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Abstract
Spectroscopy has become one of the most used non-invasive methods to detect plant di
seases before symptoms are visible. In this study it was possible to characterize the spectral 
variation in leaves of Solanum lycopersicum L. infected with Fusarium oxysporum during 
the incubation period. It was also possible to identify the relevant specific wavelengths in 
the range of 380–1000 nm that can be used as spectral signatures for the detection and 
discrimination of vascular wilt in S. lycopersicum. It was observed that inoculated tomato 
plants increased their reflectance in the visible range (Vis) and decreased slowly in the near 
infrared range (NIR) measured during incubation, showing marked differences with plants 
subjected to water stress in the Vis/NIR. Additionally, three ranges were found in the spec-
trum related to infection by F. oxysporum (510–520 nm, 650–670 nm, 700–750 nm). Linear 
discriminant models on spectral reflectance data were able to differentiate between tomato 
varieties inoculated with F. oxysporum from healthy ones with accuracies higher than 70% 
9 days after inoculation. The results showed the potential of reflectance spectroscopy to dis-
criminate plants inoculated with F. oxysporum from healthy ones as well as those subjected 
to water stress in the incubation period of the disease.
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Introduction

Remote sensing and nearly sensing methods, like multi 
or hyperspectral sensors, have been widely applied in 
agriculture, livestock, industries, and even some sec-
tors of pharmaceutical and human medicine (Huang 
et al. 2007; Hatfield et al. 2008; Berzaghi and Riovanto 
2010; Teixeira et al. 2013). Additionally, remote sens-
ing technology provides an alternative method that is 
unbiased and automatic for visual evaluation of plant 
diseases (Mahlein et al. 2012), even in the early stages 
of evolution when the symptoms are not visible (Kha-
led et al. 2017). 

After symptom expression of a plant disease, the 
disease can be verified through detection techniques. 
Detection techniques of plant diseases that are cur-
rently available can be divided into four groups: 
1 – serological methods: flow cytometry, Enzyme 
Linked Immunosorbent Assay (ELISA) and immun-
ofluorescence, 2 – “Purely molecular” methods: Flu-
orescent In Situ Hybridization (FISH), Polymerase 
Chain Reaction (PCR) and DNA Arrays, 3 – disease 
detection based on biomarkers: profiles of metabo-
lites in the gas phase and profiles of plant metabolites, 
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4 – disease detection based on plant properties and 
stress, which includes: imaging techniques (hyper-
spectral and fluorescence images) and spectroscopic 
techniques (Vis/NIR), infrared (NIR), fluorescence 
and multispectral bands (Sankaran et al. 2010). In 
recent decades, research in this last group of technol-
ogy has led to the development of methods based on 
spectroscopy for the detection of diseases and stress in 
plants. These methods are faster, non-destructive, sen-
sitive and selective for detection of disease during its 
incubation phase.

These techniques are based on measuring the 
amount of radiation reflected on a surface in func-
tion of the wavelengths to produce unique reflect-
ance spectra for each material. These spectra can be 
used as a “fingerprint” (spectral signature), since they 
sense healthy and diseased plants in different states 
of evolution, even in cases when the symptoms of the 
disease are not yet visible (Zhang et al. 2003; Huang 
et al. 2004; Larsolle and Muhammed 2007; Mahlein 
et al. 2010; Marín-Ortiz et al. 2018; Marín-Ortiz et al. 
2019). Characteristics of spectral radiation, reflected, 
transmitted or absorbed by the leaves, can provide 
a deep understanding of the histological, physiological 
and biochemical responses to growth conditions and 
adaptations of plants to the environment. However, 
as a result of increased interest in remote sensing, leaf 
reflectance has been studied more than absorbance 
and transmittance as stress responses in plants (Carter 
1994; Gregory et al. 2001). 

