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Interval state estimation for linear time-varying (LTV)
discrete-time systems subject to component faults
and uncertainties

AWAIS KHAN, WEI XIE, LANGWEN ZHANG and IHSANULLAH

This paper deals with the design of an interval state estimator for linear time-varying
(LTV) discrete-time systems subject to component faults and uncertainties. These component
faults and uncertainties are assumed to be unknown but bounded without giving any other
information, whose effect can be approximated using these bounds. In the first part of this
work, an interval state estimator for such systems is designed to deal with these component
faults and uncertainties. The result is then extended to find an interval state estimator for a non-
cooperative LTV discrete-time system subject to component faults and uncertainties by similarity
transformation of coordinates. The proposed interval state estimator guaranteed bounds on the
observed states that are consistent with the system states. The observer convergence is also
ensured. The designed method is simple and easy to be implemented. Two numerical examples
are given to show the effectiveness of the proposed method.

Key words: component faults, interval state estimator, linear time-varying systems, non-
cooperative systems

1. Introduction

State estimation of the unmeasurable systems is the fundamental problem in
many engineering applications specially for designing controllers and fault de-
tection [1-4]. The problem of state estimation for linear and nonlinear systems
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has been widely studied in the literature and numerous solutions already exist
for such systems. Since the practical systems are generally affected by the uncer-
tainties and disturbances, classical observers, for instance, Kalman/H,, filtering
or Luenberger [5-7] are usually used to estimate the state of the systems. These
observers are designed to guarantee asymptotic stability. However, in general,
only local convergence is expected, i.e. to find the residual error [6]. To solve
this problem, an alternative technique is recently developed to deal with these
uncertainties and disturbances by determining certain upper and lower estimates
of the systems at each time instant, which is known as set-membership or interval
state estimators. There are many important contributions available for design-
ing such estimators [8—15]. It is assumed that the disturbances and uncertainties
are unknown but bounded. This technique is quite different from the classical
observers which converges to the actual state of the system asymptotically. The
interval state estimators can achieve both asymptotic convergence property and
the state estimation of the system at each time instant by providing certain lower
and upper bounds. Thus, an error bound is provided at any time instant. Inter-
val observers are very popular these days because they make it possible to deal
with large uncertainties, which is very significant for example when we consider
large biological models. They are also successfully applied to many real time life
problems [16, 17].

During the past few years, different kinds of interval observers have been pre-
sented for both continuous-time [16—18] and discrete-time [10, 19, 20] (linear and
nonlinear) systems based on monotone system theory. It is known that positivity
of the interval estimation error dynamics is one of the most restrictive assumption
for the observers design [21]. This assumption was relaxed in [22-25] for LTI
systems by using a time-varying change of coordinates. Moreover, to design a
closed-loop observer for LTI systems, a time-invariant transformation of coordi-
nates is proposed in [26] for a class of nonlinear system, where the observer gain
and the transition matrix meet the Sylvester equation. The result is then extended
to design a control strategy for nonlinear and LPV systems [27]. A particular
class of periodic time-varying discrete-time system was investigated by using a
time-varying transformation of coordinates in [28]. A static linear transformation
of coordinates was proposed to ensure the stability and positivity of the observa-
tion error in [29] for a class of nonlinear systems. The results obtained in [29]
were later used to design an interval observer for time-varying systems in [14].

Within this paper, an interval state estimator is proposed for linear time-
varying discrete-time systems subject to component faults and uncertainties. The
first contribution of this paper lies in how to design an interval state estimator for
such systems based on monotone system theory. The second contribution of this
work is related to the design of an interval state estimator for a non-cooperative
LTV discrete-time systems subject to component faults and uncertainties based
on similarity transformation of coordinates. It is shown that it is usually possible
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to design an interval state estimator for such type of systems by means of trans-
formation of coordinates even though the given system is not cooperative. The
uncertainties and component fault parameter vector are assumed to be unknown
but bounded. This kind of interval observer is very useful in handling the effects
of component faults in systems.

This paper is structured as follows. In Section 2, some preliminaries are given.
The problem statement is formulated in Section 3. Section 4 is devoted to the
design of the interval state estimator for LTV discrete-time systems subject to
component faults and uncertainties. Two detailed examples are given to show the
efficiency of the proposed design in Section 5. Finally, Section 6 concludes the

paper.

