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A separation principle for Takagi-Sugeno
control fuzzy systems

N. HADJ TAIEB, M.A. HAMMAMI and F. DELMOTTE

An important application of state estimation is feedback control: an estimate of the state
(typically the mean estimate) is used as input to a state-feedback controller. This scheme is known
as observer based control, and it is a common way of designing an output-feedback controller
(i.e. a controller that does not have access to perfect state measurements). In this paper, under
the fact that both the estimator dynamics and the state feedback dynamics are stable we propose
a separation principle for Takagi-Sugeno fuzzy control systems with Lipschitz nonlinearities.
The considered nonlinearities are Lipschitz or meets an integrability condition which have no
influence on the LMI to prove the stability of the associated closed-loop system. Furthermore,
we give an example to ullistrate the applicability of the main result.
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1. Introduction

Takagi-Sugeno fuzzy models [16] are nonlinear systems described by a set
of if-then rules which gives local linear approximations of an underlying system.
Such models can approximate or describe a wide class of nonlinear systems.
Hence, it is important to study their stability or the synthesis of stabilizing con-
trollers. For a few years, some systematic design algorithms have been developed
to guarantee the control performance and system stability for the T-S fuzzy-
model based controllers [2, 10, 14–16]. The authors in [12, 13, 24] studied fuzzy
observer designs for fuzzy control systems for designing stabilizing output fuzzy
controllers. In general, the T-S fuzzy systems based control technique is effective
in the control of complex systems with nonlinearities [17–20].

A natural approach to the design of stabilizing state feedback controllers is to
use the linear subsystems in the if-then rules considered by Tanaka-Sugeno [18].
Observers for fuzzy systems are also important when we wish to control systems
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using the output available. A certain form of observers is proposed and sufficient
conditions for the asymptotic convergence have been given by [1–6].

In all these methods, the fuzzy model is usually obtained by the sector non-
linearity approach. In this case, it is assumed that the state variables belong to a
compact set, and all nonlinearities are therefore bounded (see [8]). Moreover, it
is assumed that the nonlinearities depend only on measurable variables in order
to take benefit from a separation principle [3, 7, 21–24].

In this paper, we prove that the stability of the closed-loop can be simplified in
two particular cases. In the first case, the non linearities may depend on the time
and may be unbounded and they can depend on unmeasurable variables. Provided
an integrability condition, some new results are obtained in particular a separation
principle is verified. The new nonlinearities do not have any impact on the classical
LMIs condition associated to the rest of the T-S fuzzy model, and if they are added
to the structure of the observer, then they can be completely ignored. We show
that, these results are true even if the variables of the nonlinearities depend
on unmeasured variables. The second case concerns Lipschitz nonlinearities.
It appears that all the previous results are valid at the cost of two small LMI
conditions added to the classical LMI conditions.

These three results may enable to simplify the design of a T-S fuzzy model, by
reducing the number of rules to describe the original system. It is also expected
that the LMI conditions associated to the rest of the fuzzy model are easier to
solve. The stability analysis in such schemes is performed by using the Lyapunov
synthesis approach. This paper is organized as follows: In section 2 we recal the
standard conditions of stability for the controller and the observer of a classical
fuzzy model. These conditions are written as LMIs. Section 3 deals with the
case of the integrability condition. First the new class of T-S fuzzy models is
investigated. Then it is shown successively that the classical LMI condition are
true for the controller and the observer, and then the separation principle is
studied. Section 4 studies the case of Lipschitz non linearities. Section 5 gives an
example to show the validity of the proposed approach.

2. A separation principle

We will use separation principle to denote the fact that the combination of
a stable state estimator with a stable state-feedback controller yields a stable
closed-loop fuzzy system. The observer-based controller design for a T-S fuzzy
system subject to Lypschitz perturbation is investigated. First, a stabilizing fuzzy
controller is constructed and an observer is designed to estimate the unknown
system states. Then, the separation principle for a T-S fuzzy system subject to
sufficient conditions on the Lipschitz constant is proposed. With the help of
the improved separation principle, the observer and controller can be combined
together to make the fuzzy system stable in closed-loop.
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2.1. Preliminaries

Consider the following T.S fuzzy dynamic model:

ẋ =
r∑

i=1
µi (z)

(
Ai x + Biu

)
, (1)

y =

r∑
i=1

µi (z)Ci x, (2)

where x ∈ Rn is the state, u ∈ Rm is the control input, and y ∈ Rq is the output.
The matrices Ai, Bi and Ci are of appropriate dimension, r ­ 2 is the number
of rules, z is the premise vector which may include unmeasurable variables. It is

assumed that µi (z) ­ 0, for all i = 1, . . . , r and
r∑

i=1
µi (z) = 1, for all t ­ 0.