The efficiency of measuring spectral reflectance 
for detection of diseases is based on the identification 
of the most significant spectral wavelength, which is 
highly correlated with a specific disease (Song et al. 
2011; Mahlein et al. 2013), since it is found in only 
some regions of the electromagnetic spectrum of in-
terest. Jacquemoud and Ustin (2001) divided the spec-
tral range from 400 nm to 25,000 nm into three large 
bands. The first is the Vis range (~380–750 nm), in 
which photosynthetic pigments have a greater impact 
on spectral signature, characterized by low reflect-
ance values and a maximum peak located ~550 nm. 
The second one includes the near infrared plateau 
(7,500–1,100 nm), a high reflectance spot due to 
multiple dispersion within the leaf in relation to the 
fraction of air spaces within the tissue (internal struc-
ture) and/or its water content. Finally, the third one 
includes near infrared (1,100–2,500 nm), which is 
a low reflectance zone, due to high absorption of water 
mainly intissues such as fresh leaves and dry matter.

Significant wavelengths have been identified as 
a base to develop a large number of Spectral Veg-
etation Indices (SVE) (Robert et al. 2011), as well as 
a method to detect and analyze changes in physiologi-
cal and biochemical parameters in plants (Merzlyak 

et al. 2003a, 2003b; Gitelson et al. 2003; Gitelson et al. 
2007). However, it is not possible to perform a quanti-
tative definition or identification of a particular disease 
based on common SVEs because the method lacks 
specificity for diseases (Mahlein et al. 2013). There-
fore, it is necessary to determine the Relevant Specific 
Wavelengths (RSW) for the construction of Spectral 
Disease Indices (SDI) that can be used to simplify the 
detection of diseases by spectral sensors, since each 
disease uniquely influences the spectral signature in 
a characteristic way. 

In this research were conducted experiments under 
semi-controlled conditions to identify important spec-
tral wavelengths for the early detection of F. oxyspo-
rum in tolerant and susceptible plants of S. lycopersi-
cum. This organism model is widely accepted for the 
study of pathogenicity in plants (Baayen et al. 2000). 
First, were carried out a characterization of spectral 
variation in leaves of S. lycopersicum infected with 
F. oxysporum during the incubation period of the dis-
ease and subjected to mild water stress. Then were 
identified RSW on 380–1,000 nm, that could be 
used for detection of spectral signatures in S. lycop-
ersicum plants infected with F. oxysporum before the 
expression of visible symptoms. Finally were tested 
or discriminated infected S.  lycopersicum plants with 
F. oxysporum from healthy plants as a test of the RSW 
identified in the previous step. 

Materials and Methods

Biological material

The plants used in this study were maintained under 
semi-controlled greenhouse conditions, located at the 
National University of Colombia Medellín (Antioquia, 
Colombia). Average temperatures ranged between 18 
and 24°C, relative humidity between 60 and 70% and 
there was a photoperiod of 12 h during the experi-
ments. In this study, the Ponderosa tomato variety, 
which is susceptible to all races of F. oxysporum (Reis 
and Boiteu 2007), and the Santa Cruz variety, which 
is resistant to races 1 and 2 were used. The seeds were 
planted in germination trays of 86 wells with sterile 
peat as a substrate and kept in the greenhouse for the 
duration of the respective experiments. The plants 
were irrigated daily, fertilized once a week with a nu-
tritious solution and a protective action fungicide was 
applied every 7 days, starting when the plants were 
7 days old, according to the management plan. After 
4 weeks of germination, the inoculation procedure 
was carried out and individual plants were placed in 
900 cm3 plastic cups containing the same substrate 
as that used to plant the seeds. In this study, five 
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treatments were evaluated: 1 – tomato plants (var. 
Ponderosa) inoculated at 4 weeks after germinating 
with a pathogenic strain of F. oxysporum (Fo5), 2 – 
healthy plants (var. Ponderosa) submitted to hydric 
stress sustaining 60% of field capacity, 3 – healthy 
plants (var. Ponderosa) and substratum maintained 
with 100% field capacity as control treatment, 4 – 
plants of tomato (var. Santa Cruz) infected with Fo5, 
5 – healthy plants (var. Santa Cruz) and substratum 
maintained at 100% field capacity. The plants sub-
jected to these treatments were kept under almost the 
same conditions as the greenhouse during the rest 
of the experiment. Fertilization with nutritious sub-
stances was increased to twice every week. F. oxyspo-
rum Fo5 strain isolated from Passiflora edulis (pas-
sionfruit) was used because it is highly pathogenic on 
tomato plants (Marín-Ortiz et al. 2018; Marín-Ortiz 
et al. 2019). This strain has an incubation period of 
24 days post infection (dpi) on tomato plants.

