different locations were collected from two pipes for rock mechanics test. Each group contains 
fifteen cylinder specimens which are divided into three sets with five specimens each. Three sets 
of specimens were used to do UCS test, uniaxial tensile test, and hysteresis loop test respectively 
(Leveille et al., 2016). When each rock specimen was collected, the in-situ stresses at each rock 
collection location were estimated. This was done by extracting the in-situ stresses data from 
a full-scale FEM model built at University of Alberta from data supplied by the mine. This model 
can be used for prediction of the mining induced stresses around underground excavations (Sep-
ehri et al., 2017). Figure 5 shows the UCS test for a kimberlite sample and the in-situ stresses 
(σθ) extracting from an ABAQUS model. Table 2 shows the original data, which is adopted as 
the prediction sample.

Fig.     5. The UCS test and the full-scale Abaqus model used for stresses extraction

TABLE    2

Features of test sample 

Location Depth/m  σθ /MPa σc /MPa σt /MPa SCF B1 B2 Wet

1 226 18.17 49.10 1.56 0.37 31.40 0.94 3.30
2 226 21.00 60.00 3.17 0.35 18.90 0.90 1.70
3 226 31.16 82.00 3.87 0.38 21.20 0.91 2.30
4 300 46.38 74.80 2.98 0.62 25.10 0.92 3.20
5 300 48.64 76.00 4.09 0.64 18.60 0.90 2.50
6 300 22.92 57.30 1.43 0.40 40.00 0.95 1.50
7 413 99.09 112.60 3.74 0.88 30.10 0.94 5.20
8 413 35.16 79.90 3.12 0.44 25.60 0.92 2.50
9 413 15.84 49.50 2.16 0.32 22.90 0.92 2.80
10 550 13.02 65.10 2.28 0.20 28.50 0.93 1.20
11 550 21.12 52.80 2.18 0.40 24.20 0.92 2.30
12 550 29.12 57.10 3.34 0.51 17.10 0.89 2.20

The optimized GRNN is used to evaluate rockburst liability, and the evaluation results are 
as follows:
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  TABLE 3

Rockburst liability prediction results with GRNN

  Group Output vector Rockburst prediction ranking
1 [0 1 0 0] Moderate
2 [0 0 1 0] Strong
3 [0 0 1 0] Strong
4 [0 1 0 0] Moderate
5 [0 1 0 0] Moderate
6 [0 1 0 0] Moderate
7 [0 1 0 0] Moderate
8 [0 0 0 1] Violent
9 [0 1 0 0] Moderate
10 [0 1 0 0] Moderate
11 [0 1 0 0] Moderate
12 [0 1 0 0] Moderate

Based on the GRNN evaluation, nine locations show ‘moderate’ burst liability, while two 
locations show ‘strong’ burst liability. The remaining one location have ‘violent’ burst liability. At 
least three cases of brittle and surficial failure occurred at the mine and were attributed to local-
ized high stress accumulation and were classified as strain bursts (RioTinto, 2015). Figure 6 is 
a photo took at the mine (to be specific, at location 4). We can assert the ranking of this rockburst 
is moderate based on the observed phenomenon. However, at this stage of the mine development, 
the data on occurrence of rockburst is still limited and it would be difficult to make a claim that 
the proposed method can accurately depict kimberlite burst proneness at the mine.

   

Fig. 6. A rockburst case at diamond mine
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Furthermore, a 3-layer ordinary (one hidden layer) backpropagation neural network (BPNN) 
is adopted to do the same job as a comparison. Table 1 is still used as training samples, while 
Table 2 is used as a test samples. For each group of data, there are the same eight indicators 
with GRNN which means the node number in input layer of BPNN is eight. The output layer 
node number is 4, because there are four rockburst rankings (none, moderate, strong, violent). 
An empirical formula (9) can be used to determine node number in the hidden layer (D. Gao, 
1998). S represents node number in the hidden layer, while m, n reflect node number in input 
and output layers respectively. From formula (9), node number in the hidden layer is seven. The 
training goal is 0.001. The original training samples are normalized before feeding into BPNN. 
Table 4 shows the evaluation results with BPNN.

 2S 0.43 0.12 2.54 0.77 0.35 0.51mn n m n   (9)

TABL   E 4

Rockburst liability prediction results with BPNN

     Group Output vector Rockburst prediction ranking
1 [0.19 0.58 0.07 0.16] Moderate
2 [0.37 0.36 0.11 0.22] Cannot distinguish
3 [1.32 0.05 –0.62 –0.50]* Result out of scope*
4 [0.13 0.62 0.15 0.10] Moderate
5 [0.36 –0.32 1.51 –0.11]* Result out of scope*
6 [0.68 1.96 0.72 –0.64]* Result out of scope*
7 [0 0.68 0.25 0.07] Moderate
8 [0.88 0.11 0.01 0] None
9 [0.74 0.17 0.09 0] None
10 [0.25 –0.32 –0.55 –0.43]* Result out of scope*
11 [1.02 1.02 –0.46 –0.25]* Result out of scope*
12 [0 0.99 0.01 0] Moderate

  Based on the results summarized in Table 4, the BPNN cannot give an answer to each sce-
nario. Only 6 groups show relatively clear results (group 1, 4, 7, 8, 9, 12), while 5 groups have 
out-of-scope prediction results. The remaining 1 group lacks confidence in distinguishing the 
rockburst severity, which tells us that we cannot evaluate rockburst ranking with this output vec-
tor. The primary cause of BPNN’s poor performance mainly lays in the deficiency of the training 
sample (only 132 groups of training samples were provided). Hence, under the condition of the 
limited data we had, the GRNN was a better choice for our case study.

6. Conclusion

The general regression neural network method is used to evaluate burst liability in kimberlite, 
which avoids analyzing a complex mechanism of rockburst. The GRNN is based on the data 
alone to determine the structure and parameters of the model. A novel FOA method is adopted to 
optimize GRNN, which helps to determine the unique subjective parameter σ in GRNN model. 
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The FOA method reduces the randomness and subjectivity in choosing parameter, which increases 
the reliability of GRNN.

Eight indicators: depth, σθ, σc, σt, B1, B2, SCF, Wet are chosen as the input features of GRNN. 
These indicators combine two fundamental conditions for rockburst occurrence: the energy condi-
tion and rock mechanical condition, which result comprehensively in rockburst. Based on these 
eight indicators, GRNN can be used successfully as a solution to evaluate rockburst potential in 
different locations.

The evaluation result of GRNN exhibits a ‘moderate’ burst liability, which matches practi-
cal rockburst situations at the investigated mine (RioTinto, 2015). However, when the BPNN 
is adopted to predict, a poor result is showing. Compared to BPNN, GRNN is slightly affected 
by parameter setting, and also, is well-adapted for limited training samples. This FOA-GRNN 
method provides a new way for rockburst potential evaluation.
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