Many published results, concerning the control of the fuzzy system, are based
on the parallel distributed compensation (PDC) principle [10,12,15]). The fuzzy
system is assumed to be locally controllable and for most papers the premise
vector z is assumed to depend only on measurable variables. Indeed, in this case
a separation principle is available. The controller is defined as:

u = −
r∑

i=1
µi (z)Ki x, (3)

where Ki ∈ Rn×m is the gain matrix.
The design work can be transformed into a convex problem which is efficiently

solved by linear matrix inequalities optimization. Of course there are many papers
that add performance criteria or use complex matrix properties to extend the
results.

In the rest of the paper the type of fuzzy models is as follows:

ẋ(t) =
r∑

i=1
µi (z)

(
Ai x + Biu + fi (t, x, u)

)
. (4)

With the output y defined as in (2).

2.2. The integrability condition

The functions fi are known. Provided some conditions detailed below, these
functions can be neglected in the LMIs associated to the stability of the closed-
loop, in contrast to a classical fuzzy modeling that would otherwise have to
include them.



230 N. HADJ TAIEB, M.A. HAMMAMI, F. DELMOTTE

In this section the assumptions are:
(A1)

∥ fi (t, x, u) − fi (t, y, u)∥ ¬ αi (t)∥x − y∥, i = 1, 2, . . . , r, (5)
for all t ­ 0, (x, y) ∈ Rn × Rn and u ∈ Rm, where αi are nonnegative continuous
functions, such that for all t ­ 0,

α(t) =
r∑

i=1
αi (t)

meets an integrability condition with a constant Mα > 0,
(A2)

+∞∫
0

α(s) ds < Mα . (6)

In this section 2, the functions fi may be unbounded in time. Section 3, deals
with the case where (A1) is true for constant αi (and so (A2) is false).
Example 1. As an example of such unbounded term, let consider

f (t, x, u) = α(t) cos(u)x,

with

α(t) =



0 if t ∈
[
0, 2 − 1

8

]
,

n4t + (n − n5) if t ∈
[
n − 1

n3 , n
]
, n ­ 2,

−n4t + (n + n5) if t ∈
[
n, n +

1
n3

]
, n ­ 2,

0 if t ∈
[
n +

1
n3 , (n + 1) − 1

(n + 1)3

]
, n ­ 2.

We deduce that
+∞∫
0

α(t) dt =
∑
n­2

1
n2 < ∞

and
∥ f (t, x, u) − f (t, y, u)∥ ¬ α(t)∥x − y∥.

Therefore, assumption (A2) is satisfied.
In the rest of the paper, we will study successively the design of the controller

and the observer. Then, a separation principle is proved.
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2.3. Construction of the controller

The closed-loop system with respect to the fuzzy control (3) is given by

ẋ(t) =
r∑

i=1
µ2

i Gii x + 2
∑
i< j

µiµ jGi j +

r∑
i=1

µi fi (t, x, u), (7)

where
Gii = Ai − BiKi

and
Gi j =

1
2

(Ai − BiK j + A j − B j Ki).

Now, is presented the condition to prove the stability of the closed-loop without
an observer.

Theorem 1 Suppose that (A1) hold and there exist symmetric and positive defi-
nite matrices P, and Q, and some matrices Ki, i = 1, . . . , r , such that the following
inequalities hold,

GT
ii P + PGii < −Q, i, j = 1, . . . , r, (8)

and
GT

i j P + PGi j < −Q, 1 ¬ i < j ¬ r, (9)

then the fuzzy closed-loop system (7) is guaranteed to be globally uniformly
exponentially stable.

For the next, we define λ0 = λmin(Q), λmin denoting the smallest eigenvalue
of the matrix.

Remark 1 (8) and (9) can be written as LMIs by a simple congruence as in [17],
with X = P−1, K j = Mj P and H = XQX .

