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Abstract

A navigation complex of an unmanned flight vehicle of small class is considered. Increasing the accuracy
of navigation definitions is done with the help of a nonlinear Kalman filter in the implementation of the
algorithm on board an aircraft in the face of severe limitations on the performance of the special calculator.
The accuracy of the assessment depends on the available reliable information on the model of the process
under study, which has a high degree of uncertainty. To carry out high-precision correction of the navigation
complex, an adaptive non-linear Kalman filter with parametric identification was developed. The model
of errors of the inertial navigation system is considered in the navigation complex, which is used in the
algorithmic support. The procedure for identifying the parameters of a non-linear model represented by the
SDC method in a scalar form is used. The developed adaptive non-linear Kalman filter is compact and easy
to implement on board an aircraft.

Keywords: unmanned aerial vehicle, non-linear Kalman filter, parametric identification, SDC representation,
implementation in the special calculator.

© 2019 Polish Academy of Sciences. All rights reserved

1. Introduction

A navigation complex (NC) of a small class unmanned aerial vehicle (UAV), which is used
to monitor the underlying surface of the Earth, in urban conditions in the interest of the Ministry
of Emergency Situations and the Fire Department is examined. The UAVs of Russian company
ZALA, Chinese company DJI, and others belong to the small class. An NC of UAV must
have a high accuracy of determining the navigation parameters for the effective functioning of
specialized measurement equipment.

Modern UAV’s NCs of the studied class consist of an inertial navigation system (INS), a GPS
signal receiver and a special calculator, which implements the information processing algorithms
of the INS and GPS, as well as the UAV control [1, 2]. On small UAVs, special calculators
(microcontrollers) of the STM32 version (ARM Cortex-M) are installed. UAV is equipped with
NC of INS/GPS. NC has errors associated with the insecurity of the radio channel and the use of
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low-accuracy INS. During the operation of UAV in the city, NC errors appear due to reflecting
GPS signals from the buildings and passive interference of operating equipment, as well as INS
errors caused by instability of MEMS elements.

Improving accuracy of the existing NC should be carried out by an algorithmic method.
Usually, the algorithmic support for NC includes a linear Kalman filter [3, 4] or its adaptive
modifications [5], which perform the evaluation of INS errors and subsequent compensation
in the system output signal. The model used in the Kalman filter determines the INS error
relationships.

Strap-down INSs (SINSs) made on the basis of MEMS elements are economically efficient, but
their errors are clearly non-linear in nature [6]. Gimbaled INS are well established in practice, but
more costly. When an aircraft is making manoeuvers, the deviation angles of the gyro-stabilized
platform (GSP) of the INS relative to the accompanying trihedron of the selected coordinate
system increase and the linear model of its errors obtained with the assumption of horizontal
movement of the aircraft and small stabilization angles becomes inadequate to the real process
[7]. In this connection, it is not possible to carry out high-precision correction of NC using linear
Kalman filtering [8, 9].

High-precision correction of NC is carried out using a non-linear Kalman filter (NKF)
[3, 10]. In flight vehicle manoeuvring conditions, a priori nonlinear models for changing INS
errors become inadequate to the actual process, so NKF modifications are used [9, 11], which are
carried out using self-organizing algorithms, neural networks (NN), genetic algorithms (GA) and
self-organizing algorithms, for example, Group Method of Data Handling (GMDH) [12, 13]. But
such modifications of NKF require increased performance of a special calculator aboard a UAV.

Simplification of the on-board implementation of estimation algorithms is achieved by identi-
fying the models of the process being evaluated, for example, using the least squares method (OLS)
[10], but the estimation accuracy is reduced compared with the mentioned NKF modifications.

Thus, when an aircraft is making manoeuvers, in order to maintain the adequacy of the INS
error model, it is necessary to perform a parametric identification or model construction (determi-
nation of the structure and its parameters). But the implementation of the algorithms for building
models requires increased performance of the special calculator and it is not possible to use them
to improve the accuracy of NC of the examined class of UAVs. Simplification of implementing
identification algorithms using the scalar approach is applied only to linear models; for parametric
identification of nonlinear models it is proposed to use the State Dependent Coefficient (SDC)
representation [14], which enables to represent the nonlinear model as a linear one.

