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EVALUATION OF ROCKBURST POTENTIAL IN KIMBERLITE USING FRUIT FLY OPTIMIZATION

EES

ALGORITHM AND GENERALIZED REGRESSION NEURAL NETWORKS

OCENA STANU ZAGROZENIA TAPANIA I WYRZUTOW SKAL W KIMEBERLITE
Z WYKORZYSTANIEM ALGORYTMU MUSZKI OWOCOWEJ I SIECI NEURONOWEJ

REALIZUJACEJ UOGOLNIONA REGRESJE (GRNN)

Rockburst is a common engineering geological hazard. In order to evaluate rockburst liability in
kimberlite at an underground diamond mine, a method combining generalized regression neural networks
(GRNN) and fruit fly optimization algorithm (FOA) is employed. Based on two fundamental premises of
rockburst occurrence, depth, oy, o, 0;, By, By, SCF, W,, are determined as indicators of rockburst, which
are also input vectors of GRNN model. 132 groups of data obtained from rockburst cases from all over the
world are chosen as training samples to train the GRNN model; FOA is used to seek the optimal parameter
o that generates the most accurate GRNN model. The trained GRNN model is adopted to evaluate burst
liability in kimberlite pipes. The same eight rockburst indicators are acquired from lab tests, mine site and
FEM model as test sample features. Evaluation results made by GRNN can be confirmed by a rockburst
case at this mine. GRNN do not require any prior knowledge about the nature of the relationship between
the input and output variables and avoid analyzing the mechanism of rockburst, which has a bright prospect
for engineering rockburst potential evaluation.

Keywords: Rockburst potential evaluation, Generalized regression neural networks (GRNN), Fruit fly
algorithm, Backpropagation neural network (BPNN)

Tapnigcia skat sa powszechnym i ogélnie znanym zagrozeniem dla srodowiska geologicznego oraz
dla budowli. Do oceny sktonnosci skat do tapania w podziemnej kopalni diamentéw w Kimberlite zasto-
sowano metodg stanowiaca potaczenie sieci neuronowych realizujacych uogolniona regresjg i algorytm
muszki owocowej. W oparciu o dwie podstawowe przestanki wystapienia tapnigcia, glgbokosé oraz oy,
o, o, wielkosci By, B,, SCF, W, okre$lone zostaly jako wskazniki wystapienia tapnigcia i nastgpnie wy-
korzystane jako wektory wejsciowe w modelu sieci neuronowych GRNN. Zestawiono 132 zbiory danych
o przypadkach tapnigc¢ z catego $wiata i wykorzystano je jako zbiory uczace dla modelu sieci neuronowe;j
realizujacej uogolniong regresjg. Algorytm muszki owocowej wykorzystano do znalezienia optymalnej
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wartos$ci parametru ¢ ktoéry umozliwi wygenerowanie najbardziej doktadnego modelu sieci neuronowe;j
GRNN. Po treningu, model sieci GRNN wykorzystany zostat do oceny mozliwo$ci wystapienia tapnigcia
w Kimberlite. Te same osiem wskaznikow oceny sktonnosci wyrzutowej skaty otrzymano na podstawie
badan laboratoryjnych, z analiz prowadzonych w kopalni oraz w oparciu o metodg elementow skonczonych,
wyniki te wykorzystano nastgpnie jako probki danych. Wyniki uzyskane przy zastosowaniu sieci neurono-
wych realizujacych regresjg uogoélniona potwierdzone zostaty przez wyniki uzyskane w trakcie wyrzutu
w kopalni. Metoda sieci neuronowych nie wymaga uprzedniej wiedzy o naturze zaleznosci pomigdzy
zmiennymi wejsciowymi i wyjsciowymi i pozwala unikna¢ analiz mechanizmu wyrzutu i tapnigcia, co jest
cecha pozadang z punktu widzenia inzynierow odpowiedzialnych za oceng sktonnosci skat do wyrzutu.

