
ARCHIVES OF ELECTRICAL ENGINEERING VOL. 68(3), pp. 595–609 (2019)

DOI 10.24425/aee.2019.129344

Spinal code based on lightweight hash function

LINA WANG, XINRAN LI

School of Computer and Communication Engineering
University of Science and Technology Beijing (USTB)

100083, Beijing, P.R. China
e-mail: wln_ustb@126.com

(Received: 15.12.2018, revised: 09.04.2019)

Abstract: A spinal code is the type of rateless code, which has been proved to be capacity-
achieving over both a binary symmetric channel (BSC) and an additive white Gaussian
noise (AWGN) channel. Rateless spinal codes employ a hash function as a coding kernel
to generate infinite pseudo-random symbols. A good hash function can improve the perfor-
mance of spinal codes. In this paper, a lightweight hash function based on sponge structure
is designed. A permutation function of registers is a nonlinear function. Feedback shift
registers are used to improve randomness and reduce bit error rate (BER). At the same time,
a pseudo-random number generator adopts a layered and piecewise combination mode,
which further encrypts signals via the layered structure, reduces the correlation between
input and output values, and generates the piecewise random numbers to compensate the
shortcoming of the mixed linear congruence output with fixed length. Simulation results
show that the designed spinal code with the lightweight hash function outperforms the
original spinal code in aspects of the BER, encoding time and randomness.
Key words: spinal codes, lightweight hash function, variable length output, layered pseudo-
random number

1. Introduction

A spinal code is a rateless encoding scheme proposed in 2012 that can achieve near-capacity
limited transmission over both binary symmetric channel (BSC) and additive Gaussian white
noise (AWGN) channel [1]. The spinal code introduces a hash function into the coding structure.
Compared with the convolutional encoders, the hash function has a nonlinear pseudo-random
structure, and the probability of a hash collision is extremely small. At the same time, using the
hash function and the random symbol generator can generate different coding symbols, achieving
rateless transmission. In contrast to the traditional graphs or algebraic coding methods, spinal

0

© 2019. The Author(s). This is an open-access article distributed under the terms of the Creative Commons Attribution-
NonCommercial-NoDerivatives License (CC BY-NC-ND 4.0, https://creativecommons.org/licenses/by-nc-nd/4.0/), which per-
mits use, distribution, and reproduction in any medium, provided that the Article is properly cited, the use is non-commercial,
and no modifications or adaptations are made.

596 L. Wang, X. Li Arch. Elect. Eng.

codes can adapt to time-varying dynamic channels without feedback, automatically adjust the
encoding rate [2, 3].

Lots of works related to the applications of the spinal codes have been conducted in different
communication environments such as a rapidly time-varying channel, underwater environments
and so on [4, 5]. On this basis, some scholars have studied the factors affecting coding performance.
Balakrishnan studied the influence of coded symbol sequences on coding performance. It was
proved that a non-sequential coded symbol sequence can improve the performance of the spinal
codes [6]. Shun studied the spinal code in a diversity receiving system, and proposed a two-way
code stream coding method based on a double hash function [7]. In addition, some other scholars
have studied the decoding algorithms of the spinal code. Qu Xiaoxu considered the bundle
search and cyclic redundancy check decoding as the whole joint decoding, and proposed the
CRC-assisted multivariate backtracking decoding algorithm [8]. Ying Li improved the symbolic
performance of the decoding structure using a sliding window [9].

Although the spinal code can provide an excellent rate, there are still some problems with spinal
code applications. First, as the number of coding blocks increases, using maximum likelihood
(ML) decoding leads to an exponential increase in decoding cost calculations [10]. Secondly, it
is difficult to achieve error-free transmission because most of the blocks appearing in the last part
of the spinal code have a high bit error rate (BER) [11]. Third, the hash function always achieves
a low collision rate at the expense of the encoded information length [12].

In this paper, a lightweight hash function is designed and used to construct the spinal code.
Compared with the existing hash functions, the designed lightweight hash function uses a variable
output information length to accommodate different channels. In the first pass, the output length of
the hash function is the shortest during all transmissions. If the received codes cannot be correctly
decoded, the output value of the hash function is increased until it can be correctly decoded.
Furthermore, a layered pseudo-random number algorithm is proposed to solve the security of the
generated random number in encryption and decryption. The pseudo-random number generator
is based on the mixed linear congruence. It is easily implemented by combining a layered
encryption principle with the piecewise generation of random numbers. Therefore, the reliability
can be improved and the shortcoming of mixed linear congruence output with fixed length can
be compensated.