Proof. Consider the Lyapunov function candidate V (x) = xT Px. It’s derivative
along the trajectories of system (7) is given by,

V̇ (x) =
r∑

i=1
µ2

i xT
(
GT

ii P + PGii
)

x + 2
r∑

i< j

µiµ j xT
(
GT

i j P + PGi j
)

x

+ 2xT P
r∑

i=1
µi fi (t, x(t), u(t)).
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The first two terms on the right-hand side constitute the derivative of the Lyapunov
function V (x) with respect to the nominal system, while the third term is the effect
of the unbounded time-varying term. On the one hand, we have

xT
(
GT

ii P + PGii
)

x ¬ −λ0∥x∥2, i = 1, 2, . . . , r,

and
xT

(
GT

i j P + PGi j
)

x ¬ −λ0∥x∥2, 1 ¬ i < j ¬ r .

It follows that,

V̇ (x) ¬ −λ0∥x∥2
r∑

i=1

r∑
i=1

µiµ j + 2xT P
r∑

i=1
µi fi (t, x, u).

Since,
r∑

i=1

r∑
j=1

µiµ j = 1,

then, we have

V̇ (x) ¬ −λ0∥x∥2 + 2xT P
r∑

i=1
µi fi (t, x, u).

On the other hand, by (A1) we have






r∑

i=1
µi fi (t, x, u)







 ¬
r∑

i=1
µiαi (t)∥x∥.

Taking into account the above expressions, it follows that

V̇ (x) ¬ −λ0∥x∥2 + 2∥x∥∥P∥
r∑

i=1
µiαi (t)∥x∥.

Thus,
V̇ (x) ¬ −λ0∥x∥2 + 2∥P∥α(t)∥x∥2.

Now, by taking ∥P∥ = λmax(P), yields

V̇ (x)
V (x)

¬ − λ0

λmax(P)
+ 2

λmax(P)
λmin(P)

α(t). (10)

Integrating between t0 and t, one obtains for all t ­ t0,
t∫

t0

dV (x(s))
V (x(s))

¬ − λ0
λmax(P)

(t − t0) + 2
λmax(P)
λmin(P)

t∫
t0

α(s) ds.
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By using simple computations, one gets the following estimation of ∥x(t)∥,

∥x(t)∥ ¬ λ1/2
max(P)

λ1/2
min(P)

∥x(t0)∥e
λmax (P)
λmin (P) Mαe−

λ0
2λmax (P) (t−t0), for all t ­ t0. (11)

Hence, the system (7) is globally uniformly exponentially stable. □

Remark 2 The inequality (6) in (A1) allows us to negotiate the case when the
time varying nonlinearity is not necessarily uniformly bounded in t. This is in
contrast with previous papers (see [11]), in which the terms fi must be vanishing
( fi (t, .) → 0 when t → ∞).

Now we investigate the observer part of the closed-loop, before providing a
separation principle.

2.4. Observer design

In many practical control problems, the physical state variables of systems are
partially or fully unavailable for measurement, since the state variables are not
accessible by sensing devices and transducers are not available or very expensive.
In such cases, observer based control schemes should be designed to estimate the
state.

Let consider for (4) an observer of the form:

˙̂x =
r∑

i=1
µi (z)

(
Ai x̂ + Biu + fi (t, x̂, u)

)− r∑
i=1

µi (z)Li ( ŷ − y). (12)

In this part u depends on x, the separation principle will directly prove the stability
of the closed-loop. We also have ŷ given by

ŷ =

r∑
i=1

µi (z)Ci x̂.

Subtracting (4) from (12), we have the system error

ė =
r∑

i=1

r∑
j=1

µi (z)µ j (z)(Ai − L jCi)e +
r∑

i=1
µi

(
fi (t, x̂, u) − fi (t, x̂ − e, u)

)
. (13)

Thus,

ė =
r∑

i=1
µ2

iΥi je + 2
∑
i< j

µiµ j (z)Υi j e +
r∑

i=1
µi (z)

(
fi (t, x̂, u) − fi (t, x̂ − e, u)

)
,
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where
Υii = Ai − LiCi,

and
Υi j =

1
2

(
Ai − L jCi + A j − L jCi

)
.

Then let consider the following theorem.