Stowa kluczowe: ocena mozliwo$ci wystapienia wyrzutow skat, sie¢ neuronowa realizujaca regresjg
uogolniong (GRNN), algorytm muszki owocowej, sie¢ neuronowa realizujaca pro-
pagacj¢ wsteczna (BPNN)

1. Introduction

Rockburst is a sudden geodynamic event that occurs in underground mines under stress
impaction and, oftentimes, results in equipment damages and life injuries or even deaths (He et
al., 2017; Mansurov, 2001). Most of mining countries have records of rockburst events, includ-
ing China (Shi et al., 2005), Germany (Baltz & Hucke, 2008), Australia (Potvin et al., 2000),
South Africa (Gibowicz, 2009), Canada (Blake & Hedley, 2003), Poland (Patynska & Kabiesz,
2009; Bukowska 2012), United States (Iannacchione & Zelanko, 1993) et al. Due to serious
consequence caused by rockburst, the rockburst potential evaluation is of great importance in
the design stage, during construction and mining production (J. Zhou et al., 2012). Based on
the analysis of different aspects of the rockburst mechanism, such as strength, stiffness, energy,
stability, damage-fracture, many researchers were able to put forward some rockburst potential
evaluation methods. For example, Kidybinski (Kidybinski, 1981) used strain energy storage
index as a burst liability criterion. Mitri (Mitri et al., 2011) developed an energy-based burst po-
tential index (BPI) to diagnose the burst proneness. Xie Heping (Xie & Pariseau, 1993) proposed
a rockburst prediction method based on fractal dimension of rocks. However, influence factors
of rockburst including mechanical condition, brittleness, energy-store condition, and mining or
excavation methods, are complex. Furthermore, the relationships between rockburst intensity and
these impact factors are highly non-linear, which makes the traditional, mechanism-based predica-
tion methods unable to create a precise evaluation for rockburst potential at underground mining.
Hence, other researchers tried to analyze the relationship between rockburst control factors and
rockburst intensity using some mathematical and statistical methods, such as fuzzy mathematics
(W. Cai et al., 2016), neural network (Sun et al., 2009; Jia et al., 2013; Pu et al., 2018a; W. Gao,
2015), support vector machine (J. Zhou et al. 2012; Pu et al. 2018c) and decision tree (Pu et al.,
2018b). These methods are more effective in processing non-linear problems, which train the
model with existing data instead of discussing the rockburst mechanism.

A neural network is an important method in the area of artificial intelligence and is an
excellent solution of coping with non-linear problems based on its strong self-learning ability.
Neural networks do not need any prior knowledge about the nature of the relationship between
the input/output variables, which is one of the benefits they have compared to most empirical
and statistical methods. After Einstein (Dershowitz & Einstein, 1984) introduced artificial intel-
ligence in rock mechanics in the 1980s, the neural network became widely used in rock and soil
engineering (Ni et al., 1996; Nikbakhtan et al., 2015).
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For rockburst potential evaluation, neural network has been an innovative approach based
on its capability for operating non-linear relationship compared with traditional mechanism-based
evaluation methods. Sun (Sun et al., 2009) combined fuzzy mathematics and a backpropagation
neural network (BPNN) to evaluate rockburst liability in Sahelian coal mine. Dong (Dong et al.,
2013) achieved rockburst liability evaluation results by comparing three optimization algorithms
which implemented on a support vector machine (SVM). Zhou (K. Zhou & Gu, 2004) employed
a self-organization neural network which was trained by data gained from a geographical infor-
mation system (GIS) to assess burst liability at a deep metal mine. Zhang (Y. Zhang et al., 2017)
built a rockburst pre-warning system with BPNN which fed by rock acoustic emission signals
obtained from lab acoustic emission experiment. However, some defects were embedded into
current researches. The performance of backpropagation neural network which were frequently
used in current researches strongly relied on the determination of several hyper-parameters such
as the number of layers, the study rate during gradient decent process. Researcher’s experience
would have a big impact on prediction results. Furthermore, the number of training samples in
many researches were insufficient (most of them were less than 50). The lack of training sample
easily resulted in overfitting which means neural network performs well only for training samples
but awfully for real test samples. Neural network cannot operate on label data directly, which
requires rockburst categories must be converted to a numerical form when fed into model. Most
current researches simply converted categories with an integer. For example, if rockburst has four
categories ‘no’, ‘moderate’, ‘strong’ and ‘violent’, ‘1’, ‘2°, ‘3’, ‘4’ were assigned to each category
respectively. But a problem was raised that this method endowed a natural ordered relationship
among categories. However, there is no this kind of relationship among rockburst categories.