2. Preliminaries

The set of real numbers, integers, nonnegative real numbers and nonnegative
integers are denoted by R, Z, R, and Z, respectively where Ry = {r € R : 7 > 0}
and Z, = Z N R,. A matrix A(k) € R™" is called Metzler if and only if all the
elements except the main diagonal are nonnegative, if all its elements are positive
then it is a nonnegative matrix. It is Schur stable when the norm of all its
eigenvalues is less than one. If v Pv > 0 (v” Pv < 0) for all real vector v € R",
then P € R™" is said to be positive (negative) definite denoted by P > 0 (P < 0).
Similarly, P > 0 (P < 0) means semi-positive (semi-negative) definite matrix.

For a matrix A € R™" we have A* = max{A, 0}, A~ = max{-A, 0} and
A = A* — A™. The relationship x| < x; and A < A; is understood elementwise
for two vectors xj, x, € R" or matrices A, Ay € R™" respectively. I, and
E, represents an identity matrix of dimension n X n and a matrix having all
elements equal to 1 with dimension p X 1 respectively. For a vector x € R", the
Euclidean norm is denoted by |x| while ||u|[x,, ,; denotes the L. norm for a
locally essential bounded and measurable input ¥ : Z — R. The L, norm is
given by |[ullx,, ;1 = sup{lu(k)|, k € [ko, ki]} andif k; = +oo then the L, norm
is simply denoted by ||u]|.

The eigenvector for a matrix A € R™" is denoted by A(A), the elementwise
maximum norm is given by ||A|[max = max |Ai,j| fori, j = 1---n and the L,

induced norm is given by ||Al|, = \/maxl-zl...n/li(ATA). The following equation
shows the relationship between these norms [30]:

[|Allmax < l[All2 < 1]l Allmax-

Lemma 1 [21] Given a non-autonomous system described by x(t) = Ax(t) +
B(t), where A is a Metzler matrix and B(t) > 0, then, we have x(t) > 0, Yt > 0
provided that x(0) > 0.
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Such type of systems are known as a cooperative systems or monotone. This
lemma is also valid for time-varying discrete-time systems.

3. Problem statement

Consider the following discrete-time LTV system with component faults and
uncertainties

{x(k +1) = A(6, k)x(k) + b(k), N

y(k) = C(k)x(k) + v(k),

where x(k) € R", y(k) € R, b(k) : Z, — R" and v(k) : Z; — RP represent
the state vector, output signal, unknown but bounded input and the measurement
noise respectively. A : Z, — R™", C : Z, — RP*" are the matrix functions of
appropriate dimensions and § € R™" is the component fault parameter vector
which is unknown but bounded and is considered to be in the set of admissible
values I1. A(6, k) in the system equation is supposed to be dependent on k and
0 as:

A6, k) = A(k) + 01A1(k) + 02A2(k) + - - - + 0,A,(k), (2)

where A(k), A1 (k), Ax(k), ---, Ag(k) and 1, 2, O3, - - -, O, are affine matrices
and the elements of components faults parameter vector respectively. Then,

A(6, k) = A(k) + Z 0;Ai(k). (3)
i=1
Using (3), the system (1) can be written as:

x(k+1)=Ak)x(k) + > 06;A;(k)x(k) + b(k),

i=1 (4)
y(k) = C(k)x(k) + v(k).

N

The objective of this paper is to develop an interval state estimator for system
described by (4). In this work, the following assumptions will be used.

Assumption 1 Let x(k) € L, and v(k) € L, such that ||v(k)|| < V, where V
is a positive constant.

Assumption 2 For known 8, g, € R™" we have 9, < 0; < 6, V6 e IL.

Assumption 3 b(k) < b(k) < b(k) forall Z,, whereb, b: Z, — R", b, b € L".
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Assumption 4 There exists a bounded matrix function L,ps : R — R™P such
that the matrix D(k) = A(k) — LopsC (k) is Schur stable and nonnegative (coop-
erative).

Assumption 1 is common in the literature of estimation theory. Assumption 2
and Assumption 3 states that the magnitude of the component faults parameter
vector and the external input are unknown but bounded and belongs to an interval

[Q, 5] and [Q(k), Z(k)], respectively.
In the sequel derivation, we will need the following lemmas.