Inoculation

Four-week-old tomato plants were inoculated ac-
cording to the modified procedure described by Ortiz 
and Hoyos-Carvajal (2016) with a suspension of 
spores of isolate Fo5. Ten milliliters of spore suspension 
of F. oxysporum were prepared in distilled water. 
The concentration of the spore suspension used was 
1 × 106 spores ⋅ ml–1. The tomato seedlings were removed 
gently from the nurseries and the roots were washed 
with tap water to remove the remains of peat. Then 
wounds (cuts) were made on the secondary roots of all 
the plants with a sterile scalpel and only the roots were 
immersed in 15 ml of the solution of distilled water and 
spores for 20 min. The same procedure was performed 
on the inoculated plants. The control plants were inocu-
lated only with distilled water, and subjected to water 
stress. The seedlings submitted to the different treat-
ments were transplanted to the vessels with sterile peat of  
900 cm3. To verify the efficiency of the inoculation (pos-
tulate three of Koch), a cross section from the neck of 
roots from five plants of each treatment was made (days 
0, 12 and 24 dpi). The tissue was disinfected and diluted 
in distilled sterilized water 1 : 10 (w/v). The homogenized 
solution (100 ml) was placed on Potato Dextrose Agar 
(PDA) + malachite green oxalate supplemented with 
200 ppm chloramphenicol. During the first 4 days after 
sowing, observations were made under a microscope 
and the F. oxysporum colonies that grew in the medium 
were counted according to the following formula:

                      CFU/g = CFU/(Vp + Df)

where: CFU/g – the number of colonies per one gram; 
CFU – the number of viable fungal cells;  
Vp – plant volume; Df – dilution factor.

Spectroscopy

For the acquisition of Vis/NIR reflectance spectra, 
a HR2000 portable spectroscope (Ocean Optics, USA) 
with a tungsten halogen light source HL-2000-HP 
(wavelength range of 360–2,400 nm), a diffuse reflect-
ance standard model WS-1 (reflectivity >98% in the 
range of 250–1,500 nm) and a 600 μm premium grade 
reflectance probe QR600-7-VIS-125F were used. The 
measurements were made with the optical fiber at-
tached to the adaxial surface of the leaf, in which five 
spectra were taken for each leaf. Different parameters 
required for spectroscope calibration, such as integra-
tion time, average readings per measurement and in-
terval time were determined at the beginning of the 
experiments.

Pathogenicity test

Destructive samplings were executed to confirm plant 
infection in the following way: a cut of 1 cm was made 
from the neck of the stem of each plant and each seg-
ment was cut into five equal parts, approximately 
2 mm long each. Then, the segments were disinfected 
in 70% alcohol, 2% sodium hypochlorite and water. 
Finally, the five cuts of the stem of each plant were 
placed in Petri dishes with PDA medium + 300 ppm 
of Gentamicin. Seven days after sowing the five stem 
segments, each Petri dish and stem segment were ob-
served for the presence and growth of the pathogen. 

Data analysis 

The results obtained in this work are presented as 
a function of the treatment realized in two tomato vari-
eties infected with a strain of F. oxysporum and their re-
spective controls through the incubation period of the 
disease (before the appearance of visible symptoms). 
A comparison of the effects caused by the treatments 
was carried out on leaves in the same stage of growth 
and development. Five reflectance spectra of the adax-
ial face of the second leaf of each tomato plant were 
measured in the 380–1,000 nm spectral range with 
a spectral resolution of ~0.5 nm, using an “Ocean Op-
tics HR2000 spectroscope”.