In this paper, an NC with adaptive NKF is developed. The NKF is equipped with a scalar
parametric identification procedure for a class of nonlinear INS error models, which is compact
and easily implemented in a UAV special calculator [15, 16].

2. Navigation complex with non-linear Kalman filter
Let the equation of the state vector be:

X = fi 1 (Xe—1) + Wy, 9]

where x;, — state vector; fz x—1 (Xxk—1) — vector of nonlinear system model.
Part of the state vector is measured by:

z; = Hp (xg) + Vi, ()
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where z; — measurement vector; Hy — measurement matrix; wy and v, — discrete analogues of
Gaussian white noise with zero mathematical expectations and covariance matrices Q, and Ry
respectively, both of which are mutually uncorrelated.

NFC equations are as follows [10]:

R = Rik-1 + ke (Rie—1) [z — HeRp 1] 3)
K k-1 = fic k1 (Re—1), “4)
R -1
ki (Re-1) = Pyt Hj [HkPk,k—le + Rk] , &)
T
Ofi k-1 Ri-1) Of -1 R—1)
Pii-i = Py |+ Qg 6)
6xk71 c?x,H
Pr = [T -k (Rpe—1) Hi ] Prg—t (7

Here ki (Xk—1) — gain vector of the Kalman filter; Py x_; — a priori covariance matrix of
estimation errors; Py — a posteriori covariance matrix of estimation errors; I — identity matrix.

Based on the state vector and the object matrix estimation, a forecast is made for the next
step of calculating the estimate, using (4). At the same time, this forecast is corrected by using an
updated sequence. The updated sequence is the sum of the prediction error and the measurement
noise.

The filter gain matrix (6) determines the weight with which the updated sequence is included
in the state vector estimate. In the case of ideal measurements, i.e. when measurement noise is
absent, the gain matrix is chosen as the maximum. The larger the measurement noise, the lower
the weight of the updated sequence is taken into account when forming the assessment of the
state vector by (3).

With the help of the Kalman filter, not only the reconstruction of the entire system state vector
is carried out, but also the influence of the measurement noise is suppressed.

On the basis of values X and Py their forecast xx41x and Pgy1x is made for the next
interval according to (4) and (5), respectively.

The calculation of the optimal vector of gain coeflicients ki1 (6).

According to new observation results, a priori value X+ is improved and becomes the
a posteriori estimation value Xz (3).

The definition of the a posteriori correlation matrix Py by (7) is carried out for the next
step of calculation.

There are various ways of implementing NKF [10, 11]. NKF implementations suggest the
linearization of the INS error model using the Taylor series, representing the a posteriori density
as a set of delta functions, or replacing the a posteriori density with a system of private Gaussian
densities taken with different weights. As a result, only linear models of INS errors are used.

The use of nonlinear Kalman filter models is generally difficult due to the fact that the
a posteriori density of the state vector is not Gaussian; therefore, it is not possible to obtain
algorithms of recurrent relations for calculating estimates of the state vector. The solution of
a stochastic partial differential equation in the form of Ito or Stratonovich involves the integration
of equations using special rules, what leads to a significant increase in the volume of required
computational resources.

Most fully taking into account all the features of the nature of INS error changes and, most
importantly, a specific INS in the conditions of each specific flight, can be achieved by constructing
a nonlinear model using algorithms of GMDH, a neural network or a genetic algorithm. The
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nonlinear model is used as a reference model to ensure the adequacy of the NKF model and the
real process of INS error changes.
Figure 1 shows a scheme of the NC, including INS, GPS and NKF when using GMDH.

Fig. 1. A block diagram of NC with NFK when using GMDH.

Here 6 — true navigation information; &; — error vector of GPS; xx — error vector of INS; z; —
measurement vector; X; — error vector estimate of INS; X;, — errors of the INS error estimation;
D - indicator of the divergence of the estimation process.