The remainder of this paper is organized as follows: Section 2 presents the encoding structure
and decoding algorithm of the rateless spinal code. The designed lightweight hash function and the
layered pseudo-random number algorithm are described in Section 3 and Section 4, respectively.
The encoding parameters are discussed in Section 5. Section 6 presents the experimental results
and analyses. Finally, the conclusions and the future work are drawn in Section 7.

2. Rateless spinal codes

2.1. Encoding structure
The encoding mechanism of spinal codes uses a hash function to achieve random encoding

of information. The encoding process of the spinal code is depicted in Fig. 1.
In the first step, an n-bit coded block information sequence M is equally divided into n/k

information blocks, each of which consists of k bits length, that is M = m1 m2 . . . mnk .

Vol. 68 (2019) Spinal code based on lightweight hash function 597

Fig. 1. The encoder of spinal codes

In the second step, the hash function has two input values, each information block mi and ν-bit
state information generated by the hash function. They are commonly referred to as spinal values,
denoted as si . si and the i-th input information block mi (k-bit information) are put into the hash
function to generate the next spinal value si+1, and si+1 as well as the i+1-th input information
block mi+1, are put into the hash function to generate the next si+2. Then, a string of si can be
obtained via the hash function. The mathematical formula for si is given in (1) [13].

Si = H (mi, Si−1), S0 = 0v . (1)

In the third step, n/k state values can be obtained after encoding. Using si as the seed of
a random number generator (RNG), a bit operation is performed by using a pseudo random
number generator (PRNG), as shown in (2). In the formula, the two inputs of the RNG are the
state value of the node and the parameter N . Here N is used to distinguish the pass of the encoding
symbol of the RNG [14].

RNG : {0, 1}v × N → {0, 1}c . (2)

The RNG can generate multiple batches of pseudo random sequences, each batch length is
c-bits [15]. The same batch of encoded symbols generated by all status values can make up
a transmission channel.

598 L. Wang, X. Li Arch. Elect. Eng.

2.2. Decoding algorithm
Maximum likelihood (ML) decoding of the spinal codes is equivalent to searching all paths

in the code tree. The path closest to the received information is selected to transmit symbols [16].
The number of all possible decoding paths can be represented by the number of nodes in the last
layer of the decoding tree, and the number of nodes in the last layer can be expressed as 2n (n is
encoded information length).

Near-ML spinal decoding starts at a certain level of the decoding tree (set to level d) [17],
retaining only B nodes of the lowest cost path in that level node. The algorithm is extended at
each subsequent level, and only the decoding paths of B∗2k (k is information block length) child
nodes are calculated during the expansion process. In this way, the overhead of the node B is
maintained. In the last level, only one path with the lowest cost can be used as the decoding
result [18]. As shown in Fig. 2, starting from the depth 1 (d is set to 2), only B nodes are saved per
layer. Shadow-filled nodes have the lowest path, so they are saved and other nodes are discarded.
In the depth n/k (n/k is the number of an information block), the lowest cost path can be used as
the decoding result. Therefore, the near-ML decoding algorithm is used in this paper.

Fig. 2. The near-ML spinal decoding algorithm

3. Designed lightweight hash function

Since a hash function has high security, strong randomness and the highest symbol recovery,
it also has increased redundancy and coding complexity. To solve this problem, a lightweight
hash function based on a sponge construction is designed. The sponge structure consists of three
distinct phases as follows:

Initialization phase. Padding bits are added to the information so that the length of the entire
information is a multiple of the bitrate r (the rate or size of information block), this makes the
information bits suitable to be divided into r-bit blocks (here, the rate r is set to 4 bits).

Vol. 68 (2019) Spinal code based on lightweight hash function 599

Absorbing phase. From the r-bit information block and the first r bits or last r bits of initial
state XOR get the state bits, the state bits are calculated by the permutation function P and are
repeated until all the information blocks m1,m2, . . . ,mk are absorbed.