In this paper, a novel generalized regression neural network (GRNN) was employed to
build a relationship between rockburst levels and its indicators. A new optimization algorithm
was employed to seek the unique parameter for GRNN. More than one hundred data collected
from rockburst cases were used to train GRNN. Meanwhile, one-hot encoding was adopted to
convert rockburst categories to numerical forms. Finally, this trained GRNN would be used to
evaluate rockburst potential in two kimberlite pipes at a diamond mine.

2. Basic principle of GRNN

In general, frequently used neural networks include ordinary backpropagation neural network
(BPNN), radial basis function neural network (RBFN), Hopfield neural network (HNN), recur-
rent neural network (RNN) and general regression neural network (GRNN). The core process of
prediction with a neural network includes: choosing a suitable neural network, collecting training
samples for the neural network, determining the input and output vectors based on the training
sample, setting the parameters for the neural network, training the neural network, and prediction
with the trained neural network. The key for neural network prediction lays in neural network
selection and parameters (including hyper-parameters) setting. The less parameters subjectively
determined by users, the more reliable the neural network is. The general regression neural
network (GRNN has a fixed structure as long as the training samples are determined and only
one subjective parameter is required which is suitable for prediction for engineering problems.

The GRNN is based on nonlinear regression theory (Specht, 1991). Compared to the tra-
ditional BPNN, the GRNN performs better at nonlinear mapping, and also, it can obtain more
reasonable prediction results even if the training samples are inadequate (Cigizoglu & Alp,
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2006). The GRNN has been successfully used to predict the load-bearing capacity of driven
piles in cohesionless soils (Kiefa, 1998), estimate river suspended sediments (Cigizoglu & Alp,
2000), predict settlements (Sivakugan et al., 1998), analyze rock mechanics testing (Tutumluer
& Seyhan, 1998), and solve other engineering problems.

GRNN is a variation radial basis neural network suggested by Specht (Specht, 1991). The
x,y are both random variables, and f(x, y) represents its joint probability density function. When
we designate X as the observed value of x, the regression of y on X is given by:

Y =E(y\X)=—Lwy*f(X’y)dy (1)

" (x.y)dy
Assume f(x, y) are normally distributed:

f(XY)= dil iexp[—(X_Xi)T EX—Xi)}eXp[—(YZ_—Zq 2)

n* (27[)7 * O_(d+1) i=1 20 o

In formula (2), n represents the number of training samples, d reflects the dimensions of
the variable x (the number of features), o represents a parameter called ‘spread’, which is the
decisive factor GRNN. We use f(X, ) to replace f(x,y), and then, combine (1) and (2) to for-
mula (3), where ¥ refers the output of the /" training sample and X; is the input feature vector
of the i training sample.
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GRNN includes a four-layer network structure, consists of input layer, pattern layer, sum-
mation layer, and output layer. The number of neuros for input layer (first layer) is the amount
of features of a training sample while numbers of neuros for pattern layer equal the number of
training samples.

Input Pattern
units units Summation
X4 units
s S

Output
units

P

Fig. 1. GRNN block diagram

After pattern units receive information from input units, formula (5) will be used to convert
this information, and then transport results into summation units. Formulas (6) and (7) are used
in summation units. At last, formula (8) is employed to obtain the final output result (Jia et al.,
2013). In GRNN, only one parameter, o, needs to be set subjectively, which lowers the method’s
subjectivity compared to other neural network models. The key point of using GRNN in predict-
ing an engineering problem is to determine a suitable o.

3. The optimization of GRNN

In general, in order to determine o, trial and error method is adopted, which usually results
in a low efficiency and a weak precision. Actually, the most suitable ¢ is the one resulting in the
lowest error between target and the output result of GRNN. Mathematically, the process of look-
ing for a suitable ¢ can be regarded as a process of seeking a minimal value of this error. In this
paper, a novel Fruit Fly Optimization Algorithm (FOA) is employed for seeking an optimal o.

FOA was first applied to evaluate corporate performance in economics (Pan, 2011). Ac-
cording to simulations of a fruit fly’s searching for food, the FOA can obtain the extreme value
of a function. In the process of seeking an optimal ¢ for GRNN, the decision function is the error
between the target and the prediction value, which means that this o can result in a minimal value
of the decision function. Here, the cross entropy (C.H. Li & Lee, 1993) was adopted to show the
error between prediction values and targets. Minimizing cross entropy leads to good classifiers.
Formula (9) demonstrates a cross entropy. Where y; is the prediction result while y; is the target.