Theorem 2 Suppose that (A1) hold and there exist positive symmetric definite
matrices P̃, Q̃ and some matrices Li, i = 1, . . . , r , such that the following inequal-
ities hold,

Υ
T
ii P̃ + P̃Υii < −Q̃, i = 1, . . . , r, (14)

and
Υ

T
i j P̃ + P̃Υi j < −Q̃, 1 ¬ i < j ¬ r, (15)

then the system error (13) is guaranteed to be globally uniformly exponentially
stable.

We define also λ̃0 = λmin(Q̃), λmin denoting the smallest eigenvalue of the
matrix.

Remark 3 (14) and (15) can be written as LMIs by a simple congruence as in
[17], with the terms X̃ = P̃−1, L j = P̃N j and H̃ = X̃Q̃X̃ .

Proof. Consider the Lyapunov function candidate V (x) = eT P̃e. It’s derivative
with respect to time is given by,

V̇ (e) =
r∑

i=1
µ2

i eT
(
Υ

T
ii P̃ + P̃Υii

)
e + 2

∑
i< j

µiµ jeT
(
Υ

T
i j P̃ + P̃Υi j

)
e

+ 2eT P̃
r∑

i=1
µi

(
fi (t, x̂, u) − fi (t, x̂ − e, u)

)
.

On the one hand, we have

eT
(
Υ

T
ii P̃ + P̃Υii

)
e ¬ −λ̃0∥e∥2, i = 1, . . . , r,

and
eT

(
Υ

T
i j P̃ + P̃Υi j

)
e ¬ −λ̃0∥e∥2, 1 < i < j < r .

Then, one gets

V̇ (e) ¬ −λ̃0∥e∥2
r∑

i=1

r∑
i=1

µiµ j + 2eT P̃
r∑

i=1
µi

(
fi (t, x̂, u) − fi (t, x̂ − e, u)

)
.
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It follows that

V̇ (e) ¬ −λ̃0∥e∥2 + 2eT P̃
r∑

i=1
µi

(
fi (t, x̂, u) − fi (t, x̂ − e, u)

)
.

On the other hand, we have






r∑

i=1
µi

(
fi (t, x̂, u) − fi (t, x̂ − e, u)

)





 ¬
r∑

i=1
αi (t)∥e∥.

Taking into account the above expressions, it follows that

V̇ (e) ¬ −λ̃0∥e∥2 + 2∥P̃∥α(t)∥e∥2.
Then, similar to the controller case, we deduce that (12) is an observer for (4).□

2.5. Observer based controller

Now, to get a separation principle let consider the following theorem.
Theorem 3 Under assumptions (A1), (A2), and if conditions of theorems 1
and 2 hold, then the T.S fuzzy composite system

˙̂x =
r∑

i=1
µi

(
Ai x̂ + Biu( x̂) + fi (t, x̂, u( x̂))

)− r∑
i=1

r∑
j=1

µiµ j L jCie, (16)

ė =
r∑

i=1

r∑
j=1

µiµ j (Ai − L jCi)e +
r∑

i=1
µi

(
fi (t, x̂, u( x̂)) − fi (t, x̂ − e, u( x̂))

)
, (17)

where u( x̂) =
r∑

i=1
µiKi x̂, is globally uniformly exponentially stable.

Proof. Let consider the Lyapunov function candidate
V ( x̂, e) = V1( x̂) + νV2(e),

for the composite system (16) and (17) where V1( x̂) = x̂T Px̂ and V2(e) = eT P̃e,
and ν is a positive constant which will be chosen later.

On the one hand, the derivative of V along the trajectories of (16) and (17) is
given by,

V̇ ( x̂, e) = ∇V1( x̂) *,
r∑

i=1
µi

(
Ai x̂ + Biu( x̂) + fi (t, x̂, u( x̂))

)+-
− ∇V1( x̂) *.,

r∑
i=1

r∑
j=1

µiµ j L jCie
+/- + νV̇2(e).
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Since
∥∇V1( x̂)∥ ¬ 2λmax(P)∥ x̂∥,

thus, using the properties of V1 and V2 given in the above proofs, one gets

V̇ ( x̂, e) ¬ −λ0∥ x̂∥2 + 2λmax(P)α(t)∥ x̂∥2 + 2λmax(P)
r∑

i=1

r∑
j=1
∥L j ∥∥Ci∥∥e∥∥ x̂∥

− νλ̃0∥e∥2 + 2νλmax(P̃)α(t)∥e∥2.