Initially, a spectra selection was made to remove 
noise, either by being deformed and/or with reading 
error. The spectra that showed very different patterns 
were confirmed with analysis of “outliers” identified in 
a Principal Component Analysis (PCA) without prior 
data treatment. After the elimination of the spectra 
with noise and previous treatments, several types of 
transformations were applied to reduce the impact of 
the difference in illumination, variety of the plant or 
specific effects of the sensor. After several analyses, the 
normal standard variate transformation (SNV) was 
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chosen as one of the best pre-treatments that allow 
a good grouping of the plants through the treatments. 
After performing the pre-treatment of raw data, an 
analysis of the variance was made from the absolute 
differences between the reflectance means of the plants 
of S. lycopersicum (two varieties) subjected to biotic 
stress (infected with F. oxysporum) and abiotic (water 
stress) with healthy plants, and standard deviations 
of reflectance. Subsequently, a binary classification of 
healthy leaves and diseased plants was made to test the 
detection and the later classification of disease by RSW. 
To reduce the information of the measured spectrum 
and obtain these RSW to separate diseased and healthy 
plants, the RELIEF algorithm was used (Robnik- 
-Šikonja and Kononenko 2003). Finally, the RSW iden-
tified in the previous step were used to perform Linear 
Discriminant Analysis (ADL) in order to characterize 
or separate tomato plants subjected to biotic stress (in-
fected with Fo5) and abiotic (hydric stress) during the 
incubation period of disease. All  statistical  analyses 
were performed using Software R. The main libraries 
and functions used are summarized in Table 1.

Results

Variation of the spectral signatures

Changes in treatments were analyzed as the absolute 
differences between statistical average reflectance of 
S. lycopersicum, and subjected to biotic stress, less the 
reflectance on healthy plants (Fig. 1). Difference in 
reflectance increased with F. oxysporum colonization 
on two tomato varieties evaluated (380–750 nm) 
22–24 dpi. On these days, the susceptible vari-
ety displayed drastic changes at same time as vis-
ible alterations or symptoms occurred, while the 
tolerant plants revealed slight differences in spec-
tra, and there were no visible symptoms of dis-
ease. In the infrared (750–1,000 nm) showed a su

stained increase in the difference of the tolerant 
variety with their respective healthy controls until 
21 dpi, decreasing markedly 24 dpi. In the susceptible 
variety there was an increase 12 dpi, and then, fell. 
Taking into account the standard deviations, it can be 
affirmed that only the mean varied, but there was no 
disparity in the dispersion of the data in each treat-
ment. The highest differences on reflectance were on 
limit of red (750 nm), usually after the first week of 
infection. Besides, plants with water stress displayed 
different patterns, with a lack of reflectance from the 
first week on visible and NIR, 750–1,000 nm being 
the region with a high difference of reflectance, dur-
ing which the assessment standard deviation was kept 
constant. 

Relevant Specific Wavelengths (RSW) 
for detection and classification of plants 
subjected to two types of stress

Since vascular wilt is a systemic disease in tomato 
plants, a binary classification of healthy leaves and dis-
eased plants was made to test the detection and subse-
quent classification of the disease by RSW. To reduce 
the information of the measured spectrum and obtain 
these RSW the RELIEF algorithm was used to separate 
diseased and healthy plants (Fig. 2).

On day 0 (plants without infection and without 
water stress) weights for wavelengths were constant 
and close to “0” for the two types of stress evaluated 
in the measured range, without highlighting any rel-
evant RSW (Fig. 2A and F). The specific wavelengths 
relevant to infection by F. oxysporum (biotic stress) 
were 510–520 nm, 650–660 nm and 750 nm, clarify-
ing that the ranges of 510–520 nm, 650–660 nm were 
relevant from 3 dpi (Fig. 2B), while the wavelength 
of 750 nm began to be important approximately 
9–12 dpi (Fig. 2C and D). No RSW was observed in 
plants subjected to biotic stress in the infrared range 
measured (750–1,000 nm). 

Table 1. Description of the main analyses used with the Software R

Analysis Library  name Function name Description

Pre-processing  mdatools, prospectr prep.snv, gapDer
apply the transformations: standard normal variate (SNV) and 
derivatives of different orders to the rows of the data matrix

Detection and 
elimination of 
extreme points 

 mvoutlier, rrcov pcout, PcaHubert
fast algorithm to identify multivariate outliers in high 
dimensionality data, using the Filzmoser algorithms (Filzmoser 
et al. 2007), and ROBPCA (Hubert et al. 2005)

Data visualization
mdatools, ggplot2 

graphics 
mdaplot, ggplot, plot

functions used for data visualization (scatter plots, bars, 
histograms)

RSW Selection dprep relief
this function implements the RELIEF feature selection algorithm 
(Kira and Rendel 1992)

