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Applicability of the Capstan Equation to Guitar Strings
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The effects of friction were observed in electric guitar strings passing over an electric guitar saddle.
The effects of changing the ratio of the diameter of the winding to the diameter of the core of the string,
the angle through which the string is bent, and the length on either side of the saddle were measured.
Relative tensions were deduced by plucking and measuring the frequencies of vibration of the two portions
of string. Coefficients of friction consistent with the capstan equation were calculated and were found to
be lower than 0.26 for wound strings (nickel plated steel windings on steel cores) and lower than 0.17 for
unwound (tin plated steel) strings. The largest values of friction were associated with strings of narrower
windings and wider cores and this may be due to the uneven nature of the contact between the string
and saddle for wound strings or due the surface of the windings deforming more, encouraging fresh (and
therefore higher friction) metal to metal contact. It is advised to apply lubrication under the saddle to
string contact point after first bringing the string up to pitch rather than before in order to prevent this
fresh metal to metal contact.
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1. Introduction

Guitar strings operate under tension such that they
approximately obey the linear wave equation with
a fixed end at the saddle and another fixed end at the
nut or on the fret on which they have been stopped.
While in some instruments (for example the Floyd
Rose locking system (Rose, 1979)) the ends of the
string are fixed by clamping, it is much more com-
mon for these fixed points to be created by the string
curving around a supporting structure of relatively
large mass while supporting tension on both sides. The
change in direction of the tension either side of the sup-
porting structure (such as the saddle, nut or fret) gives
a large resultant force pressing the string to the sup-
port and ensuring that the mass per unit length along
the string becomes discontinuously large at the point
of contact with the support, reflecting vibrations on
the string.

Tuning errors in fretted string instruments can
arise due to various problems including intonation is-
sues (Varieschi, Gower, 2010), temperature changes

and changes in the rest length of the string as it
stretches or relaxes with changes in tension. When
players perform a gesture to modulate the tension by
turning a tuning peg, dragging the string along or
across a fret or moving a mechanism (for example
the Fender Stratocaster synchronised tremolo system
(Fender, 1956)) the tension in the sounding length of
the string before and after the playing gesture some-
times differs causing noticeable errors in the tuning of
the instrument. This is widely recognised as being due
to friction stopping the string coming back to rest at its
original position, leading to tension changes either side
of the supports. Cleaning then lubricating the surfaces
helps minimise such problems but tuning problems re-
lated to friction at supports is a problem worthy of
scientific analysis.

It is reasonable to consider the applicability of the
capstan equation to the tension differences either side
of the string. This is achieved here by mounting Fender
American Standard guitar tuning machines (or tuners)
in various positions on a wooden board either side of
saddle of the type fitted to a current American Stan-
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dard Stratocaster (nickel-plated bent steel as in vin-
tage instruments). Plugging the coefficient of static
friction for the relevant surfaces into the capstan equa-
tion allows comparisons to be drawn. Since strings slip
dynamically over supports as their tension is mod-
ulated and because of the bending stiffness of the
strings, the capstan equation is not perfect as a model
of guitar string behaviour. The coefficient of static fric-
tion which would best predict the tension differences
between sections of string in practical circumstances
are then calculated and any trends noted in the data
when strings of different construction are tested in dif-
ferent tuner locations.

For wound strings, the importance of the ratio of
the total mass of the string to the mass of the wind-
ing has been demonstrated to control the sensitivity
of strings to player control and this applies to tremolo
arm use and for the conventional pitch bends (Kemp,
2017). It is therefore worth demonstrating whether
friction depends on this ratio as might be expected
given that varying the winding diameter will alter the
nature of the contact area between the saddle and
string.

2. Theory

Neglecting string stiffness, the capstan equation de-
scribes the ratio of tensions (TA > TB) on either side of
a flexible string wrapped around a cylindrical point
of contact:

TA
TB

= eµθ, (1)

where µ is the coefficient of friction between the string
and the cylinder, and θ is the angle through which the
string is bent (Stuart, 1961). The capstan equation
assumes that the string is on the limit of static friction,
that the string has negligible stiffness, and that the
string is non-elastic.

For the fundamental frequency of a string, the
wavelength is equal to two times the effective string
length, l:

f = c

2l
. (2)

From the derivation of the one-dimensional wave equa-
tion (French, 1971) we know:

c =
√

T

ρL
, (3)

where the linear density is ρL = m
l

, with m being
the mass of the portion of the string of length l that
sounds. Substituting this into Eq. (2) gives
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, (4)

which leads to

T1

T2
= m1l1
m2l2

(f1

f2
)

2

, (5)

where the subscripts denote the section of string to
either side of the saddle, taken to be 1 for the left side
and 2 for the right side throughout the experiment.

