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Abstract In the present discussion, the plane strain deformation due
to laser pulse heating in a thermoelastic microelongated solid has been dis-
cussed. The analytic expressions for displacement component, force stress,
temperature distribution and micro-elongation have been derived. The ef-
fect of pulse rise time and micro-elongation on the derived components have
been depicted graphically.
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1 Introduction

In modern engineering and science, laser heating has become a very promi-
nent aspect of surface modification. Laser finds a wide application in ma-
terial deformation and geological treatments of particles. Consequently,
the laser is an exceptionally flexible device for carrying out the change in
the surfaces of materials, with the depth of material which is affected may
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range from a few nanometers to several millimeters. When the intensity
is very high, laser interacts with the surface of solid and absorption takes
place at the surface of solid due to which internal energy increase in the
material and heat is released from the irradiated region. This process is
very fast, due to which temperature gradients increase in the region. To
modify the material as thin films, the microscopic two-step models, namely
parabolic and hyperbolic are very useful. When a laser pulse heats a metal
film, a thermoelastic wave is generated due to thermal expansion near the
surface. Sun et al. investigated laser-induced vibrations of microbeams
in which he showed that large thermal gradients exist at the boundaries
for ultra-short-pulsed laser heating [1]. Youssef and Al-Felali discussed the
effect of thermal loading due to laser pulse in generalized thermoelasticity
problem [2]. Youssef and El-Bary studied the response due to laser pulse
heating in the thermoelastic material [3]. Othman et al. discussed thermoe-
lasticity under thermal loading due to laser pulse [4]. Othman and Hilal
discussed the influence of temperature dependent properties and gravity on
porous thermoelastic solid due to laser pulse heating [5]. Othman and Abd-
Elaziz studied the effect of thermal loading due to laser pulse in generalized
thermoelastic medium with voids in dual phase lag model [6]. Kumar et
al. discussed the thermo-mechanical interactions due to laser pulse in the
microstretch thermoelastic medium [7]. Othman and Hilal studied the in-
fluence of gravity in a magneto-thermoelastic medium with voids under the
thermal effect of the laser pulse for Green-Naghdi (G-N) theory [8]. Abbas
and Marin investigated the influence of laser heating for a traction-free and
thermally insulated thermoelastic solid under Lord-Shulman (L-S) theory
[9]. Ailawalia et al. investigated laser pulse heating in thermo-microstretch
elastic layer overlying thermoelastic half-space [10].

To model the behavior of materials having internal structure, classical
theory is not sufficient. Eringen and Suhubi [11,12] developed a nonlin-
ear theory of microelastic solids. Later on, a theory was formulated in
which material particles in solids can undergo macro-deformations as well
as micro-rotations by Eringen [13–15] and named this theory as ‘linear the-
ory of micropolar elasticity’. Then a theory of micropolar elastic solid with
stretch was introduced by Eringen in which he included axial stretch [16].
Nowacki [17], Eringen [18], Tauchert et al. [19] and Nowacki and Olszak
[20] included thermal effects in the micropolar theory. Lord and Shulman is
one of two important generalized theories of thermoelasticity and the sec-
ond one is the theory of temperature-rate-dependent thermoelasticity [21].
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Muller in the review of thermodynamics of thermoelastic solids, proposed
an entropy production inequality, with the help of which he considered re-
strictions on a class of constitutive equations [22]. A generalization of this
inequality was proposed by Green and Laws [23]. Green and Lindsay ob-
tained another version of these constitutive equations [24]. Suhubi obtained
these equations independently and explicitly that contains two constants
which act as relaxation times and transform all the equations of coupled
theory [25].