Squeezing phase. The b-bit sponge state is applied to the permutation function P, and each
state bit is input to obtain the r-bit output value. The calculation is repeated until the required
n-bit output lengths are squeezed out, so the output values h1, h2, . . . , hn can be obtained. The
hash function is the concatenation of h1, h2, . . . , hn, i.e. H = h1∥h2∥ . . . ∥hn [20]. The sponge
structure is shown in Fig. 3 [21].

Fig. 3. Sponge structure

The lightweight hash function updates the sponge state using shift registers and a displacement
function. The sponge state S can be expressed as S ← (S0, S1, . . . , S129), and the lightweight hash
function uses four registers (Pr,Qr, Mr, Nr) of size 32 or 33. The four register correspond to
different bits of the sponge state S. And then, P0, P1, . . . , P31 are the bits on the Pr register.
Q0,Q1, . . . ,Q3 are the bits on the Qr register. M0, M1, . . . , M31 are the bits on the Mr register.
N0, N1, . . . , N31 are the bits on the Nr register. They are given from (3) to (6).

Pr : (P0, P1, . . . , P31) ← (S0, S1, . . . , S31), (3)

Qr : (Q0,Q1, . . . ,Q32) ← (S32, S33, . . . , S64), (4)

Mr : (M0, M1, . . . , M31) ← (S65, S66, . . . , S96), (5)

Nr : (N0, N1, . . . , N32) ← (S96, S97, . . . , S129). (6)

In each round of calculation, the displacement of the sponge state S update is as follows:
the process of using the permutation function for the sponge state is P(S) = P (P0, P1, . . . , P31,
Q0,Q1, . . . ,Q32, M0, M1, . . . , M31, N0, N1, . . . , N32). Pt , Qt , Mt , Nt are temporary storage spaces
that store the intermediate values of the corresponding registers. Lo is the intermediate output
value. The permutation function of the four registers is given as follows:

Pt = P0P5 ⊕ P0N23 ⊕ P5Q10 ⊕ Q10N23 ⊕ Q10P23 ⊕ 1, (7)

600 L. Wang, X. Li Arch. Elect. Eng.

Qt = Q12P21 ⊕ Q12Q17 ⊕ Q0P21 ⊕ Q0Q17 ⊕ Q12Q32 , (8)

Mt = M0N6 ⊕ M0M26 ⊕ N6Q12 ⊕ Q12M26 ⊕ 1, (9)

Nt = N23M21 ⊕ N23Q17 ⊕ N0M21 ⊕ N0Q17 ⊕ N23N32 , (10)

Lo = P0Q10 ⊕ M17N25 , (11)

P31 = Pt ⊕ Lo , (12)

Q32 = Qt ⊕ Lo , (13)

M31 = Mt ⊕ Lo , (14)

N32 = Nt ⊕ Lo . (15)

The permutation function is shown in Fig. 4.

Fig. 4. The permutation function P

In the expression, ⊕ represents the XOR operator, and all above is a round of arithmetic
operations. In the absorbing phase, the last bit of each register (P31,Q32, M31, N32) is XORed
with each 4 bits of the incoming information. If it is the first or last bit of the information,

Vol. 68 (2019) Spinal code based on lightweight hash function 601

the information uses the permutation function for 61 rounds of status updates. Otherwise, the
information uses the permutation function for 32 rounds of status updates. The operation is
repeated until all information is absorbed. In the squeezing phase, the permutation function is
used to update the registers. The last bit of four registers is output as the bit of the hash function
and the operation is repeated until the required hash function length is squeezed, get the output
value H = h1∥h2∥ . . . ∥hn.

4. Designed layered pseudo-random number algorithm

Generally, spinal codes use the mixed linear congruence to generate random numbers. This
method is simple to operate, but easy to crack and the output length is fixed. On this basis,
a layered structure is adopted to improve the security of encryption and decryption, and reduce
the correlation between input and output. In other words, the output length of a hash function is
different, and the corresponding output length of a random number is different.