Assuming that the tension on the left portion of
string (of length l1) is higher than on the right, then
the coefficient of friction consistent with a tension im-
balance between two sides of the string can be found
by substituting Eq. (5) into the capstan equation:
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where the superscript (L) denotes that the tuning
peg on the left has been turned to increase the ten-
sion of the string. If the peg on the right has been
turned, on the other hand, then the right-hand string
(of length l2) will have a higher tension and the co-
efficient of static friction consistent with the capstan
equation will be:

µ = 1
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To improve the accuracy of results, the ratio m1l1
m2l2

can be expressed in terms of frequency ratios. For
a given string and angle we may assume that the static
coefficient of friction measured when the left tuner is
turned is equal to that when the right tuner is turned,
so the capstan equation predicts:
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where, again, the superscripts L and R denote turning
the left and right peg, respectively. Using the aver-
age values for f (L)

2 /f (L)
1 and f (R)

2 /f (R)
1 is considerably

more accurate than using the ratio of lengths measured
with a ruler. Using Eq. (6) and Eq. (8) we can show
that:
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and this equation was used to give the values of µ in
the figures below.

3. Experiment

A one-string guitar was constructed from a piece
of wood, with four tuning pegs, allowing for the mea-
surement of four different bend angles, as shown in
Fig. 1. The relevant distances and angles are shown
in Table 1. The larger angles are similar to those ob-
served for strings passing over the saddle in a Fender
Stratocaster bridge while the lowest angles are more
typical of those seen in guitars with tailpieces such as
the Gibson Les Paul (where the precise angles depend
on how the guitars are set up).
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Fig. 1. One-string guitar with four tuning pegs. Screws were
used to secure the saddle in place, along with an additional
piece of wood underneath to prevent the saddle moving

when a string under high tension is passed across.

Table 1. Distances between pegs measured with a ruler,
and associated bend angles given by Eq. (10).

Left
peg

Right
peg

l1 ruler
[cm]

l2 ruler
[cm]

Peg to peg
[cm]

θ

[rad]

top top 28.3 29.3 57.5 0.12± 0.05

top bottom 28.3 24.7 52.7 0.21± 0.03

bottom top 29.0 29.3 56.1 0.55± 0.01

bottom bottom 29.0 24.7 50.7 0.67± 0.01

The bend angle θ can be found by measuring each
relevant length with a ruler, and using the law of
cosines:

θ = π − arccos(b
2 + c2 − a2

2bc
), (10)

where a is distance between the left and right pegs, b is
the distance between the left peg and the saddle, and
c is the distance between the saddle and the right peg.

The ratio of string lengths was obtained by using
Eq. (8) and for wound strings attached to the top left
and top right pegs, for instance, this produced a value
of lL

lR
= 1.0333 ± 0.0002, whilst using a ruler produced

lL
lR

= 1.035 ± 0.005.
The process for testing each string is as follows:

1) The string is threaded through two tuning pegs
and brought up to a high tension by turning both
pegs.

2) The string is plucked multiple times.

3) The pegs are turned back until the string reaches
the lowest tension at which a clear note is heard.

4) A recording is made of the left section of string
being lightly plucked, whilst the right section is
lightly damped by one finger.

5) A recording is made of the right section of string
being lightly plucked, whilst the left section is
lightly damped by one finger.

6) The left peg is moved through 1/4 of a turn.

7) Steps 4 to 6 are repeated until the string is difficult
to bend.

8) The recordings are analysed and the data tabu-
lated.

9) Steps 3 to 8 are repeated with the right peg turned
instead of the left peg in step 6.

This process was repeated for each bend angle, in
the order given in Table 1, and for each string. By
starting with the smallest angle, effects due to perma-
nent bends induced in the string were kept to a min-
imum. However, such effects were still present: due to
the shorter length between the saddle and bottom right
peg, a permanent bend was often present to the left of
the saddle. This would have greater implications for
strings with thicker cores because the permanent bend
is stretched out relatively easily for narrower cores un-
der sufficient tension. The calculation in Eq. (9) com-
pensates for this effect by cancelling any impact of
differences in mass times length on either side of the
saddle.