Discrimination 
 of treatments

MASS lda, predict
functions used to calculate linear discriminant analyses and 
matrices of confusion
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Fig. 1. Differences between the average reflectance (         ) and standard deviation of tomato leaves subjected to both types of 
stress compared to healthy controls: infected with F. oxysporum and subjected to water stress (        ) standard deviation on 
control plants, (              ) standard deviation on treatment); dpi – days post infection

Fig. 2. Relevant specific wavelengths for the two tomato varieties during the incubation period of Fusarium oxysporum infection 
(A–E): 0 dpi (A), 3 dpi (B), 12 dpi (C), 21 dpi (D) and 24 dpi (E); tolerant variety (                ) and susceptible variety (                 ); the R for the 
 susceptible variety of tomato subjected to water stress are illustrated in F–J
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The scores of these RSW increased with the pe-
riod of incubation of the disease in the plant, but 
decreased markedly in the susceptible variety to 
24 dpi (their weights tended to be constant), when 
the symptoms were observed on them, whereas the 
RSW in the tolerant plants continued with the same 
pattern observed during the previous days (Fig. 2E). 
The RSW for plants subjected to water stress were 
750 nm and the range 900–950 nm, was observed af-
ter 18 dpi (Fig. 2I and J).

The RSW with scores greater than 0.1 that were 
selected after analysis with the RELIEF algorithm are 
summarized in Table 2.

Classification of tomato plants infected 
with Fusarium oxysporum 

Figure 3 summarizes classification percentages of 
plants compared to their healthy controls during the 
incubation period of disease, this is a result of the con-
fusion tables in Linear Discriminant Analysis (LDA) 
using the RSW selected with the RELIEF algorithm. 
The tolerant variety of tomato infected with F. ox-
ysporum exhibited a progressive increase in the clas-
sification percentage compared to its controls since 
infection, reaching the highest value (92.76%) 12 dpi 
and maintained little variation until 24 dpi (Fig. 3, 
series A). Otherwise, susceptible tomato plants 
showed intermediate values of correct classification, 
between 68 and 72% from 3 to 15 dpi, respectively, 
abruptly increasing on day 18 from coincident at the 
same time as early visual symptioms with early visual 
symptoms (Fig. 3, series B). Susceptible plants subject-
ed to water stress showed a pattern similar to the one 
described above, maintaining constant classification 
percentages between 71.00 and 76.00%, but increasing 
rapidly on day 15 and reaching 93.00% 21 dpi (Fig. 3, 
series C). 

Histograms for each group in the first discriminant 
dimension were made to visualize post-infection dur-
ing 24 dpi, when the separation of the groups of plants 
can be observed compared to their respective controls 
(Fig. 4). Tolerant tomato plants infected with F. oxyspo-
rum are clearly discriminated from healthy plants from 
9 to 12 dpi (Fig. 4A). Also, the plants of the suscepti-
ble variety achieved an acceptable classification after 
12 dpi (Fig. 4B), although it was appreciably lower than 
the previous treatment. Regarding plants subjected to 
water stress, it should be noted that the water defi-
ciency to which they were subjected was slight (field 
capacity at 60%), so a classification percentage >85% 
was observed for 18 and 21 dpi (Fig. 4C).

Discussion

Spectral reflectance analyses are useful for detecting 
different types of biotic and abiotic plant stress due to 
changes in the light absorption incident in the Vis/NIR 
range of the electromagnetic spectrum (Sankaran et al. 
2010; Khaled et al. 2017). Additionally, the relation-
ships between the physiological, histological and bio-
chemical changes generated in the plant by different 
pathogens affect the spectral characteristics and can be 
detected before the expression of symptoms in the Vis/
NIR regions. Currently there are few studies dedicated 
to the S. lycopersicum-F. oxysporum pathosystem using 
the reflectance spectroscopy technique focused on the 
detection of the disease (Salman et al. 2012; Abu-Kha-
laf 2015). However, these did not investigate in depth 
early detection during the incubation period or the 
search for LOER that are related to the disease.