Since for all ε > 0, we have

∥ x̂∥∥e∥ ¬ 1
2ε
∥ x̂∥2 + ε

2
∥e∥2.

Then one gets

V̇ ( x̂, e) ¬ − λ0
λmax(P)

V1( x̂) + 2
λmax(P)
λmin(P)

α(t)V1( x̂)

+
λmax(P)
ελmin(P)

r∑
i=1

r∑
j=1
∥L j ∥∥Ci∥V1( x̂)

+
ελmax(P)

λmin(P̃)

r∑
i=1

r∑
j=1
∥L j ∥∥Ci∥V2(e) − νλ̃0

λmax(P̃)
V2(e)

+ 2ν
λmax(P̃)

λmin(P̃)
α(t)V2(e).

It follows that

V̇ ( x̂, e) ¬ − *.,
λ0

λmax(P)
− λmax(P)
ελmin(P)

r∑
i=1

r∑
j=1
∥L j ∥∥Ci∥+/- V1( x̂)

− *.,
λ̃0

λmax(P̃)
− ελmax(P)

νλmin(P̃)

r∑
i=1

r∑
j=1
∥L j ∥∥Ci∥+/- νV2(e)

+ 2
λmax(P)
λmin(P)

α(t)V1( x̂) + 2ν
λmax(P̃)

λmin(P̃)
α(t)V2(e).

Let

ε = 2
λ2

max(P)
λ0λmin(P)

r∑
i=1

r∑
j=1
∥L j ∥∥Ci∥,
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then

V̇ ( x̂, e) ¬ − λ0
2λmax(P)

V1( x̂)

−
*..,

λ̃0

λmax(P̃)
− 2λ3

max(P)

νλ0λmin(P)λmin(P̃)


r∑

i=1

r∑
j=1
∥L j ∥∥Ci∥


2+//- νV2(e)

+ 2
λmax(P)
λmin(P)

α(t)V1( x̂) + 2ν
λmax(P̃)

λmin(P̃)
α(t)V2(e).

Let take

ν =

4λ3
max(P)λmax(P̃)


r∑

i=1

r∑
j=1
∥L j ∥∥Ci∥


2

λ0λ̃0λmin(P)λmin(P̃)
.

Therefore, one obtains

V̇ ( x̂, e) ¬ − λ0
2λmax(P)

V1( x̂) − λ̃0

2λmax(P̃)
νV2(e)

+ 2
λmax(P)
λmin(P)

α(t)V1( x̂) + 2ν
λmax(P̃)

λmin(P̃)
α(t)V2(e).

It follows that,

V̇ ( x̂, e) ¬ −min *, λ0
2λmax(P)

,
λ̃0

2λmax(P̃)
+- V ( x̂, e)

+ 2 max *,λmax(P)
λmin(P)

,
λmax(P̃)

λmin(P̃)
+- α(t)V ( x̂, e).

Let

a = min *, λ0
2λmax(P)

,
λ̃0

2λmax(P̃)
+- and b = max *,λmax(P)

λmin(P)
,
λmax(P̃)

λmin(P̃)
+- .

The above expression gives also the following estimate:

V̇ ( x̂, e) ¬ −aV ( x̂, e) + 2bα(t)V ( x̂, e).
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Integrating between t0 and t, one obtains for all t ­ t0,

t∫
t0

dV ( x̂, e)
V ( x̂, e)

¬ −a(t − t0) + 2b

t∫
t0

α(s) ds.

It follows that for all t ­ t0, we have

∥( x̂(t), e(t))∥ ¬ max1/2(λmax(P), νλmax(P̃))

min1/2(λmin(P), νλmin(P̃))
∥( x̂(t0), e(t0))∥ ebMαe−

1
2 a(t−t0) .

Hence, the composite system (16) and (17) is globally uniformly exponentially
stable. □

3. Case of Lipschitiz condition

In this section, as said previously, the function fi satisfies the following
assumption:
(A3) there exists a positive constant k > 0, such that

∥ fi (t, x, u) − fi (t, y, u)∥ ¬ k ∥x − y∥, i = 1, 2, . . . , r, (18)

for all t ­ 0, (x, y) ∈ Rn×Rn and u ∈ Rm. It means that the function fi is globally
Lipschitiz uniformly on t, and u with respect to x. For the stabilization of (7), we
have the following result.