Sherief obtained components of stress and temperature distributions in
a thermoelastic medium due to a continuous source [26]. Dhaliwal et al.
investigated thermoelastic interactions caused by a continuous line heat
source in a homogeneous isotropic unbounded solid [27]. Chandrasekhara-
iah and Srinath studied thermoelastic interactions due to a continuous point
heat source in a homogeneous and isotropic unbounded body [28]. Sharma
and Chauhan discussed mechanical and thermal sources in a generalized
thermoelastic half-space [29]. Sarbani and Amitava studied the transient
disturbance in half-space due to moving internal heat source under L-S
model and obtained the solution for displacements in the transformed do-
main [30]. Youssef solved the problem on a generalized thermoelastic infi-
nite medium with a spherical cavity subjected to a moving heat source [31].
A microelongated elastic solid possesses four degrees of freedom: three for
translation and one for microelongation. In microelongation theory, the
material particles can perform only volumetric micro elongation in addi-
tion to classical deformation of the medium. The material points of such
medium can stretch and contract independently of their translations. Solid-
liquid crystals, composite materials reinforced with chopped elastic fibers,
porous media with pores filled with non-viscous fluid or gas can be cate-
gorized as a microelongated medium. Shaw and Mukhopadhyay discussed
the variation of periodical heat source response in a functionally graded
microelongated medium [32]. Shaw and Mukhopadhyay studied the ther-
moelastic interactions in a microelongated, isotropic, homogeneous medium
in the presence of a moving heat source [33]. Ailawalia et al. investigated
internal heat source in thermoelastic microelongated solid at an interface
under G-L theory [34].

In the present work, taking into account the microelongation effect
and laser pulse heating, we established a model for a thermoelastic mi-
croelongated solid by using normal mode analysis technique. The normal
displacement, stress component, temperature distribution and microelon-
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gation were computed numerically. The resulting quantities are presented
graphically to show the effect of micro-elongation, pulse rise time and pulse
length.

2 Fundamental model

The constitutive equations for a homogeneous, isotropic, microelongated,
thermoelastic solid are [33]:

σkl = λδklur,r + µ(uk,l + ul,k) − β0

(

1 + t1δ2k
∂

∂t

)

T δkl + λ0δklϕ , (1)

mk = a0ϕ,k, (2)

s − σ = λ0uk,k − β1

(

1 + t1δ2k
∂

∂t

)

T + λ1ϕ , (3)

qk =
K∗

T0
T,k . (4)

The field equation of motion according to [35,36] and heat conduction equa-
tion according to [37] for the displacement, microelongation and tempera-
ture changes are

(λ + µ)uj,ij + µui,jj − β0

(

1 + t1δ2k
∂

∂t

)

T,i + λ0ϕ,i = ρüi , (5)

a0ϕ,ii + β1

(

1 + t1δ2k
∂

∂t

)

T + λ1ϕ − λ0uj,j =
1

2
ρj0ϕ̈ , (6)

K∗T,ii −ρC∗

(

1 + t0δ1k
∂

∂t

)

Ṫ −β0T0

(

1 + t0δ1k
∂

∂t

)

u̇k,k −β1T0ϕ̇+ρQ̇ = 0 .

(7)
Here Q is the heat input of the laser pulse that illuminates the plate surface,
and is given by

Q =
I0γt

2πr2t∗2 exp

(

−y2

r2
− t

t∗

)

exp (−γx) ,

where I0 is the energy absorbed per unit area, t∗ is the pulse rise time, r
is the beam radius, y is the pulse length, x is the heat deposition due to
the laser pulse and is assumed to decay exponentially within the solid and
β0 = (3λ + 2µ)αt1 , β1 = (3λ + 2µ)αt2 , σ = σkk microelongational stress
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tensor, s = skk component of stress tensor, δkl Kronecker delta, mk com-
ponent of microstretch vector, λ, µ are lame’s elastic constants, a0, λ0, λ1

microelongational constants, C∗ is the specific heat at constant strain, K∗

is the thermal conductivity, αt1 and αt2 are coefficent of linear thermal
expansion, ρ is the density of microelongated medium, j0 is microinertia,
t0, t1 are thermal relaxation times, T is the thermodynamic temperature
above reference temperature T0, ϕ is microelongational scalar, ~u = (ui) is
displacement vector and k = 2 for Green-Lindsay (G-L) theory.

We consider a rectangular Cartesian coordinate system Oxyz having
origin on x-axis with the x-axis pointing vertically downward in to the
medium. A homogeneous isotropic, microelongated thermoelastic solid half
space occupying the region 0 ≤ x < ∞ is considered. The laser pulse Q is
applied on the surface x = 0 as shown in Fig. 1.

Q (Heat input of laser pulse)

O
y

Thermoelastic microelongated medium

x

Figure 1: Geometry of the problem.