Table 2. Relevant specific wavelengths selected for the detection 
and classification of plants of both tomato varieties (tolerant and 
susceptible) subjected to two types of stress, biotic (Fusarium 
oxysporum – Fo5, during the incubation period) and water stress 
(ws); dpi – days post infection

  dpi
                     Biotic stress (Fo5)      Abiotic stress (ws)

tolerant susceptible susceptible

0 – – –

3 510 520, 650 –

6 510, 550, 710 520, 650 –

9 650, 760 520, 650 –

12 510, 650, 750, 880 510, 660 –

15 650, 740, 890 510, 650 –

18 – – 750, 900

21 510, 650, 770 510, 660, 710 750, 950

Fig. 3. Temporal variation on classification percentage for plants 
subjected to biotic stress (Fo5) and abiotic stress (ws). A – tolerant 
variety infected with Fusarium oxysporum (VT_Fo5); B – susceptible 
variety infected with F. oxysporum (VS_Fo5); C – susceptible variety 
subjected to water stress (VS_EH); dpi – days post infection

dpi
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The data variance set analyzed from the absolute 
differences between the reflectance means of S. lyco-
persicum plants subjected to stress by F. oxysporum 
(biotic) and water stress (abiotic) with healthy plants 
agrees with the theoretical basis proposed by Zhang 
et al. (2003). This is a basis for the use of spectroscopy 
in the discrimination of different forms of stress in 
plants, which suggests that the wave magnitude will 
typically vary in different lengths, increasing the re-
flectance in the Vis range and decreasing in the NIR 
(750–1,100 nm) on plants infected with pathogens.

During the incubation period of the disease the dif-
ference of reflectance values in tomato varieties evalu-
ated (tolerant and susceptible) fluctuated between 
380 and 750 nm compared to the positive controls 
(Dif = λFo5 – λCON), indicating higher values in the re-
flectance of infected plants in this spectral range. This 
increase in reflectance in the Vis range (decrease in 
absorbance) suggests that the content of the different 
photosynthetic pigments is lower in leaves of infected 
plants rather than the healthy ones (Carter and Knapp 
2001). This fact is related to physiological responses 
against stress produced by reported pathogens (Berger 
et al. 2007). On the other hand, the small differences 
between plants infected with Fo5 and their controls, 
in the range of 750–1,000 nm, may indicate a minor 
disturbance in the hydric state of the leaves infected 
(Genc et al. 2013; Jin et al. 2017). These results contrast 

with the strong decrease in reflectance in plants sub-
jected to water stress in the same range, from the 
start of data collection (day 3 of the beginning of the 
stimulus) to the death of the leaf (day 24), suggesting 
a strong relationship between water reduction in leaf 
tissues and wavelengths in this spectral range. Addi-
tionally, plants with an increasing level of water defi-
ciency showed a decrease in the reflectance, which has 
also been observed in plants with a decrease in the rel-
ative water content of the leaf (Zhang et al. 2012; Genc 
et al. 2013).

This study provides evidence regarding the finding 
of specific wavelengths more relevant to vascular wilt 
in tomato plants caused by F. oxysporum that can help 
to improve the detection and discrimination of asymp-
tomatic infected plants and water stress from hyper-
spectral data. These RSW are characterized by having 
high sensitivity and specificity in the pathosystem 
studied and can be used in the future to make defini-
tion indices that incorporate two or three bands of the 
spectrum in the Vis/NIR range. In general, the method 
most commonly used to detect RSW for the develop-
ment of disease indices is by correlation with biophysi-
cal or biochemical traits (Hatfield et al. 2008). How-
ever, the use of the RELIEF feature selection algorithm 
offers many advantages, since it works with non-linear 
classes and efficiently separates the classes by perform-
ing an iterative process. In this process, each iteration 

Fig. 4. Histograms for the first linear discriminant dimension of 
two tomato varieties infected with Fusarium oxysporum – tole
rant (A) and susceptible (B), and subjected to water stress (C), on 
different post infection days (wavelengths, selected with RELIEF 
algorithm, were 510 nm, 650 nm and 750 nm on data from plants 
infected with F. oxysporum; 750 nm and 950 nm for data on plants 
subjected to water stress)
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of a “X” instance of the data set is chosen randomly 
and the weight of each characteristic becomes updated 
according to the distance from “X” to the nearest in-
stance of the same class (“NearHit”), and in turn to the 
nearest instance of a different class (“NearMiss”). Fi-
nally, all the data are added in a class (Kira and Rendel 
1992; Kononenko et al. 1997).