The presented NC is designed for a highly manoeuvrable aircraft and is implemented in the
on-board computer. To use NKF on a small UAYV, it is necessary to develop a simpler and more
compact procedure for identifying the parameters of nonlinear matrix of the INS error model,
which provides for implementation in a special calculator.

3. SDC representation of non-linear model of navigation system errors

We represent the system (1), (2) in an equivalent form: the model has the structure of linear
differential equations with parameters that depend on the state. Such a representation is called
extended linearization or parameterization using system state (SDC representation).

Consider the SDC representation of a nonlinear model of INS errors, which has the form [14]:

Xi = D (tg-1,Xp1)Xp—1 + W1, (8)
where:
1 0 0 —gT —g)C3’k_1T 0 0 0
0 1 gT 0 gxgaT O 0 0 |[ xiet]
T _
0 -1 0 0 T 0 0 Y2k-1
T R X3, k-1
0 0 1 0 0 T 0 ||xul
D (k-1 Xk-1)Xk-1 = | R T,
—tang 0O 0 O 1 0 0 T X5,k-1
R
X6,k—1
0 0 0 0 0 1-uT 0 0
X7, k-1
0 0 0 0 0 0 1-uT 0 || xsat]
0 0O 0 O 0 0 0 1 —uT

544



WMetitlsOMeds. 1Syst), V%;)%N 9)yNo.i8yppls5411550
S.

DOI: 10.24425 /i .2019.129580

[ oVer | [xix ] [ B i |
O0Vn.k X2,k BN k-1
DE i X3k 0
DNk X4,k 0

X = = , Wi =

Dy k X5,k 0
EEk X6,k WE k-1
ENK X7,k WN k-1

| €Hk | X8,k | WH, k-1 |

0VE, 6V — errors in determining the speed of the UAV; @, @, @y — deviation angles of
the GSP relative to the reference coordinate system; eg, €, g — GSP drift velocity; ¢ — latitude
location; wg, wy, wy — external disturbing influences; Br, By — accelerometer zero offset;
u — mean frequency of random change in gyro drift; R — Earth radius; g — gravity acceleration;
T — sampling period.

A nonlinear system is fully observable, if the observability condition is satisfied. Gramian
observability should exist and be a solution of the Lyapunov equation [16].

Using the SDc representation, it becomes possible to use not only (2) as the measurement
equation, but also the equation without limitation — with the nonlinear dependence of the mea-
surement matrix on the state Xy .

2k = he (X)) + Vi, )

where hy (x;) is a function.
The measurement (9) after conversion with the SDC method is:

Vi = H(tg, Xp ) Xg-1 + Vi . (10)

It is assumed that w; and v are Gaussian “white” uncorrelated noises, and for any j and &,
v; and wy are mutually uncorrelated (i.e. M [v; w} | = 0).
The measurement expression y 1 for the state vector, using n measurements taken is:

Ye = H(te, Xp) Xg + i,

Vir1 = H(tpa1, Xeq1) @, X )Xpe + H(f g1, X 1) Wi + Viq 1,

Yirn-1 = Hrn-1, Xkrn—1) @Ursn-2, Xgn-2) - - O(tg, Xg) X+ (an
+ H(tkrn-1 Xk+n-1) ®Ekrn—2, Xk+n-2) = - - @(Fx+1, Xp+1) Wit
+ o+ H k-1, Xkn-1) Wian-2 + Vian—1 -
In the matrix form:
Y = Orxp + v, (12)
where:
Yk H(7x, x)
. Y+ . H(tr+1, Xp+1) @ (g, Xi)
Y = . ) O, = >
Yk+n-1 H(tkrn—15 Xkrn—1) P krn—2, Xrn-2) - - - P(tk, Xk
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Vk

H(t1, Xer1) Wi + Virq

H(rsn—1> Xk4n-1) P (tkrn-2, Xkrn-2) - P(ties1, X4 1) Wi+

+ o+ Hkrn-1, Xktn—1)Win—2 + Vian-1

the vectors y; , v; and the matrix O, include parameters that depend on the state.