Theorem 4 Suppose that (A3) hold and there exist symmetric and positive def-
inite matrices P, and Q, and some matrices Ki, i = 1, . . . , r , such that the
inequalities (8) and (9) hold with

P <
1
2k

Q,

then the fuzzy closed-loop system (7) is guaranteed to be globally uniformly
exponentially stable.

For the next, we define λ0 = λmin(Q), λmin denoting the smallest eigenvalue of
the matrix.

Remark 4 The matrices P, Q and Ki can be obtained using the same LMIs as in
remark 1 with

X <
1
2k

H . (19)
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See [9] for more details. Next, for the conception of the observer, we prove the
following result.

Theorem 5 Suppose that (A3) hold and there exist positive symmetric definite
matrices P̃, Q̃ and some matrices Li, i = 1, . . . , r , such that the inequalities (14)
and (15) hold with

P̃ <
1
2k

Q̃,

then the system error (13) is guaranteed to be globally uniformly exponentially
stable.

We define also λ̃0 = λmin(Q̃), λmin denoting the smallest eigenvalue of the
matrix.

Remark 5 The matrices P̃, Q̃ and Li can be obtained using the same LMIs as in
remark 3 with

X̃ <
1
2k

H̃ . (20)

Proof. This proof is similar to the controller case. □
Now, we can give a separation principle.
Now, to get a separation principle let consider the following theorem.

Theorem 6 Under assumption (A3), and if conditions of theorems 4 and 5 hold,
then the T-S fuzzy composite system

˙̂x =
r∑

i=1
µi

(
Ai x̂ + Biu( x̂) + fi (t, x̂, u( x̂))

)− r∑
i=1

r∑
j=1

µiµ j L jCie (21)

ė =
r∑

i=1

r∑
j=1

µiµ j (Ai − L jCi)e +
r∑

i=1
µi

(
fi (t, x̂, u( x̂)) − fi (t, x̂ − e, u( x̂))

)
, (22)

where u( x̂) =
r∑

i=1
µiKi x̂, is globally uniformly exponentially stable.

Proof. Let consider the Lyapunov function candidate

V ( x̂, e) = V1( x̂) + νV2(e),

for the composite system (21) and (22) where V1( x̂) = x̂T Px̂ and V2(e) = eT P̃e,
and ν is a positive constant which will be chosen later.
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On the one hand, the derivative of V along the trajectories of (21) and (22) is
given by,

V̇ ( x̂, e) = ∇V1( x̂) *,
r∑

i=1
µi

(
Ai x̂ + Biu( x̂) + fi (t, x̂, u( x̂))

)+-
− ∇V1( x̂) *.,

r∑
i=1

r∑
j=1

µiµ j L jCie
+/- + νV̇2(e).

Since
∥∇V1( x̂)∥ ¬ 2λmax(P)∥ x̂∥,

thus, using the properties of V1 and V2 given in the above proofs, one gets

V̇ ( x̂, e) ¬ −λ0∥ x̂∥2 + 2kλmax(P)∥ x̂∥2 + 2λmax(P)
r∑

i=1

r∑
j=1
∥L j ∥∥Ci∥∥e∥∥ x̂∥

− νλ̃0∥e∥2 + 2νkλmax(P̃)∥e∥2.

Since for all ε > 0, we have

∥ x̂∥∥e∥ ¬ 1
2ε
∥ x̂∥2 + ε

2
∥e∥2.

Then one gets

V̇ ( x̂, e) ¬ − *.,λ0 − 2kλmax(P) +
λmax(P)

ε

r∑
i=1

r∑
j=1
∥L j ∥∥Ci∥+/- ∥ x̂∥2

− *.,λ̃0 − 2kλmax(P̃) +
ελmax(P)

ν

r∑
i=1

r∑
j=1
∥L j ∥∥Ci∥+/- ν∥e∥2.

Let

ε =
2λmax(P)

λ0 − 2kλmax(P)

r∑
i=1

r∑
j=1
∥L j ∥∥Ci∥,

then

V̇ ( x̂, e) ¬ −1
2

(λ0 − 2kλmax(P))∥ x̂∥2

−
*..,λ̃0 − 2kλmax(P̃) − 2λ2

max(P)
ν(λ0 − 2kλmax(P))


r∑

i=1

r∑
j=1
∥L j ∥∥Ci∥


2+//- ν∥e∥

2.
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Let take

ν =

4
λmax(P)

r∑
i=1

r∑
j=1
∥L j ∥∥Ci∥


2

(λ0 − 2kλmax(P))(λ̃0 − 2kλmax(P̃))
.