Lemma 2 [29] Let x € R" be a vector variable, x < x < X for some x,x € R",
and A € R™" be a constant matrix, then

A X—AT<Ax<A'T-Ax. (5)

Lemma 3 [29] Let A < A < A for some A, A, A € R™" and x < x < X for
some x, x, x € R", then

Axt Ay —A T +A T CAX<KAT AT -Ax"+Ax. (6)

4. Interval observer design

A Luenberger type observer design for the system (4) can be described as

x(k+1) = D(k)x(k) + ) Yi(x(k)) + b(k) + Lops(y(k) = v(k)),

k
=1

y(k) = C(k)x(k) + v(k),

where D(k) = A(k) — LopsC(k) and Y;(x(k)) = 0;A;(k)x(k).
From the Luenberger-based observer design described by (7), the upper and
lower bounds for the system (4) can be estimated as

k
X(k+1) = DUOX()+ ) (%K), (k) +b (k) +Lops Y (K)+ [Lops| VE,,
i=1

8)

k
x(k+1) = D(’C)&(’<)+Z X;(x(k), x(k))+b(k)+Lopsy (k)= |Lops| VEp,

i=1

where x(k), x(k) are the given lower and upper bounds of the state x(k) and
| Lobs| = Lobs+ + Lops~.
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By Lemma 3 and Assumption 2, we have

Ti(@(k), x(k)) = 8; AT (k) — 8, A ()T

—0; Ai(k)x* + 6,7 Ailk)x",
Y, (X (k), x(k) = 8,7 Ai(k)x* (k) = 8; Ai(k)x

-8, Ai(k)x" +6; Ai(k)x,

)

b(k) < b(k) < b(k).

Theorem 1 Let Assumptions 1-3 be satisfied and the matrix D(k) = A(k) —
LopsC (k) is Schur stable and Metzler for some L,p; € R™P, then the estimates
x(k), x(k) forall k € Z, are bounded and we obtained the following relationship
between the solution of (4) and (8)

x(k) < x(k) <x(k), VkeZ,
provided that initial condition x(0) < x(0) < x(0) is satisfied.
Proof. Consider the interval estimation error dynamics

e(k) = X(k) - x(k),
{ e(k) = x(k) - x(k)

e(k + 1) = D(k)e(k) + (k) + p(k),
e(k +1) = D(k)e(k) + @ (k) + p(k),

where

k k
D(k) = Y Ti(x(k), x(0) = D Li(x(K)),
i=1 i=1

(10)
k k
D(k) = D i) = > L (X (), x(K)),
i=1 i=1
P(k) = b(k) — b(k) + |Lops| VE, + Lopsv(k), an
K;)(k) = b(k) — b(k) + |Lops| VEp — Lopsv(k).

D (k) is Schur stable and Metzler according to Assumption 4, k), D(k) >0
for all k € Z, by (6) and Assumption 2, p(k), ¢(k) > O for all k € Z; by

Assumptions 1, 3 and L,ps < |Lops|- €(0) = E(_O) —x(0) > 0 and e(0) =
x(0) = x(0) > 0 by construction. Thus, according to monotone system theory
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[21], the variables e(k) > 0, e(k) > O for all k € Z,. Since all the inputs of
e(k) and e(k) are bounded, D(k) is Schur stable by Assumption 4, thus e(k),
e(k) € L and from boundedness of x(k), we get x(k), x(k) € L’ . That implies,

e(k) = x(k) = x(k) > 0,
e(k) = x(k) — x(k) > 0,

forall k € Z,.
Therefore, we can write that the bounds of state x(k) in (8) are bounded

x(k) < x(k) <x(k),

This completes the proof. O

Note that the matrix of interval estimation error dynamics must be posi-
tive in order to design interval observer. This means that the matrix D(k) =
A(k) — LypsC (k) must satisfy Assumption 4, which is not always possible. This
drawback can be overcome by means of similarity transformation of coordinates,
z(k) = Nx(k), where N is a non-singular transformation matrix. If there exists
a matrix L,,; € R™P? such that D(k) = A(k) — L,»sC (k) is Schur stable, then
it is usually possible to find a non-singular transformation matrix N, such that
the matrix N(A(k) — LopsC(k))N"! is Schur stable and Metzler (non-negative).
The transformation matrix & can be found using Procedure 1 of [31]. Then,
Assumption 4 can be relaxed as:

Assumption 5 There exists a matrix function Lyps : R — R™? such that the
matrix D(k) = A(k) — L,psC(k) is Schur stable.