When NC is functlonlng, some parameters of the matrix of the model of (8) change and
compensation of INS errors with the help of NKF becomes ineffective. Therefore, in order to
preserve the adequacy of the model to the process of the INS error changes, these parameters
should be identified during the flight of UAV. For this it is necessary to develop a procedure for
parametric identification.

4. Parametric identification procedure

Consider the SDC representation of the model (8) and the measurement (11). In this case, the
state vector Xx., can be expressed by its value at the initial moment x; of time in the form:

Xitn = P(trsn—1,Xkn-1) - - - P(tr, Xp )X
+ D (tisn-1, Xk4n—1) - - P(trs1, Xk 1) Wi (13)

too At Wen-1 .
Substituting the expression for Xy, into the measurement equation yy,, we obtain:

Yiin = Heon @t rin—t1, Xian—1) - - P(tr, Xp )Xk
+ Hyyn @1, Xkgn—1) =+ - Prs1, X 1) Wi (14)

+ o+ HeenWiano1 + Vicrn -
Substituting the expression X in (13), we obtain:

Yicrn = Hiaon @ ren—1, Xkan—1) - - - (1%, Xe) OF ¥,
— Hisn @ (tin—1, Xisn-1) - - @11, Xk) O v

(15)
+ Hpin @ psn-1o Xpwn-1) * - @41, X+ 1) Wi
R Hk+nwk+n—1 + Vi+n
where O} = [O*TO*] O*T — pseudo-inverse matrix Oy .
We introduce the notatlon
[Ax A2k - Ank] = Hion @ rrn—1, Xisn—1) - - P(tx, X)) O, (16)
VR = Hen @ (tin1, Xean—1) - - @t Xk)OF Vi an

+ o+ HeonWan-1 + Vicrn -
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Then, the setting of the identification problem is reduced to the determination of unknown

elements of the column vector [A1x Aok ... Ani] from the newly formed measurements, i.e.:
A = . 00
Lk = 1k Oks* 5 Yhw2n-1) + Vs
A = f ( PN ) + VOO
2k = ok ks 5 Yhr2n-1 1> (18)
Ank = fuk Vko - ) + v
nk = Jnk Yk > Yk+2n—1 k+n—1°
where: |
Sk Ok -+ 5 Yrs2n-1) Yk Yk+1 *c Ykn-1 Yk+n
Joke Okes ==+ 3 Ykaon=1) | _ | Vil Yis2 =0 Yian Vicen+1
- »
Fok Ok =+, Yiw2n—1) Vitn-1 Yk4n = Yk+2n-2 Vi+2n-1
00 - 0
Vi Yk Yk+1 **° Yk+n-1 Vi
00 0
Vk+l _ Yk+1 Yk+2 *°° Yk+n vk+1
00 0
Vitn—1 Yik+n-1 Yk+n **° Yk+2n-2 Visn-1

Thus, the formal dependence (18) is used to identify the parameters of the matrix ®(zg, X ).

The dispersion of the original measurement noise is either determined from practical consid-
erations in accordance with the mode of operation of the measurement system or is taken from
the passport of the measurement device.

Figure 2 shows a scheme of NC with NKF and identification procedure.

0.+ x,

vyt

0.+ X,

INS

Fig. 2. A block diagram of NC with NKF and identification procedure.

Here UFTM — unit for forming the taken measurements; UFIE — unit for forming the identi-
fiable elements.

An adaptive modification of the NKF was developed, which enables to identify unknown
coeflicients of the estimated model during the flight of a small UAV.

5. Experiment results

In order to test the performance of the proposed algorithm, full-scale tests of the UAV with
NC equipped with various algorithms were carried out. A UAV of vertical take-off and landing
was used, i.e. an aircraft which can take off and land at zero horizontal speed. 180 experiment
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flights of UAVs (20 flights for each configuration of the algorithmic support of the UAV UC)
were carried out in similar weather conditions and time of day.