The designed algorithm is divided into three layers, namely a shift layer, coding layer and
conversion layer. The first layer converts the input symbols into ciphertext. The second layer
involves embedding the key into the ciphertext obtained in the first layer, thus enhancing the
security. Therefore, the message can only be recovered with the correct key and symbol. The last
layer sends the generated pseudo-random number to the user with the key. The advantage of this
designed algorithm is that the symbol length varies with the output length of the pass. It can
match the lightweight hash function perfectly. Multilayer encryption and decryption can provide
security, prevent ciphertext attacks and known pure text attacks. Moreover, it is easy to calculate
and efficient. The specific encryption steps are as follows:

Shift Layer. The number of the moving bits of each input symbol is determined by each pass.
Pass 1 shifts 6 bytes, and pass 2 shifts 12 bytes, and so on. The generated code m1 is 6n (n is an
integer) bits from the original code m0, thus completing the first level of encryption. This method
is simple in calculation and does not need to use a mapping method to remember the new symbols
corresponding to each segment of symbols.

Encoding Layer. First the layer differentiates the encrypted m1 obtained by the shift layer
from each bit corresponding to the original symbol m0 to m2, and then divides each segment into
8-bit groups. If the length of each group of codes is exactly an integer multiple of 8 bits, the set of
8 bits will be converted into a group of 10 bits. Then, according to the mixed linear congruence
formula, each segment is divided by M . If the last set is 4-bit length, it is divided by 4. The
number of encryption depends on the message length.

Conversion Layer. This layer is responsible for converting decimal to its binary equivalent
and sending the result.

The time complexity analysis is as follows: Unit Time 1 for each shift of symbol m0 multiplies
by N locations to be shifted, that is 1 (Unit Time 1)*N = O(N). For take-back operation, the
unit time for each take-back operation multiplies by the length of symbol m0. That is 1 (Unit
Time 2)*L = O(L), where L represents the length of symbol m0. For XOR operation, the
unit time for each XOR operation multiplies by L, that is 1 (Unit Time 3)*L = O(L). For all
binary-to-decimal and decimal-to-binary conversions, the unit time for each conversion (Unit
Time 4) multiplies by L. There are two conversions, that is 1 (Unit Time 4)*2*L = O(L). Since

602 L. Wang, X. Li Arch. Elect. Eng.

L is larger than N , the overall complexity of the algorithm is O(L). Consequently, the runtime
complexity is O(L) for encryption and decryption algorithms. It is proved the algorithm has low
complexity.

5. Design of encoding parameters

In this section, a series of simulations are conducted and results are discussed. Here, the
feedback delay from the decoder to the sender over the AWGN channel is neglected. A random
number generator uses layered pseudo-random number algorithms to generate random numbers.
The decoder uses the near-ML spinal decoding algorithm. The hash function and random number
generator used by the decoder are the same as those of the encoder.

5.1. Information bit block

According to the spinal encoding principle, each information block (k) and the intermediate
symbol generated by the previous stage are the input of a hash function, so the value of k has an
influence on the code output. According to (2), k affects the ratio of the information length to the
code length. This ratio increases as the value of k increases. On the one hand, the value of k is
expectedto be large enough in order to maximize the channel utilization as much as possible. On
the other hand, the decoding complexity is exponentially related to k. So the value of k should
not be too large.

Assume that 1000-bit information is transmitted at the source. The block length and frame
length are set to 8 bits and 36 bits respectively. The length of the cyclic check code is 4 bits. Fig. 5
shows that the number of channel symbols for different SNR (signal-to-noise ratio) and k.

Fig. 5. The number of channel symbols for different SNR and k

Vol. 68 (2019) Spinal code based on lightweight hash function 603

The simulation results show that the different k has different effects on the spinal codes. The
number of channel symbols is the sum of the transmission channel symbols required for correctly
decoding all frames. For the same SNR, the larger k is, the fewer number of channel symbols
is. The number of channel symbols required is very close when k = 8 and k = 12. Therefore, k
is set to 8 in order to maximize channel utilization and reduce decoding complexity as much as
possible.

5.2. Output length of the hash function

In this paper, the maximum value of the pass is set to 5. If it exceeds 5 times, the receiver
can not be correctly decoded. This information is discarded in order to minimize the influence
of error decoding information. The lightweight hash function uses a variable length output. In
the squeezing phase, 4 bits are squeezed out every time. The output length L of the hash func-
tion is adjusted by controlling the length of the squeezed data. To select the shortest decoding
length, L is set to 16 bits, 20 bits, . . . , 64 bits, respectively. Assume that 1 000 000-bit infor-
mation are transmitted at the source. And the simulation parameters are consistent with those of
Section 5.1.