Using similarity transformation of coordinates Assumption 5 relaxes As-
sumption 4, thus the only requirement for the matrix D(k) = A(k) — L,psC(k)
is to be Schur stable. So if D(k) = A(k) — L,ysC(k) is Schur stable then
N(A(k) — L,psC(k))N"! is Schur stable as well as Metzler.

After similarity transformation of coordinates, the system (4) takes the form

k
2k +1) = RAGON 7 (k) + Z N6 A; (N 2(k) + Nb(k), )
i=1

y(k) = C(k)N1z(k) + v(k)

k
which is a positive representation of (4) provided that Z NéiA,-(k)N_l > 0 and
i=1
Nb(k) > 0. The observer takes the form similar to (7) in the new coordinates as:
k
z(k+1) = M(k)z(k) + ) Ti(z(k)) + B(k) + G(k)(y(k) — v(k)),
i=1

y(k) = C(k)N"'z(k) + v(k),

(13)
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where

M (k) = RD(K)X7,

k k
D Tiz(0) = D R A (OR2(k),
i=1 i=0

ﬁ(k) = Nb(k)’ G(k) = NLobs-

The interval state estimator for the system (12) in new coordinates similar

to (8) is

k
Z(k+1) = MUOZ()+ Y Ti(E(k), 2(0)) + BK) + G(R)y(K) + G(K)Y,

i=1

k
z2(k+1) = M(k)g(k)+z X, Z(k), 2(k)) + B(k) + G(k)y(k) = G(k)V,

i=1

where

Blk) = 8*b(k) - N"b(k),
Blk) = 8*b(k) - N"b(k),
G(k) = (G (k) + G~ (k)) Epx1,

Ti@E(k), 2(k) = © {()Z* (k) = @, ()7 (k) - © (k)z" (k)
+07,(k)z (k),
T,(Z(k), (k) = O, (k)2 (k) = © ;i (k)z™ (k) - ®,(k)Z* (k)
+0 (k)Z (k).
0 = (N (G4 (k) = N75,Ai(k)) — (N™1) ("5, Ai(k)
—N75,A;(k)),
0, = (N1 (N*8,A; (k) — N76;4;(k)) — (N™1) (N6 4,(k)
-N78,A:(k)),

According to Lemmas 1 and 2,

N*b(k) = N"b(k) = B(k) < B(k) < B(k) = N*b(k) — N"b(k),

T;(z(k), z(k)) < Yi(z(k)) < T;(Z(k), z(k)).

(14)

(15)

(16)

(17)

(18)

(19)

(20)
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Theorem 2 Let Assumptions -3, 5 be satisfied and there exists an observer
gain Lyps and a non-singular transformation matrix N such that the matrix
M(k) = R(A(k) — LopsC (k)N is Schur stable and Metzler with the initial
condition satisfying

2(0) < 2(0) < Z(0),

and
z(0) = N"X(0) - N x(0),
2(0) = N*x(0) - N"%(0),

Then the relationships between solutions of the systems (12) and (14) are ob-
tained as

z(k) < z(k) < z(k),

for all k > 0 and (14) is an interval state estimator for the system (4) with new
variable z(k) = 8x(k) and

x(k) < x(k) < %(k).