The detection of a specific relevant wavelength range 
around 510–520 nm for tomato vascular wilt caused 
by F. oxysporum coincides with the maximum absorb-
ance peak of the carotenoids (Zur et al. 2000; Merzlyak 
et al. 2003b). In plants, carotenoids fulfill different 
functions, mainly as light-gathering molecules and 
photoprotection (Demmig-Adams et al. 1996). Addi-
tionally, recent studies show that carotenoids play a key 
role in the adaptation of plants to mild stress and other 
unfavorable factors (Strzalka et al. 2003). The major-
ity of specific wavelengths relevant to the pathosystem 
S. lycopersicum-F. oxysporum was found in the range of 
650–750 nm, which can be related with an importance 
of the reflectance near 700 nm as a fundamental char-
acteristic of green vegetation produced by a balance 
between biochemical and biophysical characteristics 
of plants (Gitelson and Merzlyak 1996, 1997). It has 
been observed that the displacement towards the blue 
of the red edge of the reflectance curve frequently ac-
companies the stress generated by pathogens in plants, 
whereby it could be used in the early detection of dis-
eases, since an increase in reflectance around 700 nm 
can be a first indicator to detect cultures infected by 
pathogens. However, this relevant wavelength (700 nm) 
is not specific to a disease, since in plants there can be 
an overlap with important nearby wavelengths, like 
680 nm, which is related to the chlorophyll content. 
With respect to water stress, there are decreases in re-
flectance in the Vis/NIR, which becomes more evident 
after the 15th day, considering that the plants were sub-
ject to 60% field capacity, which can be considered as 
a slight stress in the state of development of the plants. 
These RSW were present in the near-infrared region 
in which the main information is generated regarding 
the water absorption of the leaf (760–1,100 nm), with 
peaks in the ranges 750–760 nm and 900–960 nm. Wa-
ter absorption characteristics, as a result of absorption 
by O-H bonds, can be found at approximately 760 nm, 
970 nm, 1,200 nm, 1,450 nm and 1,950 nm (Li 2006).

It is important to note the lower magnitude on the 
reflectance spectra obtained in the plants of the tolerant 
variety. These results in the region suggest greater pho-
tosynthesis and subsequent synthesis of different types 
of polysaccharides compared to susceptible plants. In 
vitro studies from the 1980s and 1990s showed that 
tolerant phenotypes infected with F. oxysporum gener-
ated high contents of polysaccharides and callose, and 
induction of peroxidase, phytoalexins synthesis and in-
hibition of pathogens in dual crops (Storti et al. 1989). 

In contrast, moderately tolerant phenotypes had lower 
polysaccharide content and showed no hypersensitivity 
reaction when treated with the pathogen. The authors 
proposed that the presence of high levels of polysac-
charides in incompatible interactions generally should 
be considered as evidence of direct inhibition of the 
fungus by these compounds and with their recognition 
by the plant, limit their defensive factors.

Results support the hypothesis that the differences 
in spectral responses during the incubation period of 
the disease of evaluated varieties (susceptible and tol-
erant) are due to physiological changes generated in 
the plant–pathogen recognition process and the gen-
eration of polysaccharides important to inhibiting the 
pathogen. These changes at different times of the in-
cubation period may cause differences at the time that 
make it possible to discriminate each variety with per-
centages of classification greater than 80%: 9–12 dpi 
(tolerant) and 18–21 dpi (susceptible), under these 
particular test conditions. The colonization of suscepti-
ble and tolerant plants is systemic and similar in terms 
of the amount of inoculum used for both. In tolerant 
plants, pathogen recognition occurs quickly and there-
fore important compounds are synthesized to suppress 
growth and spread of the pathogen. In contrast, sus-
ceptible plants have delayed responses. The plants re-
spond to the invading pathogen with physical barriers, 
producing depositions in the cell walls, blockages of 
the xylem vessels, and by chemical defense, synthe-
sizing antimicrobial substances (Fradin and Thomma 
2006; Cregeen et al. 2015). The different physical and 
chemical responses to the pathogen by the susceptible 
and tolerant varieties generate spectral changes that 
can be detected in real time with spectroscopic tech-
niques and different types of multivariate analysis.