Fig. 6 shows the relationship between the output length and collision probability. When
L is between 16 bits and 36 bits, the collision probability produced by the hash function de-
creases exponentially. When L is greater than 36 bits, the hash function also does not implement
a collision-free state due to the channel noise. To ensure correct output, L is set to 36 bits over
pass 1, and then L is set to 40 bits over pass 2. L is set in this way until the pass 5. The information
will be discarded if the spinal code is still not correctly decoded when L is 52 bits. Then the next
set of information starts to be transmitted.

Fig. 6. Collision probability

604 L. Wang, X. Li Arch. Elect. Eng.

5.3. Output length of RNG

The RNG can map arbitrary length input information to the fixed-length outputs. The spinal
codes require the random number generator output to have independence and uniform distribution
characteristics. To ensure independence and uniqueness, the output length of RNG is large enough.
However, the output length of RNG should be as small as possible to maximize channel utilization.
Assume that the spinal code could be correctly decoded under extremely bad conditions. The
SNR is set to –5 dB and the 1 000 000-bit information is transmitted at the source. And the
simulation parameters are consistent with those of Section 5.1.

Considering the effects on throughput and BER, the output length of RNG is set to 20
bits (Fig. 7).

Fig. 7. The BER for different output lengths of RNG

6. Performance evaluation of spinal codes

In this section, the performance of spinal codes over the AGWN channel is evaluated through
a serial of simulations.

6.1. Bit error rate performance

The encoder of spinal codes use different hash functions, namely a lightweight hash function,
hash one function, one at a time function and MD5 function. The block length and frame length
are set to 8 bits and 36 bits respectively. The lightweight hash function has a variable output length,
and the output length of the number generator is 20 bits. Assume that 1 000 000-bit information
is transmitted at the source.

Vol. 68 (2019) Spinal code based on lightweight hash function 605

Fig. 8 shows the BER performance of four different hash functions (namely lightweight hash,
hash one, one at a time and MD5). The simulation result shows that the BER of one at a time
function is significantly higher than other hash functions. In the case of a low SNR, the error rate
of the lightweight hash function is significantly lower than other functions. When the SNR is set
to 0, the BER of the lightweight hash function can reach 10−5.

Fig. 8. The BER of different hash functions

6.2. Average encoding time
MD5 needs to go through 4 round operations. There are 16 steps in each round of loop

operation. Each step is a nonlinear function operation.Totally about 64 steps are required. In
the software implementation of MD5, multiple rounds of loop nesting are used. For computer
systems, the nesting of large and multi-level loops is inefficient for the MD5 algorithm. The one
at a time function can only get one output value in one operation, which needs six XORs, ten
additions and five shift operations [17]. The one at a time function step is simple, requiring a total
of three shift operations, four additions, and two XORs. Its disadvantages: a high bit error rate
and low overall performance [14].

In the absorbing phase of the lightweight hash function, the sponge status is updated 32
times, and the intermediate information bit sponge status is updated 61 times during the absorb-
ing process. In this process, the permutation function P ensures thorough mixing of the entire
information bits. P is a nonlinear function operation and requires 9 steps in total. 4 32-bit shifts
and 22 XORs are included. Each update process outputs four hash values. This saves a signifi-
cant amount of time. Fig. 9 shows the average encoding time using four different hash functions
(namely lightweight hash, hash one, one at a time and MD5).

From Fig. 9, it can be seen that the operation time of MD5 is the longest, the lightweight hash
and one at a time are most efficient during the encoding process.

606 L. Wang, X. Li Arch. Elect. Eng.

Fig. 9. Average encoding time of different hash functions

6.3. Random test
In this paper, the sequence randomness is tested using the statistical method, to judge whether it

is a sequence of uniform pseudorandom numbers, which could satisfy the statistical characteristics
of spinal codes. The mean, variance, uniformity distribution and correlation coefficient of the
sequence are calculated as the judgment criteria.

For sequence S, the average value is given in (15), and the variance is given in (17) [22].