Proof. Consider the upper bound of the estimation error dynamics

e(k+1)=z(k+1)—z(k+1),
{E(k +1) = M(k)e(k) + (k) + (k) .
where ) -
(k) = Z‘ (i (z(k), z(k)) = Ti(z(k))), 22)

#(k) = B(k) = B(k) + G(k)V + G(k)v(k),

M (k) is Metzler by construction, ¥ (k) > Oforall k € Z, using (20) and 9(k) > 0
forall k € Z; by (16), (19) and Assumption 1.
Then, according to monotone system theory [21], we obtained the following
results
e(k) =7z(k) —z(k) > 0. (23)

Since M (k) is Schur stable and Metzler by construction and all the inputs of e(k)
are bounded, so e(k) € L7, and then from x(k) € L, we have z(k) € L7, and
thus boundedness of z(k) is verified.
The lower bound of the estimation error dynamics can be proved by similar
arguments.
e(k) = z(k) — z(k) > 0. (24)
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Then from (23) and (24), we deduce that z(k) is bounded
z(k) < z(k) <7z(k), (25)

forall k € Z,.
If Assumption 5 is satisfied and M (k) is Metzler, then the system (14) is stable
and bounded interval state estimator for (4). Thus, by means of transformation of

coordinates
x(k) = N7z (k), (26)

using (5) and (25), we get
(N z(k) = (RTDH7Z(k) < X 7'z(k) < (N )2k — (N7 z(k),

which implies

x(k) = (N Z(k) - N7 z(k),
—1\+ -1\-= 27)
x(k) = (N")7z(k) = (N)7z(k).
From (26) and (27), we deduce that
x(k) < x(k) < T(k),
for all k£ > 0.
This completes the proof for Theorem 2. O

5. Numerical examples

To illustrate the proposed interval state estimator technique two examples are
given below.
5.1. Time-varying discrete-time system with components faults and uncertainties

Consider a second-order linear time-varying discrete-time system (4) with the
following system matrices

AG.K) = 0.4 —0.3sin(0.1k) + 0.5sin(0.6k) 0 0.6 + 0.3 cos(0.3k)d,
O 0.1 0.6 —0.2¢cos(0.1k) +0.16; |’
using (2),
Alk) = 0.4 — 0.3sin(0.1k) 0.6
(k) = 0.1 0.6 —0.2cos(0.1k) |’

A= 0.5sin(0.6k) O A = 0 0.3cos(0.3k)
b 0 0.1 *7]o 0 '
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C = [0 1] and the unknown but bounded external input b(k) = y(k) + A(k),
such that

0.9

0.5co0s(0.1k) .
0.6sin(0.1k)

y(k):[ 00 ] A(k) = d x ] d=03,

b(k) = b(k) +d, b(k) = b(k) — d and v(k) = V x cos(0.5k) where V = 0.05
represents the unknown but bounded input and noise respectively.
The unknown but bounded component fault parameter vector ¢; < ¢; < §; is

0 -0.2 B 0 0.2sin(0.5k) < 0 0.2
0.5 -0.1| ~[0.5 0.1cos(0.1k) | ~ 0.5 0.1 |

For L,ps = [0.5 0.3]T, the matrix D(k) = A(k) — L,,sC is Schur stable and
nonnegative and all the conditions of Theorem 1 are valid. The results for the
interval state estimator (8) are shown in Fig. 1 and Fig. 2, which indicate that the
states of the system are always between the lower and upper bound of the interval
estimator. Fig. 1 shows the interval state estimation for the given system without
the component faults while Fig. 2 shows the interval state estimation for the same
system with component faults and uncertainty, occurs at 100s.

State trajectory of x1 I I I I
20 [= = Upper bound T
= = Lower bound
o~ P, =
10 L e N 22 =N, 477 ~3s .
< 5 A N 2 Se e o4 M
Ped © v od S P ~
y===== N SSzzaz=® S
0r ]
10 I 1 I | | I I I I
0 20 40 60 80 100 120 140 160 180 200
Time (s)
15
State trajectory of x2 ' f T f T
= = Upper bound
10 [= = Lower bound n
P e P
Y =N P
< 5[ ‘,:l’ N\I\ ’I’II’ SN ’,:z’ N n
s==°" W S TRz s
0r i
5 1 | I | I 1 1 | I
0 20 40 60 80 100 120 140 160 180 200
Time (s)

Figure 1: Simulation results of the interval estimator for first example without
component faults
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o p— State trajectory of x1 f f T T T T :
20 |= = Upper bound |
= = Lower bound '\ .

State trajectory of x2
= = Upper bound R
= = |ower bound 1

0 20 40 60 80 100 120 140 160 180 200

Figure 2: Simulation results of the interval estimator for first example with
component faults

5.2. Transformation of coordinates

Consider an LTV discrete-time system:

0;Ai(k)x (k) + b(k),

2
x(k+1) = A(k)x(k) +

i=1

y(k) = C(k)x(k) + v (k).