After each turn of the tuning peg, the left section of
string was always plucked before the right; the strings
may have slightly loosened between the two plucks due
to work hardening. This may have lead to larger fre-
quency differences being calculated. Steps 1 and 2 were
included to reduce the effects of work hardening.

The section of string not being measured was
lightly damped in steps 4 and 5 to prevent multiple
frequencies being recorded. When testing the effects of
changing the ratio of lengths, it was noted that damp-
ing the much shorter section in different places had
an audible effect on the pitch of the longer section.
The recordings were made using the internal micro-
phone of a MacBook Pro laptop running Praat soft-
ware (Boersma, Weenink, 2018). The software pro-
duces a line showing the dominant frequency at each
time. The frequency was then taken from the average
of a section within the flat tail of this line.

The first turn of the peg after loosening was
consistently observed to produce anomalous results;
hence, the first turn was ignored in the analysis. The
anomalous results during the first turn of the peg are
most likely due to measurements beginning when the
string was not quite sufficiently taut: this made
the string more likely to slip into the board and hit the
side of the saddle. This happened for multiple strings,
and was mitigated partway through the experiment by
replacing one of the tuning pegs with a higher peg,
such that the string was held further from the board.
Furthermore, the lowest frequency notes produced
a recording with a lower signal-to-noise ratio, making
the extraction of a single frequency more difficult.

For each string and each choice of θ, the experi-
ments performed by sequentially tightening in quarter
turns using the left tuner (superscript (L)) and by se-
quentially tightening in quarter turns using the right
tuner (denoted by superscript (R)) resulted in a col-
umn of sounding frequencies tabulated in Microsoft
Excel for the left string f1 and right string f2. A col-
umn of the ratio f2/f1 was then calculated for each ex-
periment. The average values of the resulting columns
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obtained were then calculated using the AVERAGE

function in Excel and these average values of ( f
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)

and ( f
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) substituted into Eq. (9) to obtain the fric-

tion coefficient, µ, for graphing.
Error bars were produced by first calculating the

standard error (also known as the standard deviation
of the mean or the standard uncertainty) of the ratio of

frequencies when the left peg is tightened, SE( f
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2
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and the standard error of the ratio of frequencies when

the right peg is tightened SE( f
(R)
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f
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). The standard er-

ror in each case was calculated in Excel by taking the
standard deviation of the column of frequency ratios
(calculated using the STDEVA function) and divid-
ing this by the square root of the number of measure-
ments of those frequency ratios (using the SQRT and
COUNT functions) (Quirk, 2016). The standard er-
ror of µ was then calculated using the law of error
propagation (Drosg, 2009) to give:
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4. The effect of core thickness
versus winding thickness

Six custom made strings were commissioned to
have a similar overall gauge (around 32 thousandths
of an inch) and mass, suitable for use as an electric
guitar string with a nominal pitch of A2 = 110 Hz, but
with different core and winding gauges. These were
constructed with Newtone strings. The winding to core
diameter ratios of these strings were dw/dcore = 6/19,
7/18, 8/16, 9/14, 10/13, and 11/11. These strings have
steel cores with circular cross-section, and are round
wound with nickel-plated steel.

Following this, tests were carried out on five un-
wound tin-plated steel strings, with circular cross-
sections and diameters of 9

1000

′′
, 10

1000

′′
, 11

1000

′′
, 13

1000

′′
,

and 17
1000

′′
. A nickel plated bent steel saddle was used

throughout the experiments.
Figure 2 shows the coefficient of friction, µ, calcu-

lated using Eq. (9) for the strings of different winding
diameter to core diameter and for the four break an-
gles. The measured coefficients of friction are in the
range 0.06 and 0.26.

The larger values of the friction coefficient are
observed for strings with thicker cores and narrower
windings, but only for greater break angles. Factors
involved may include the increased bending stiffness
of strings due to wider cores having greater bending
stiffness, the greater permanent bending of the core
around the saddle for wider cores, and due to narrower
windings on the saddle side of the string fusing un-

Fig. 2. The experimentally measured coefficient of friction
consistent with the capstan equation plotted against ratio
of winding diameter to core diameter for the string curving

round the saddle through different angles, θ.

der bending and compression introducing permanent
shape changes which may also change the composition
of the materials in the region of contact due to the
deformation of the layer of nickel plating on the wind-
ings. Generally the effect of increased bending rigidity
(associated with thicker cores) would tend to decrease
the derived coefficient of friction rather than increase it
due to the string bowing around the saddle and there-
fore being in contact over a reduced break angle, so this
cannot be responsible for the observed effect (Stuart,
1961). The introduction of permanent bends should re-
duce the bowing of the string around the supports.