H,y(y) = =2 log(y,) ©)
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The MATLAB software (Manual 1995) helps us with performing this procedure. The steps

are as follows:

Step 1: Determine the fruit flies’ population size and the maximum number of iterations.
Randomly initialize of the fruit flies’ original location.

Step 2: Fruit flies start seeking food. Calculate the distance between the fruit fly individuals
and the original point and calculate the decision value of flavor which is the reciprocal
of this distance. This decision value of flavor is actually o.

Step 3: The o obtained in Step 2 is plugged into a GRNN training box in MATLAB (func-
tion statement: net = newgrnn (P, 7,0), where P and T represent input vector and output
vector respectively). After GRNN training, function ‘sim’ will be used for simulation. The
cross entropy between the simulation output vector and the targets will be represented
as a decision function.

Step 4: The value of ¢, which results in a minimum value of the decision function will be
found out.

Step 5: Record this ¢ and corresponding coordinates (X, Y). At this time, the fruit fly popu-
lation will fly to this location (X, Y).

Step 6: Iterative optimization. Step 2 to Step 4 will be executed repetitively. Every time,
we will check if the obtained minimum value of the decision function is lower than the
previous one. If yes, Step 5 will be executed. Figure 2 shows the flow of optimized
GRNN using FOA.

Yy

Random initialization of
fruit fly’s original location

2

Calculate the distance between fruit fly individuals and
original point, calculate the decision value of flavour ¢

L

Train GRNN using 6. Simulation using this
GRNN, and obtain decision function

%

ind out minimum valué
of this decision, checking
if this value less than what
we get last time.

Q If Yes

Keep this ¢ and coordinate (X, Y). fruit fly
population will fly to this location (X, Y)

.

Fig. 2. The flow of optimized GRNN using FOA

If No
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4. Rockburst prediction with GRNN

The mechanism of rockburst is very complex and is influenced by many factors. Funda-
mentally, the rockburst occurrence has to meet two necessary requirements: the rock has to have
the capability to accumulate strain energy and the environment should be favorable to stress
concentration (M. Cai, 2016). Many single factor evaluation methods have been put forward
aiming to estimate rockburst potential based on these two basic requirements. This includes the
Cover Depth (D) (S.P. Singh, 1989), Strain Energy Storage Index (17,,) (Kidybinski, 1981), Stress
Concentration Factor (SCF = o/0,) (Martin et al. 1999), rock brittleness index B{(B; =0, /0,) (Zhu
et al. 1996), rock brittleness index B, (B, = (¢. — 0,)/(a, + ¢;)) (S. Singh 1987). Some indicators
reflect the capability of stress storage while others represent stress concentration around under-
ground excavations. In order to evaluate burst liability, the indicators which account for two basic
requirements of rockburst occurrence should be combined. In this paper, eight indicators: depth
(D), maximum shear stress around tunnel wall (o), uniaxial compressive strength (o.), uniaxial
tensile stress (g,), rock brittleness index By, rock brittleness index B,, Stress Concentration Fac-
tor (SCF), Strain Energy Storage Index (W,,) were working together to determine burst liability
in kimberlite. These eight indicators constitute input features of a training sample for GRNN.

Most researchers divided rockburst activities into four levels (no rockburst, moderate
rockburst, strong rockburst and violent rockburst) based on damage intensity, violence and scale
(Russenes, 1974; Tan, 1992; Y. Wang et al., 1998). These four levels are labels (output vector)
of GRNN. However, many machine learning algorithms including GRNN cannot operate using
label data directly. They require all input variables and output variables to be numeric, which
means the label data must be converted to a numerical form (Brownlee, 2018). Two ways can
be adopted to convert the label data to a numerical form. The common method is the integer
encoding which means each unique category is assigned an integer value. For example, we can
assign ‘0’ to ‘no rockburst’, ‘1’ to ‘moderate rockburst” and so on. However, integer encoding
may result in poor performance or unexpected results because it assumes a natural ordering be-
tween categories when operating variables without such ordinal relationship such as rockburst
levels. Alternatively, we can use one-hot encoding which means applying a binary variable for
each category. In this case, ‘no rockburst’ can be encoded as [1 0 0 0 ]; “‘moderate rockburst’ can
be encoded as [0 1 0 0 ] and so on.