We have considered two dimensional disturbance of medium parallel to
xy-plane with all field quantities depending upon (x, y, t). For this we use
displacement vector ~ui = (u1, u2, 0). Hence, Eqs. (5)–(7) become:

(λ + 2µ)
∂2u1

∂x2
+ (λ + µ)

∂2u2

∂x∂y
+ µ

∂2u1

∂y2

−β0

(

1 + t1δ2k
∂

∂t

)

∂T

∂x
+ λ0

∂ϕ

∂x
= ρ

∂2u1

∂t2
, (8)
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µ
∂2u2

∂x2
+ (λ + µ)

∂2u1

∂x∂y
+ (λ + 2µ)

∂2u2

∂y2

−β0

(

1 + t1δ2k
∂

∂t

)

∂T

∂y
+ λ0

∂ϕ

∂y
= ρ

∂2u2

∂t2
, (9)

a0

(

∂2ϕ

∂x2
+

∂2ϕ

∂y2

)

+β1

(

1 + t1δ2k
∂

∂t

)

T − λ1ϕ − λ0

(

∂u1

∂x
+

∂u2

∂y

)

=
1

2
ρj0

∂2ϕ

∂t2
, (10)

K∗

(

∂2T

∂x2
+

∂2T

∂y2

)

− ρC∗

(

1 + t0δ1k
∂

∂t

)

∂T

∂t

−β0T0

(

∂

∂t
+ t0δ1k

∂2

∂t2

) .
(

∂u1

∂x
+

∂u2

∂y

)

− β1T0
∂ϕ

∂t
+ρ

∂Q

∂t
= 0. (11)

The constitutive components of microelongational stress tensor are given
by

σxx = (λ + 2µ)
∂u1

∂x
+ λ

∂u2

∂y
− β0

(

1 + t1δ2k
∂

∂t

)

T + λ0ϕ , (12)

σyy = λ
∂u1

∂x
+ (λ + 2µ)

∂u2

∂y
− β0

(

1 + t1δ2k
∂

∂t

)

T + λ0ϕ , (13)

σxy = µ

(

∂u1

∂y
+

∂u2

∂x

)

. (14)

To simplify calculations, we use following non-dimensional variables:

x
′

=
ω∗

c1
x, y

′

=
ω∗

c1
y, u

′

i =
ω∗ρc1

β0T0
ui, t

′

= ω∗t, t
′

0 = ω∗t0, t
′

1 = ω∗t1,

σ
′

ij =
σij

β0T0
, ϕ

′

=
λ0

β0T0
ϕ, T

′

=
T

T0
, Q

′

=
1

C∗T0
Q ,

where

ω∗ =
ρc2

1C∗

K∗
, c2

1 =
λ + 2µ

ρ
.

Using the above non dimensional variables in Eqs. (8)–(14), after dropping
superscripts we get:

∂2u1

∂x2
+ l2

∂2u2

∂x∂y
+ l3

∂2u1

∂y2
−
(

1 + t1δ2k
∂

∂t

)

∂T

∂x
+

∂ϕ

∂x
=

∂2u1

∂t2
, (15)
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l3
∂2u2

∂x2
+ l2

∂2u1

∂x∂y
+

∂2u2

∂y2
−
(

1 + t1δ2k
∂

∂t

)

∂T

∂y
+

∂ϕ

∂y
=

∂2u2

∂t2
, (16)

(

∂2ϕ

∂x2
+

∂2ϕ

∂y2

)

+ l4

(

1 + t1δ2k
∂

∂t

)

T − l5ϕ − l6

(

∂u1

∂x
+

∂u2

∂y

)

= l7
∂2ϕ

∂t2
,

(17)
(

∂2T

∂x2
+

∂2T

∂y2

)

− l8

(

1 + t0δ1k
∂

∂t

)

∂T

∂t

−l9

(

∂

∂t
+ t0δ1k

∂2

∂t2

) .
(

∂u1

∂x
+

∂u2

∂y

)

− l10
∂ϕ

∂t
+l11

∂Q

∂t
= 0 , (18)

σxx =
∂u1

∂x
+ l12

∂u2

∂y
−
(

1 + t1δ2k
∂

∂t

)

T + ϕ , (19)

σyy = l12
∂u1

∂x
+

∂u2

∂y
−
(

1 + t1δ2k
∂

∂t

)

T + ϕ , (20)

σxy = l3

(

∂u1

∂y
+

∂u2

∂x

)

, (21)

where

l2 =
(λ + µ)

ρc2
1

, l3 =
µ

ρc2
1

, l4 =
β1λ0c2

1

a0ω∗β0
, l5 =

λ1c2
1

a0ω∗
, l6 =

λ2
0

ρa0ω∗
, l7 =

ρj0ω∗c2
1

2a0
,

l8 =
ρC∗c2

1

K∗ω∗
, l9 =

β2
0T0

K∗ω∗ρ
, l10 =

β0β1T0c2
1

K∗ω∗λ0
, l11 =

ρC∗c2
1

K∗ω∗
, l12 =

λ

ρc2
1

.