The flight was carried out along a distance of 500 m. In the course of the experiment, the
UAV automatically carried out a vertical flight, moving at a constant height with a constant speed
to a landing point, and a vertical landing. The coordinates of landing point are known. The real
deviation of the UAV from the landing point is recorded. The obtained values of the deviations
of the UAV from a given landing point depend on the accuracy of the NC. The errors of the INS
over time accumulate; therefore, complex processing of the GPS and INS signals is performed
in the NC. In the course of the experiment, the accuracy of NC with linear Kalman filter (KF),
adaptive linear KF (AKF), NKF, NKF with OLS, NKF with GMDH, NKF with GA, NKF with
NC and NKF with the developed parametric identification procedure (NKF + PI) is estimated.

In the estimation algorithms, when assigning the input and measurement noise covariance
matrices, the following values are taken: wg, wy, wy — disturbing effects caused by the drift of
gyroscopes, the corresponding values of the covariance matrix of the input noise in the estimation
algorithms are taken as 1.7-107'9 rad/s; the errors caused by zero offset in accelerometer readings:
Bg, By = 1073 m/s2. These values are used to form the covariance matrix of the input noise in
the estimation algorithms.

For the Ublox-M8N GPS receiver, the following values are commonly used in the covariance
matrix of the KF measurement noise: 7 = 3-1073 m?/s”. They are constant values of the covariance
matrix adopted in Kalman filter, due to GPS errors in determining the speed.

In the conditions of the experiment, the accuracy of estimation is reduced due to interference
(signals reflected from buildings, etc.). Therefore, in the estimation algorithms, overestimated
values are used in the covariance matrices of measurement noise: r = 0.06 m?/s%.

The accuracy of NC equipped with various algorithms for complex information processing was
compared with the accuracy of an autonomous INS. Autonomous INS errors without algorithmic
correction are taken as 100%. With the help of KF in NC 72% of the autonomous INS error is
compensated. The residual error of NC with KF is 28% of the nominal value (autonomous INS
error).

Characteristics of the algorithms: the accuracy of the NC correction with the help of the
mentioned algorithms and the required amount of memory when they are implemented in the
special calculator are given in Table 1.

Table 1. Characteristics of the algorithms.

Algorithms Correction accuracy Required memory Required amount of calculation
KF 72% 4k 80 k
AKF 78% 5k 100 k
NKF 81% 8k 150k
NKF + OLS 84% 16k 180 k
NKF + GMDH 89% 20k 1,000 k
NKF + PI 89% 10k 200 k
NKF + NN 90% 30k 3,000 k
NKF + GA 91% 50k 7,000 k

The memory capacity of the special calculator of a small UAV is 256 kB. Under severe
constraints on computing resources, a developed adaptive NKF with a parametric identification
procedure has maximum accuracy.
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The accuracy characteristics of UAV’s NC equipped with various algorithmic software are
presented in Table 2.
Table 2. Accuracy characteristics of UAV’s NC.

NC algorithms Correction accuracy required memory
Location error Speed error
Autonomous INS 45-55 0.4-0.5 m/s
KF 12-15m 0.12 m/s
AKF 11-12m 0.10 m/s
NKF 10 m 0.08 m/s
NKF + OLS 8 m 0.07 m/s
NKF + GMDH 5m 0.04 m/s
NKF + PI 4-5m 0.04 m/s
NKF + NN 3-5m 0.03 m/s
NKF + GA 1-2m 0.02 m/s

Table 2 shows the average values obtained from a series of experiments.
Thus, NC with the developed correction algorithm enables to obtain navigation information
with greater accuracy, which increases the efficiency of a small UAV.

6. Conclusions

An adaptive NKF with a parametric identification procedure for nonlinear INS error models
has been developed. The nonlinear models are represented in the form of models with a linear
structure with the use of the SDC method. Such a representation of the models enabled to use the
scalar form of the model of measurements to simplify the implementation of the algorithm in the
special calculator of a small UAV. Thus, for the correction of NC, an adaptive NKF was obtained
with a procedure for identifying the parameters of a nonlinear model of a single class of nonlinear
systems, which can be easily implemented in the special calculator of a small class UAV.
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