In this study, 132 groups of data which came from rockburst cases from all over the world
were chosen as training samples. Table 1 shows data where rockburst levels had been converted
to one-hot encodings.

Data groups 1 to 100 are used as training samples while groups 101 to 132 are used as valida-
tion samples for parameter optimization. To avoid different units among eight features of training
sample, data normalization was conducted to locate each feature in range [0,1]. Formula (10) was
adopted to conduct normalization. Random initialization of fruit flies’ location is in range [0,1].
After normalization, a typical training sample (case one) is like this: an eight-dimensional input
vector (0.063 0.296 0.617 0.684 0.901 0.162 0.735 0.281 ) as well as the output vector (0 0 1 0).
The fruit fly group consists of 20 individuals. The number of iteration is 100. Figure 3 shows
optimization process and fruit flies’ locations. After 100 iterations, the minimum value of error
stabilizes at 0.679. The corresponding ¢ is 0.192.

" X=X

x = min (1 0)

Xmax ~ ¥min
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Fig. 3. The process of training GRNN with FOA

5. The rockburst prediction in kimberlite (at an underground
diamond mine)

Kimberlite is the volcanic and volcanoclastic rock that sometimes bears diamonds. The
analyzed case study comes from an underground diamond mine, located in northern, Canada.,
The statistical simulation of the rockburst potential of kimberlite was performed on samples
obtained from two kimberlite pipes at this mine.

Fig. 4. View of typical open stope at the analyzed underground diamond mine (Photo by authors)
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To determine the rockburst potential, twelve groups of kimberlite specimens from twelve
different locations were collected from two pipes for rock mechanics test. Each group contains
fifteen cylinder specimens which are divided into three sets with five specimens each. Three sets
of specimens were used to do UCS test, uniaxial tensile test, and hysteresis loop test respectively
(Leveille et al., 2016). When each rock specimen was collected, the in-situ stresses at each rock
collection location were estimated. This was done by extracting the in-situ stresses data from
a full-scale FEM model built at University of Alberta from data supplied by the mine. This model
can be used for prediction of the mining induced stresses around underground excavations (Sep-
ehri et al., 2017). Figure 5 shows the UCS test for a kimberlite sample and the in-situ stresses
(o) extracting from an ABAQUS model. Table 2 shows the original data, which is adopted as
the prediction sample.

10-Node Quadratic
Tetrahedron Element
3D10

Fig. 5. The UCS test and the full-scale Abaqus model used for stresses extraction

TABLE 2
Features of test sample
Location Depth/m o9/MPa o./MPa o,/ MPa SCF B, B, W,
1 226 18.17 49.10 1.56 0.37 31.40 0.94 3.30
2 226 21.00 60.00 3.17 0.35 18.90 0.90 1.70
3 226 31.16 82.00 3.87 0.38 21.20 0.91 2.30
4 300 46.38 74.80 2.98 0.62 25.10 0.92 3.20
5 300 48.64 76.00 4.09 0.64 18.60 0.90 2.50
6 300 22.92 57.30 1.43 0.40 40.00 0.95 1.50
7 413 99.09 112.60 3.74 0.88 30.10 0.94 5.20
8 413 35.16 79.90 3.12 0.44 25.60 0.92 2.50
9 413 15.84 49.50 2.16 0.32 22.90 0.92 2.80
10 550 13.02 65.10 2.28 0.20 28.50 0.93 1.20
11 550 21.12 52.80 2.18 0.40 24.20 0.92 2.30
12 550 29.12 57.10 3.34 0.51 17.10 0.89 2.20

The optimized GRNN is used to evaluate rockburst liability, and the evaluation results are
as follows:
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TABLE 3
Rockburst liability prediction results with GRNN
Group Output vector Rockburst prediction ranking
1 [0100] Moderate
2 [0010] Strong
3 [0010] Strong
4 [0100] Moderate
5 [0100] Moderate
6 [0100] Moderate
7 [0100] Moderate
8 [0001] Violent
9 [0100] Moderate
10 [0100] Moderate
11 [0100] Moderate
12 [0100] Moderate