Changes of the composition of the materials in con-
tact may be significant in explaining the apparent in-
crease of friction for wider cores and narrower windings
in this experiment. Narrower windings tend to deform
more when bent over the saddle at larger break angles,
leading to fresh nickel and possibly steel touching the
saddle in place of the previous layer of oxide films and
lubricating contaminants. Indeed, Straffelini (2015)
avoids producing a generalised list of friction coeffi-
cients as “friction is a system property that strongly
depend on the sliding conditions” (p. 38) and “Metal
surfaces may easily undergo oxidation during sliding,
with the formation of an oxide layer (or scale) that may
reduce friction coefficient, thus acting as a lubricating
skin” (p. 31). In practice adding lubrication after first
installing a string to pitch would tend remove the ob-
served effect.

Amontons’ law states that the frictional force is
equal to the normal reaction force multiplied by the co-
efficient of friction (Stuart, 1061). Any contribution
to the observed increase in friction for small winding
diameters due to area of contact arguments (for in-
stance due to the stepped nature of the contact around
the bent saddle) would violate Amontons’ law. How-
ever, it has been observed that rough surfaces experi-
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ence higher friction coefficients at low sliding velocities
(less than 1 m/s, as would be appropriate here) (Lim
et al., 1989) so it is possible the discontinuous nature
of the contact between wound strings and the saddle
may increase friction to some extent.

5. Comparison with typical friction coefficients

Typical values for the static coefficient of friction
between nickel and nickel are 0.28 when greasy, and
0.7–1.1 when dry (Ramsdale, 2006). Measurements
of the wound nickel-plated strings (in contact with
nickel plated saddles) only produced values below 0.26.
This is due to the capstan equation assuming that the
strings are on the limit of static friction, which was
often not the case in this experiment. A typical value
of the coefficient of friction for lubricated sliding be-
tween nickel and nickel is 0.12 (Ramsdale, 2006) and
hence the results suggest that when the tension in-
creases on one side, the string slides across the saddle
to almost equalise the tension imbalance, before com-
ing to rest when the tension difference is consistent
with the capstan equation where the coefficient of fric-
tion is approximately in line with published values for
lubricated sliding contact. Lubrication had been ap-
plied to the saddle used more than two years prior to
the experiments presented in this paper but was not
applied immediately prior or during the experiments to
keep the results consistent. The exact values for ten-
sions differences are likely to depend strongly on the
condition of the surfaces with dry, clean surfaces of
fresh metal having higher values of friction than lubri-
cated or lightly oxidised ones.

For the unwound strings, the contact is between the
tin and nickel (due to the unwound strings being plated
in tin and the steel saddles being plated with nickel).
While standard values of friction between tin and
nickel have not been found by the authors, the experi-
mental data shows that for this system the friction co-
efficients are below 0.17 and average a little lower than
that for the wound (nickel on nickel) measurements.

There is significant variation in the results, with the
error bars (based on the standard error in measured
frequency ratios on repeated tightenings of the tuning
pegs) often not explaining the deviation of the data
from clear trends. This adds support to the importance
of small variations such as in condition of oxide films
on the string at the point of contact with the saddle.
Other sources of error include work hardening effects
and the effects of bending and unbending of the string.
The one negative coefficient of friction measured (in
Fig. 3) corresponded to a measurement for the small-
est break angle and may have resulted from the pluck-
ing process reversing the very small tension imbalance.
Some of the randomness in the data, particularly for
small break angles, may result similarly from the pluck-
ing process and/or vibration of the string modulating

Fig. 3. The experimentally measured coefficient of friction
consistent with the capstan equation plotted against the
diameter of unwound strings for the string curving round
the saddle through different angles, θ. The x axis values
(using the thousandths of an inch scale that is standard
for guitar strings) can be converted to millimetres through

multiplying by 0.0254.

the normal force on the saddle sufficiently to cause
some slippage. This process will tend to under predict
the coefficient of friction to some extent because the
tension difference will be lowered.