2.1 Special case

If we neglect microelongation effect, i.e., λ0 = β1 = λ1 = a0 = j0 = 0, we
obtain the results for thermoelastic solid (TS).

3 Analytic solution

Here, we use normal mode analysis technique to decompose the solution of
the considered physical variables as

(ui, T, ϕ, σij)(x, y, t) = (u∗
i , T ∗, ϕ∗, σ∗

ij)(x)eωt+iby (∗∗)

where ω is complex frequency, b is wave number in y-direction and u∗
i (x), T ∗(x),

ϕ∗(x), and σ∗
ij(x) are the amplitudes of field quantities.
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Using normal mode given by (**) in (15)–(21), we get:

(D2 − B1)u∗
1 + ibl2Du∗

2 − B2DT ∗ + Dϕ∗ = 0 , (22)

ibl2Du∗
1 + (l3D2 − B3)u∗

2 − ibB2T ∗ + ibϕ∗ = 0 , (23)

−l6Du∗
1 − ibl6u∗

2 + B2l4T ∗ + (D2 − B4)ϕ∗ = 0 , (24)

−l9B6Du∗
1 −ibl9B6u∗

2 +(D2 −B7)T ∗ − l10ωϕ∗ = Q1F (y, t) exp(−γx) , (25)

σ∗
xx = Du∗

1 + ibl12u∗
2 − B2T ∗ + ϕ∗ (26)

σ∗
yy = l12Du∗

1 + ibu∗
2 − B2T ∗ + ϕ∗ , (27)

σ∗
xy = l3 (ibu∗

1 + Du∗
2) , (28)

where

D ≡ d

dx
, F (y, t) =

(

1 − t

t∗

)

exp

(

−y2

r2
− t

t∗
− ωt − iby

)

,

Q1 =
−l11I0γ

2πr2t∗2 , B1 = ω2 + l3b2, B2 = (1 + t1δ2kω),

B3 = ω2 + b2, B4 = b2 + l5 + l7ω2, B5 = (1 + t0δ1kω),

B6 = ω(1 + t0δ1kω), B7 = b2 + l8A5ω .

Eliminating u∗
2(x), T ∗(x), and ϕ∗(x) from Eqs. (22)–(25), we get the dif-

ferential equation for u∗
1(x) as

(D8 + AD6 + BD4 + CD2 + E)u∗
1(x) = RF (y, t) exp(−γx) , (29)

where:

A =
−1

l3

[

l3(B4 + B7) − B3 + l3B1 + l3l6 + B2l3l9B6 + b2l22

]

B =
−1

l3

[

− B2l4l10l3ω + l3B4B7 + B3(B4 + B7) − b2B2B6l9 + b2B6

−B1l3(B4 + B7) + B1B3 − b2l22(B4 + B7) + l3l6l10B2ω

−l3l9B2B4B6 − l9B2B3B6 − l3l6B7 − l3l4l9B2B6 − B3l6
]

,
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C =
−1

l3

[

B2B3l4l10ω + B3B4B7 − b2l6l10B2ω + b2l9B2B4B6 − b2l6B7

−b2l4l9B2B6 + B1B2l3l4l10ω2 − l3B1B4B7 + B1B3(B4 + B7)

+b2B1B2B6l9 + b2l22B2l4l10ω + b2l22B4B7 − 2b2B7l2l6

−2b2B2B6l2l4l9 − l6l10B2B3ω + B2B3B4B6l9

+B3B7l6 + B2B3B6l4l9 − b2l6B1

]

,

E =
−1

l3

[

− l4l10B1B2B3ω − B1B3B4B7 + b2l6l10B1B2ω

−b2l9B1B2B4B6 + b2l6B1B7 + b2l4l9B1B2B6

]

,

R =
ibB2Q1

l3

[

− l3γ5 +{(B3 −b2l2)− l3(l4 −B4)}γ3 +(l4 −B4)(B3 −b2l2)γ
]

.