Based on the GRNN evaluation, nine locations show ‘moderate’ burst liability, while two
locations show ‘strong’ burst liability. The remaining one location have ‘violent’ burst liability. At
least three cases of brittle and surficial failure occurred at the mine and were attributed to local-
ized high stress accumulation and were classified as strain bursts (RioTinto, 2015). Figure 6 is
a photo took at the mine (to be specific, at location 4). We can assert the ranking of this rockburst
is moderate based on the observed phenomenon. However, at this stage of the mine development,
the data on occurrence of rockburst is still limited and it would be difficult to make a claim that
the proposed method can accurately depict kimberlite burst proneness at the mine.

Fig. 6. A rockburst case at diamond mine
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Furthermore, a 3-layer ordinary (one hidden layer) backpropagation neural network (BPNN)
is adopted to do the same job as a comparison. Table 1 is still used as training samples, while
Table 2 is used as a test samples. For each group of data, there are the same eight indicators
with GRNN which means the node number in input layer of BPNN is eight. The output layer
node number is 4, because there are four rockburst rankings (none, moderate, strong, violent).
An empirical formula (9) can be used to determine node number in the hidden layer (D. Gao,
1998). S represents node number in the hidden layer, while m, n reflect node number in input
and output layers respectively. From formula (9), node number in the hidden layer is seven. The
training goal is 0.001. The original training samples are normalized before feeding into BPNN.
Table 4 shows the evaluation results with BPNN.

S =0.43mn +0.122% + 2.54m +0.77n + 0.35 +0.51 )

TABLE 4

Rockburst liability prediction results with BPNN

Group Output vector Rockburst prediction ranking
1 [0.190.58 0.07 0.16] Moderate
2 [0.37 0.36 0.11 0.22] Cannot distinguish
3 [1.32 0.05 -0.62 —0.50]* Result out of scope*
4 [0.130.620.150.10] Moderate
5 [0.36 -0.32 1.51 —-0.11]* Result out of scope*
6 [0.68 1.96 0.72 —0.64]* Result out of scope*
7 [0 0.68 0.25 0.07] Moderate
8 [0.88 0.11 0.01 0] None
9 [0.74 0.17 0.09 0] None
10 [0.25-0.32 —0.55 —0.43]* Result out of scope*
11 [1.02 1.02 —0.46 —0.25]* Result out of scope*
12 [00.99 0.01 0] Moderate

Based on the results summarized in Table 4, the BPNN cannot give an answer to each sce-
nario. Only 6 groups show relatively clear results (group 1,4, 7, 8, 9, 12), while 5 groups have
out-of-scope prediction results. The remaining 1 group lacks confidence in distinguishing the
rockburst severity, which tells us that we cannot evaluate rockburst ranking with this output vec-
tor. The primary cause of BPNN’s poor performance mainly lays in the deficiency of the training
sample (only 132 groups of training samples were provided). Hence, under the condition of the
limited data we had, the GRNN was a better choice for our case study.

6. Conclusion

The general regression neural network method is used to evaluate burst liability in kimberlite,
which avoids analyzing a complex mechanism of rockburst. The GRNN is based on the data
alone to determine the structure and parameters of the model. A novel FOA method is adopted to
optimize GRNN, which helps to determine the unique subjective parameter o in GRNN model.
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The FOA method reduces the randomness and subjectivity in choosing parameter, which increases
the reliability of GRNN.

Eight indicators: depth, oy, 0., 6,, By, By, SCF, W,, are chosen as the input features of GRNN.
These indicators combine two fundamental conditions for rockburst occurrence: the energy condi-
tion and rock mechanical condition, which result comprehensively in rockburst. Based on these
eight indicators, GRNN can be used successfully as a solution to evaluate rockburst potential in
different locations.

The evaluation result of GRNN exhibits a ‘moderate’ burst liability, which matches practi-
cal rockburst situations at the investigated mine (RioTinto, 2015). However, when the BPNN
is adopted to predict, a poor result is showing. Compared to BPNN, GRNN is slightly affected
by parameter setting, and also, is well-adapted for limited training samples. This FOA-GRNN
method provides a new way for rockburst potential evaluation.
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