E(S) =
1
n

n∑
i=1

si =
M
2
, (16)

E(S2) =
1
n

n∑
i=1

s2
i =

M2

2
, (17)

Var(S) = E(S2) − |E(S) |2 = M2

12
. (18)

For the uniformity test, divide 0 ~ M into m intervals. The propability of every interval is
equal and should be M/n. Pearson’s chi-squared test is used. When H0 is true, the frequency of
sample values in the i-th interval using n tests is close to the probability. The test formula can
be expressed as (18) [23], where ni represents the actual frequency value in the interval and ui
represents the theoretical value.

V =
m∑
i=1

(ni − ui)2

ni
. (19)

Vol. 68 (2019) Spinal code based on lightweight hash function 607

The independence test is the test of data correlation. If the correlation between the two random
variables is smaller, the correlation coefficient ρ is closer to zero. On the contrary, the greater the
correlation between the two random variables, the more their correlation coefficient ρ is close to
one. The j order correlation coefficient is given in (19) [22].

ρ(j) =

1
n − j

n∑
i=1

(xi − xi)

1
n

n∑
i=1

(xi − xi)

. (20)

The length of the random sequence is 1 600 bits, and the value is normalized to the interval
0 ~ 1. The simulation results are shown in Fig. 10.

Fig. 10. Pseudo random number distribution

According to the generated random sequence, the values of each performance parameter can
be obtained. The mean value is 0.5011 and the variance is 0.073. When the degree of freedom
is 200, the significant level is 0.05. If Pearson’s chi-squared test value is greater than 233.994,
the sequence is non-uniform. However, the actual calculated value is 218.6. This means that
the sequence is uniform. The first-order correlation coefficient and the second-order correlation
coefficient are 0.0043 and 0.0102, respectively. The correlation is not large. Consequently, the
sequence satisfies the randomness distribution.

Through analyses, we can see that the lightweight hash function has good performance in
aspects of the BER, average encoding time and randomness.

608 L. Wang, X. Li Arch. Elect. Eng.

7. Conclusions

In this paper, a lightweight hash function based spinal code is designed. The lightweight
hash function uses a sponge construct with a permutation function. The sponge construction
takes a finite state to receive input and output bits of arbitrary length information. Furthermore,
a layered and piecewise pseudo-random number generator is designed. The piecewise structure
of the pseudo-random number generator can compensate the disadvantage that the length of the
output symbol of the mixed linear congruence method is fixed. The layered encryption algorithm is
used to improve the security of a spinal code. The performance of the designed spinal code based
on the lightweight hash function and layered pseudo-random number generator are evaluated
through a series of simulations. The simulation results verify the effectiveness of the designed
spinal code.

In this paper, the spinal coding algorithm is improved, which improves the performance of
the spinal code to a certain extent. However, there is still a problem that the decoding complexity
increases exponentially with the block length when using the truncated tree decoding algorithm.
Therefore, in the future work, we need to study and improve its decoding algorithm, which can
greatly reduce the complexity while guaranteeing certain performance, which may promote the
development of spinal codes.

Acknowledgements

We gratefully acknowledge the anonymous reviewers who read drafts and made many helpful suggestions.
This work is supported by the National Natural Science Foundation of China under Grant No. 61701020
and University of Science and Technology Beijing Project under Grant No. 04130017.

References

[1] Chen S., Zhang Z., Zhang L. et al., Belief propagation with gradual edge removal for Raptor codes
over AWGN channel, Proceeding of the 24th International Symposium on the Personal Indoor and
Mobile Radio Communications (PIMRC), London, UK, pp. 380–385 (2013).

[2] Erez U., Trott M., Wornell G., Rateless coding for Gaussian channels, IEEE Transactions on Informa-
tion Theory, vol. 58, no. 2, pp. 530–547 (2012).

[3] Yang W., Li Y., Yu X. Sun Y., Rateless Superposition Spinal coding scheme for half-duplex relay
channel, IEEE Transactions on Wireless Communications, vol. 15, no. 9, pp. 6259–6272 (2016).

[4] Chen P., Li Q., Li Q., Bai B., Design and performance of spinal codes over fading channels, High
Mobility Wireless Communications (HMWC), International Workshop on High Mobility Wireless
Communications, Beijing, China, pp. 140–145 (2014).