Equation (29) can be written as

(D2 − k2
1)(D2 − k2

2)(D2 − k2
3)(D2 − k2

4)u∗
1(x) = RF (y, t) exp(−γx) , (30)

where k2
n (n = 1, 2, 3, 4) are roots of Eq. (29).

The solution of Eq. (30), which is bounded as x → ∞ is given by

u∗
1(x) =

4
∑

n=1

[Ln(b, ω)e−knx] + ξ exp(−γx) . (31)

Similarly,

u∗
2(x) =

4
∑

n=1

[L
′

n(b, ω)e−knx] + ξ1 exp(−γx) , (32)

T ∗(x) =
4
∑

n=1

[L
′′

n(b, ω)e−knx] + ξ2 exp(−γx) , (33)

ϕ∗(x) =
4
∑

n=1

[L
′′′

n (b, ω)e−knx] + ξ3 exp(−γx) , (34)

where Ln(b, ω), L
′

n(b, ω), L
′′

n(b, ω), L
′′′

n (b, ω) are specific function depend-
ing upon b, ω.

Using (31)–(34) in Eqs. (22)–(25), we get:

L
′

n(b, ω) = R1nLn(b, ω) , (35)
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L
′′

n(b, ω) = R2nLn(b, ω) , (36)

L
′′′

n (b, ω) = R3nLn(b, ω) . (37)

Using (35)–(37), the solution of physical quantities in series form can be
rewritten as:

u∗
2(x) =

4
∑

n=1

[

R1nLn(b, ω)e−knx
]

+ ξ1 exp(−γx) , (38)

T ∗(x) =
4
∑

n=1

[

R2nLn(b, ω)e−knx
]

+ ξ2 exp(−γx) , (39)

ϕ∗(x) =
4
∑

n=1

[

R3nLn(b, ω)e−knx
]

+ ξ3 exp(−γx) , (40)

σ∗
xx(x) =

4
∑

n=1

[

R4nLn(b, ω)e−knx
]

+ ξ4 exp(−γx) , (41)

σ∗
yy(x) =

4
∑

n=1

[

R5nLn(b, ω)e−knx
]

+ ξ5 exp(−γx) , (42)

σ∗
xy(x) =

4
∑

n=1

[

R6nLn(b, ω)e−knx
]

+ ξ6 exp(−γx) , (43)

where

R1n =
ib
[

(1 − l2)k2
n − B1

]

[

(B3 − b2l2)kn − l3k3
n

] ,

R2n =

[

l3k4
n − (B4l3 + B3)k2

n + (B3B4 − b2l6)
]

R1n − ib
[

l2k3
n − (l2B4 − l6)kn

]

ib
[

B2(k2
n − B4) + B2l4

] ,

R3n =
(k2

n − B1 − ibl2knR1n + B2knR2n)

kn
, R4n = ibl12R1n−B2R2n+R3n−kn ,

R5n = ibR1n − B2R2n + R3n − l12kn , R6n = l3(ib − knR1n) ,

ξ =
RF (y, t)

γ8 + Aγ6 + Bγ4 + Cγ2 + E
, ξ1 =

ib
[

(1 − l2)γ2 − B1
]

ξ
[

(B3 − b2l2)γ − l3γ3
] ,

ξ2 =

[

l3γ4 − (B4l3 + B3)γ2 + (B3B4 − b2l6)
]

ξ1 − ib
[

l2γ3 − (l2B4 − l6)γ
]

ξ

ib
[

B2(γ2 − B4) + B2l4
] ,
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ξ3 =
(γ2 − B1)ξ − ibl2γξ1 + B2γξ2

γ
, ξ4 = ibl12ξ1 − B2ξ2 + ξ3 − γξ ,

ξ5 = ibξ1 − B2ξ2 + ξ3 − l12γξ , ξ6 = ibl3ξ − γl3ξ1 .

4 Boundary conditions

To determine the constants Ln (n = 1, 2, 3, 4), the boundary conditions at
the surface x = 0 are given by:

i the normal surface is stress-free, σxx = 0,

ii the tangential surface is stress-free, σxy = 0,

iii condition of the micro-elongation (half-space is free from elongation),
ϕ = 0,

iv thermal condition (half-space is a thermally insulated boundary),
∂T
∂x = 0.