Therefore, one obtains

V̇ ( x̂, e) ¬ −1
2

(λ0 − 2kλmax(P)) ∥ x̂∥2 − 1
2

(
λ̃0 − 2kλmax(P̃)

)
ν∥e∥2.

It follows that,

V̇ ( x̂, e) ¬ − 1
2λmax(P)

(λ0 − 2kλmax(P)) V1( x̂)

− 1
2λmax(P̃)

(
λ̃0 − 2kλmax(P̃)

)
νV2(e).

Let

a = min
(

1
2λmax(P)

(λ0 − 2kλmax(P)) ,
1

2λmax(P̃)

(
λ̃0 − 2kλmax(P̃)

))
.

The above expression gives the following estimate:

˙̇V ( x̂, e) ¬ −aV ( x̂, e).

Integrating between t0 and t, one obtains for all t ­ t0,

t∫
t0

dV ( x̂, e)
V ( x̂, e)

¬ −a(t − t0).

It follows that for all t ­ t0, we have

∥( x̂(t), e(t))∥ ¬
max1/2

(
λmax(P), νλmax(P̃)

)
min1/2

(
λmin(P), νλmin(P̃)

) ∥( x̂(t0), e(t0))∥ e−
1
2 a(t−t0) .

Hence, the composite system (21) and (22) is globally uniformly exponentially
stable. □
We give then an example to illustrate application of the above theorems.
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4. Example

Consider the following nonlinear fuzzy planar system,


ẋ =

2∑
i=1

µi (z)
(
Ai x + Biu + fi (t, x, u)

)
,

y =

2∑
i=1

µi (z)Ci x,

where x(t) =
[
x1(t) x2(t)

]T , is the state vector, u(t) is the input vector, y(t) is
the output vector.

z = sin(x1), A1 =

[
−1 0
1 1

]
, A2 =

[
−1 0
1 −1

]
,

B1 = B2 =

[
1
1

]
, C1 = C2 =

[
−1 1

]
,

f1(t, x, u) =

−α(t) cos(u)x2

−α(t)
(
x2

1 + x2
2

)1/2

 , f2(t, x, u) =

−α(t) cos(u)x2

α(t)
(
x2

1 + x2
2

)1/2

 .
We define the membership functions as:

µ1(t) =
1 − sin(x1(t))

2
and µ2(t) = 1 − µ1(t).

A classical T-S fuzzy model would require 8 rules for 3 nonlinearities, and it
would depend on unmeasured variables. Using an LMI optimization algorithm,
we obtain the following feedback gains:

K1 = [−2.9378 11.6734] and K2 = [−0.8202 5.6921].

Now concerning the observer, let suppose the following fuzzy observer:


˙̂x =

2∑
i=1

µi ( ẑ)
(
Ai x̂ + Biu + fi (t, x̂, u) − Li ( ŷ − y)

)
,

ŷ =

2∑
i=1

µi ( ẑ)Ci x̂.

Then, we obtain the following observer gain:

L1 = [422.7991 483.2676]T and L2 = [85.9898 101.2911]T .
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We take α(t) the same as in example 1. Therefore, conditions of theorems 3 and
6 are satisfied, then the T-S fuzzy cascaded system


˙̂x =

r∑
i=1

r∑
j=1

µiµ j
(
Ai x̂ + u( x̂) + fi (t, x̂, u( x̂))

) − r∑
i=1

r∑
j=1

µiµ j L jCie,

ė =
r∑

i=1

r∑
j=1

µiµ j (Ai − L jCi)e +
r∑

i=1
µi

(
fi (t, x̂, u( x̂)) − fi (t, x̂ − e, u( x̂))

)

with u( x̂) =
2∑

i=1
µiKi x̂ is globally uniformly exponentially stable.

5. Conclusion

In this paper a new way to simplify the design of controllers and observers
for T-S fuzzy models is presented. It concerns the cases of non linearity that
either meets an integrability condition or are simply Lipschitz. Some results are
obtained: classical LMI conditions can be used for both the observer design and
the controller. It is shown that, they can be designed separately and a separation
principle is given. The effectiveness of the proposed observer based controller is
illustrated by a theoretical example.
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