[5] Tai Y., Guilloud F., Laot C., Le Bidan R., Wang H., Joint equalization and decoding scheme using mod-
ified spinal codes for underwater communications, OCEANS 2016 MTS/IEEE Monterey, Monterey,
CA, USA, pp. 1–6 (2016).

[6] Balakrishnan H., Iannucci P., Perry J. et al., De-randomizing Shannon: the design and analysis of
a capacity-achieving rateless codes, eprint arXiv:1206.0418 (2012).

[7] Shun O., Koji I., On dynamic cooperative diversity based on dual-spinal codes, IEICE Technical
Report Wideband System, vol. 113, pp. 181–186 (2014).

[8] QU Xiaoxu, Yang Liming, Miao Quanqiang, CRC-assisted multivariate backtracking decoding algo-
rithm for Spinal codes, Computer Engineering, vol. 43, no. 12, pp. 120–123–129 (2017).

Vol. 68 (2019) Spinal code based on lightweight hash function 609

[9] Yang W., Li Y., Yu X., Performance of spinal codes with sliding window decoding, 2017 IEEE
International Symposium on Information Theory (ISIT), Aachen, Germany, pp. 2203–2207 (2017).

[10] Yang W., Li Y., Yu X., Li J., A low complexity sequential decoding algorithm for rateless spinal codes,
IEEE Communications Letters, vol. 19, no. 7, pp. 1105–1108 (2015).

[11] Dong D., Wu S., Jiang X., Jiao J., Zhang Q., Towards high performance short polar codes: concatenated
with the spinal codes, 2017 IEEE 28th Annual International Symposium on Personal, Indoor, and
Mobile Radio Communications (PIMRC), Montreal, QC, Canada, pp. 1–5 (2017).

[12] Tashiro H., Morishima Y., Oka I., Ata S., PAPR control of OFDM signals using spinal codes, 2016
International Symposium on Information Theory and Its Applications (ISITA), Monterey, CA, USA,
pp. 753–756 (2016).

[13] Yu X., Li Y., Yang W., Superposition Spinal Codes With Unequal Error Protection Property, IEEE
Access, vol. 5, pp. 6589–6599 (2017).

[14] Allard J.L., Dobell A.R., Hull T.E., Mixed congruential random number generators for decimal
machines, Journal of the ACM, vol. 10, no. 2, pp. 131–141 (1963).

[15] Shuai C., Fast linear congruence generator, 2010 5th International Conference on Computer Science
and Education, Hefei, China, pp. 1906–1908 (2010).

[16] Yu X., Li Ying, Yang Weiqiang, Rateless spinal code for decode-and-forward relay channel, 2015 In-
ternational Workshop on High Mobility Wireless Communications (HMWC), Xi’an, China, pp. 71–75
(2015).

[17] Kunhu A., Al-Ahmad H., Taher F., Medical images protection and authentication using hybrid DWT-
DCT and SHA256-MD5 hash functions, 2017 24th IEEE International Conference on Electronics,
Circuits and Systems (ICECS), Batumi, Georgia, pp. 397–400 (2017).

[18] Saraiva J.P. et al., Calculation of sensitivity index using one-at-a-time measures based on graphical
analysis, 2017 18th International Scientific Conference on Electric Power Engineering (EPE), Kouty
and Desnou, Czech Republic, pp. 1–6 (2017).

[19] Sowndharya G., Vasuki A., Reducing bit error rate using CRC verification in turbo codes, 2017 Inter-
national Conference on Wireless Communications, Signal Processing and Networking (WiSPNET),
Chennai, India, pp. 627–631 (2017).

[20] Megha Mukundan P., Manayankath S., Srinivasan C., Sethumadhavan M., Hash-One: a lightweight
cryptographic hash function, in IET Information Security, vol. 10, no. 5, pp. 225−231 (2016).

[21] Li W., Liao G., Wen Y., Gong Z., SpongeMPH: A New Multivariate Polynomial Hash Function based on
the Sponge Construction, 2017 IEEE Second International Conference on Data Science in Cyberspace
(DSC), Shenzhen, China, pp. 516–520 (2017).