Using the expressions of σxx, σxy, ϕ and T into above boundary conditions,
we get the following non-homogeneous equations:

4
∑

n=1

R4nLn = −ξ4 ,
4
∑

n=1

R6nLn = −ξ6 ,

4
∑

n=1

R3nLn = −ξ3 ,
4
∑

n=1

knR2nLn = −γξ2.

Solving the above system of four equations, we get the values of constants
L1, L2, L3, L4 and hence obtain the components of normal displacement,
normal force stress, temperature distribution and microelongation for mi-
croelongated thermoelastic half-space under laser pulse heating.

5 Numerical results and discussion

For numerical computations, we consider the values of constants for alu-
minum epoxy-like material as [33]:
λ = 7.59 × 1010 N

m2 , µ = 1.89 × 1010 N
m2 , a0 = 0.61 × 10−10 N,

ρ = 2.19 × 103 Kg
m3 , β1 = 0.05 × 105 N

m2K , β0 = 0.05 × 105 N
m2K ,

CE = 966 JKg−1K−1, T0 = 293 K, j0 = 0.196 × 10−4 m2,
λ0 = λ1 = 0.37 × 1010 N

m2 , t0 = 0.01, t1 = 0.0001, K = 252 J
msK . The
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computations are carried out for the value of non-dimensional time t = 0.2
in the range 0 ≤ y ≤ 1.0 and on the surface x = 1.0. The numerical values
for normal displacement, normal force stress, temperature distribution and
microelongation are shown in Figs. 2–5 for generalized theory (G-L the-
ory) by taking δ1k = 0, δ2k = 1, and r = 0.1 m, I0 = 10 J/m2, γ = 50 1

m ,
ω = ω0 + ιζ, ω0 = −0.2, ζ = 0.1, and b = 0.7 for:

(a) thermoelastic microelongated solid (TMS) with pulse rise time t∗ =
0.1 by solid line with the centered symbol ♦,

(b) thermoelastic microelongated solid (TMS) with pulse rise time t∗ =
0.01 by dashed line with the centered symbol �,

(c) thermoelasic solid (TS) with pulse rise time t∗ = 0.1 by dashed line
with the centered symbol N,

(d) thermoelasic solid (TS) with pulse rise time t∗ = 0.01 by dashed line
with the centered symbol ×.

6 Discussion

The variations of normal displacement and normal force stress are similar
in nature for TMS and TS in the range 0 ≤ y ≤ 1.0, but the variations for
TMS and TS are opposite in nature. The values of TMS are more for pulse
rise time t∗ = 0.1 in comparison to pulse rise time t∗ = 0.01 whereas the
values of TS are more for t∗ = 0.01 in comparison to t∗ = 0.1, which show
that for a fixed pulse rise time, the pulse length has an appreciable effect
on both the physical quantities namely normal displacement and normal
force stress as depicted in Figs. 2 and 4. The variations of temperature
distribution are same for both the medium in the same range 0 ≤ y ≤ 1.0
as shown in Fig. 3. The values of microelongation are more for t∗ = 0.01 in
comparison to t∗ = 0.1 in the range 0 ≤ y ≤ 0.2 and approache zero with an
increase in pulse length as evident from Fig. 5. All the physical quantities,
i.e., normal displacement, temperature distribution, normal force stress,
and microelongation approaches zero with an increase in pulse length.
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Figure 2: Variation of normal displacement with horizontal distance.

Figure 3: Variation of temperature distribution with horizontal distance.
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Figure 4: Variation of normal force stress with horizontal distance.

Figure 5: Variation of microelongation with horizontal distance.

7 Conclusion

1. A significant effect of laser pulse heating, pulse rise time and pulse
length is observed in all the quantities, i.e., normal displacement, tem-
perature distribution, and normal force stress and microelongation.
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2. The variations of normal displacement and normal force stress show
opposite nature in the presence and absence of microelongation for
a fixed value of pulse rise time and increasing pulse length. This
proves that microelongation has a significant effect on the considered
physical quantities.

3. All the physical quantities, i.e., normal displacement, temperature
distribution, normal force stress and microelongation decrease very
sharply in the range 0 ≤ y ≤ 0.2, which approaches zero with the
increase in pulse length.

Received in 10 September 2017
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