6. The effect of changing the length of string
either side of the saddle

On a conventional guitar, the main section of each
string is much longer than both sections from the nut
and bridge to the ends of the string. Hence, three holes
were drilled on the one-string guitar, along the line
from the saddle to the bottom right tuning peg, such
that a tuning peg could be inserted to each hole as
shown in Fig. 4. This allowed for testing of multiple
string length ratios for a fixed bend angle of 0.67 rad,
i.e. from the bottom left peg. Tests were performed on
the wound strings with ratios 6/19, 9/14, and 10/13.
The additional holes were drilled at 4.0 cm, 8.1 cm,
and 12.4 cm from the saddle.

Fig. 4. Photograph of the one-string guitar modified to have
seven possible tuning peg positions. Screws were used to
secure the saddle in place, along with an additional piece
of wood underneath to prevent the saddle moving when

a string under high tension is passed across.
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It was found that changing the length of the section
of string to the right of the saddle does not produce
clear trends in the experimental derivation of the co-
efficient of friction, as shown in Fig. 5 with the coeffi-
cients varying by over a factor of two showing the sensi-
tivity of the experiment to the surface condition of the
string. The tendency of strings with narrowest wind-
ings to have a higher friction coefficient for large break
angles is, nonetheless, maintained in this experiment.

Fig. 5. The experimentally measured coefficient of friction
consistent with the capstan equation plotted against the
distance of string on the right hand side of the saddle, for
the string curving round the saddle through an angle of

θ = 0.67 radians.

The combination of maximum observed fric-
tion and maximum angle gives a tension ratio of
exp(µθ) = 1.19 to 3 significant figures. If the lengths
of string either side of the saddle were the same then
a maximum pitch difference supported either side
would be approximately 1200 log2(

√
1.19) ≈ 150 cents,

or one and a half semitones, implying huge pitch
errors before and after bending the string for instance.
In practice the length of string behind the saddle of
a Fender Stratocaster bridge is in the range between
25 mm for newer models and 60 mm for vintage
designs and this is much smaller than the scale length
of around 648 mm. Slippage of the string across the
saddle occurs whenever tension changes take place and
the shorter side of string must undergo a much bigger
stretch in relation to its length. This in turn means
that the bulk of the tension change implied by the
capstan equation due to slippage at the saddle will be
experienced on the bridge side of the saddle, leaving
the tension change and pitch change in the sounding
length much smaller (but non-zero). A full treatment
of this topic is beyond the scope of the current paper,
but it is clear that minimising the distance of string
behind the saddle minimises tuning problems since
possible tension imbalances implied by the capstan
equation can be absorbed by the string sliding across

the saddle by smaller distances (changing the elonga-
tion of the main sounding length to a smaller degree).

7. Conclusions

Values for the coefficient of friction were calculated
from the capstan equation based on measurements of
the pitch of vibration for various constant bend an-
gles. For wound strings, strings with narrow windings
were found to have slightly larger coefficients of fric-
tion for large break angles. The results were consistent
with the capstan equation where the coefficient of fric-
tion is less than 0.26 and likely to vary with the con-
dition of the surfaces. Observed coefficients of friction
were much less than most published values of static
friction and were close to those associated with sliding
contact. This suggests that when a tension imbalance
is introduced (by turning a tuner or executing a con-
ventional pitch bend) the string slides across supports
(such as at the nut and saddle) to almost equalise the
tension before coming to rest when the tension approx-
imately matches the value given in the capstan equa-
tion for the coefficient of friction under sliding contact.
It should be noted that in some practical cases surface
shape roughness also encourages serious tension imbal-
ances (such as between string windings and sharp edges
on bridge plates and saddles) and interfaces between
strings and sharp edges should minimized for tuning
stability. Contact with sharp edges has been avoided
in the experiments presented here.

Changing the ratio of lengths on either side of the
saddle was shown to have no obvious effect on
the derived coefficient of frequency. In practice hav-
ing shorter length of string outside the main sounding
length (for instance between the saddle and the ball
end of the string) is beneficial to tuning stability as
any changes in tension there will have lower displace-
ments of string associated with it.

Permanent bends are introduced when a new string
is installed, potentially changing the composition of
the material on string surface and squeezing out any
pre-existing surface films that may have otherwise low-
ered friction. When fitting a new string it is there-
fore advisable to install the string up to pitch, then
move the string just enough in order to allow the ap-
plication of lubrication between the newly formed bent
surface of the string and the saddle. This process mi-
nimises fresh metal to metal contact and hence mini-
mises friction related tuning problems. Applying lubri-
cation was, however, out with the scope of the exper-
imental tests within the current work and would be
a useful topic for future study.
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