For which we have,

A6 k)= —0.5+0.1sin(0.1k)+0.96, 0.76,
(6, k)= —0.1-0.18in(0.1k)—0.1 cos(0.1k)5; 0.2c0s(0.5k)+0.2sin(0.3k)5; |’

A — ~0.5 + 0.1 sin(0.1k) 0
(k) = —0.1 — 0.1sin(0.1k) 0.2cos(0.5k) |’
4 0.9 0 40 0.7 c=101]
P71 —0.1cos(0.1k) 0 | 2710 0.2sin(0.3%) |’ - '

It is clear that there is no L, such that the matrix D(k) = A(k) — L,»C
becomes Schur stable as well as nonnegative. For L,,s = [—0.50 O.35]T the
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matrix D(k) = A(k) — L,psC is Schur Stable, thus Assumption 5 is satisfied.
Using Procedure 1 of [31], the non-singular transformation matrix is obtained as

o[ 125 025
“[-025 08 |’

such that the matrix M (k) = XD (k)N~! becomes nonnegative.
The unknown input is

b(k) = y(k) + A(k),

0.9
0.6sin(0.1k)

k) = 0-5 Ak)=d d =0.05
7()—[0.9], (k) =dx ] = 0.05,

where E(k) = b(k)+d and b(k) = b(k) — d represents the bounds of the external
input, while the unknown and bounded noise is v(k) = V X sin(k), such that
V = 0.1, the bounded fault parameter vector is

0 -0.05 [ 0 0.05-0.1rand(1) _ 0 0.05
03 -0.1 | " 7103 01-02rand(1) | |03 0.1 |’

Thus all the conditions of the Theorem 2 are satisfied. The results of simula-
tions for the interval state estimator obtained (14) are given in Fig. 3 and Fig. 4.

1.5
State trajectory ‘ ' ! ! ! ' !

— Upper bound
Lower bound 7

q
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Time (s)

Figure 3: Simulation results of second example after similarity transformation
of coordinates
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The results show that it is usually possible to design an interval state estimator
for any system even though the matrix D(k) = A(k) — L,»sC(k) is not Metzler
using similarity transformation of coordinates. The only requirement for design-
ing interval observer is that the matrix D(k) = A(k) — L,»sC (k) must be Schur
stable. The states of the system are always within the estimated bounds. Fig. 3 and
Fig. 4 show the simulation results after transformation of coordinates for a system
without and with component faults and uncertainty respectively. The component
faults and uncertainty occurs in the system at 50s.

1.5
State trajectory T T T ! ! ! ' T
— Upper bound
1 Lower bound o
~N 05 i
0 i
05 1 | 1 | 1 1 1 1 1
10 20 30 40 50 60 70 80 90 100
Time (s)
1.5 T T T T T T T T T
1+
N 0.5 i
or i
0.5 1 1 1 1 | 1 | 1 |
10 20 30 40 50 60 70 80 90 100
Time (s)

Figure 4: Simulation results of second example after similarity transformation
of coordinates with component faults

6. Conclusion

In this paper, an interval state estimator has been developed for LTV discrete-
time systems subject to component faults and uncertainties. The aim is to find
out two bounds for the real value of the state vector at each time instant that are
consistent with the error bounds and also ensured the observer convergence. As
compared to the previous design techniques for the LTV discrete-time systems,
this paper proposes a simple and easy technique for such systems having com-
ponent faults and uncertainty. First, with a gain satisfying the positivity of the
observation error, an interval state estimator is proposed and then using similarity
transformation of coordinates a stable LTV discrete-time system is transformed



www.czasopisma.pan.pl P N www.journals.pan.pl
N
<

INTERVAL STATE ESTIMATION FOR LINEAR TIME-VARYING (LTV)
DISCRETE-TIME SYSTEMS SUBJECT TO COMPONENT FAULTS AND UNCERTAINTIES 303

to a stable and cooperative LTV discrete-time system to make this technique ap-
plicable to a large class of LTV systems, and can be used in handling the effects of
component faults in such systems. Two numerical examples show the efficiency
of the proposed technique.
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