The ability to identify healthy tomato plants and 
those infected with F. oxysporum, or subjected to water 
stress with RSW seems to have been demonstrated in 
this work. There were varying percentages of success in 
the classification by increasing time after infection of 
the plant. Values between 85–93% were reached in the 
varieties evaluated (although at different dpi). Previous 
studies on the detection and classification of plant dis-
eases using Vis/NIR spectroscopy and different multi-
variate analysis techniques (including the Linear Discri-
minant Analysis, Partial Least Squares and Regression 
by Main Components) have shown percentages in 
the classification accuracy greater than 80% in a wide 
variety of pathosystems, such as Wheat-Yellow Rust 
(90.0%), Cotton-Verticillium (82.4%), GLAVV–Vid- 
-virus (81.0%), Tomato-F. oxysporum (85.0–100%), 
Tomato-R. solani (85.0%), Palm oil-Ganoderma 
boninense Pat. (92%), Sugar beet-Uromyces betae 
(80.3%), Sugar beet-Cercospora (85%), Citron-Can-
didatus Liberibacter americanus (Lam) (80–90%), 
among others (Mahlein et al. 2013; Abu-Khalaf 2015; 
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Alfadhi et al. 2017; Marín-Ortiz et al. 2018; Marín- 
-Ortiz et al. 2019).

Even though of an appreciable amount of research 
has focused on the detection and classification of plant 
diseases using reflectance spectroscopy in the Vis/NIR 
as well as on the use of multivariate techniques for the 
analysis of high dimensionality data matrices, more 
detailed research is needed in the search for WSR. 
These subsequent specific indexes and analysis of data 
could be used for detection and early discrimination of 
systemic diseases in plants.

Conclusions

Plants of S. lycopersicum infected with F. oxysporum 
presented a clear spectral response compared to their 
respective controls, increasing their reflectance in 
the Vis and decreasing slowly in the NIRs measured 
(750–1,000 nm) during the incubation period of the 
disease. The tomato varieties evaluated (tolerant and 
susceptible) presented the same pattern of response in 
the spectra in the Vis/NIR range evaluated, but with 
a delay of the tolerant variety, mainly in regard to the 
decrease of reflectance on the measured infrared re-
gion. Traditionally vascular wilt has been related to the 
death of the plant due to hydric stress, caused by the 
plugging of vascular bundles, which prevents the flow 
of water in the plant and causes its death in advanced 
stages of the disease. These results showed marked dif-
ferences in the plants subjected to water stress in the 
Vis/NIR, which suggests that there are different physi-
ological and structural response mechanisms to the 
two types of stress during the incubation period in 
which the symptoms are not visible.

The RSWs related to infection by F. oxysporum were 
found in the Vis range (mainly the ranges 510–520 nm, 
650–670 nm and 700–750 nm), which suggest physi-
ological changes in the plants in response to the patho-
gen. Otherwise, the RSW related to water stress which 
were found (750 nm, 900–960 nm) were in the near 
infrared range measured, in which the main informa-
tion is generated regarding water absorption of the leaf 
(760–1,100 nm), suggesting high specificity and sen-
sitivity to detect and discriminate F. oxysporum infec-
tion from hydric stress in tomato plants in the asymp-
tomatic stage of the disease. However, it is important to 
highlight the importance of performing comparative 
studies with specific indices developed from RSW for 
different diseases and other indexes proposed in cur-
rent literature, in order to evaluate the specificity and 
sensitivity of the wavelengths found in each type of in-
fection.

The detection of the disease in tomato plants 
with correct classification greater than 70% was 12 

dpi on the two varieties evaluated; although the toler-
ant variety presented higher correct classification from 
9–12 dpi, but without symptoms visible after 21 dpi, 
as presented by the susceptible variety. Linear discri-
minant models on spectral reflectance data were able 
to classify plants infected with F. oxysporum from 
healthy ones with high precision (85–93%), due to mi-
nor changes in the reflectance of diseased leaves at this 
stage. This study showed that the discrimination of 
systemic diseases in early infection stages is possible, 
but remains a challenge. Therefore, future research is 
required to provide additional information about fac-
tors that affect the spectral response in plants, such 
as differences between plant varieties, responses to 
various environmental conditions and nutritional 
considerations. 
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