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Abstract

In this paper methods and their examination results for automatic segmentation and parameterization of
vessels based on spectral domain optical coherence tomography (SD-OCT) of the retina are presented.
We present three strategies for morphologic image processing of a fundus image reconstructed from OCT
scans. A specificity of initial image processing for fundus reconstruction is analysed. Then, the parameteriza-
tion step is performed based on the vessels segmented with the proposed algorithm. The influence of various
methods on the vessel segmentation and fully automatic vessel measurement is analysed. Experiments were
carried out with a set of 3D OCT scans obtained from 24 eyes (12 healthy volunteers) with the use of an
Avanti RTvue OCT device. The results of automatic vessel segmentation were numerically compared with
those prepared manually by the medical doctor experts.

Keywords: optical coherence tomography, image processing, mathematical morphology, vessel segmenta-
tion.
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1. Introduction

The study of blood vessel distribution in the human eye retina is one of the key tests performed
during comprehensive ophthalmological diagnostics. Parameterized biometric data make it easier
for the ophthalmologists to analyse the lesions visible in the decomposition of fundus blood
vessels [1, 2]. A quantitative analysis of vascular structure changes gives essential information
about vessels’ net development and any forming disorders. The important parameters used when
imaging the fundus are, e.g., vessel thickness, tortuosity, branching angle, and vascular density [3].
Abnormal values of these parameters signify the increased probability of various eye diseases.
Also, structural retinal vascular changes may serve as indicators of the risk of cardiovascular
disease [4].
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A device typically used for observation and segmentation of the retina blood vessels is a so-
called fundus camera, consisting of a flash lighting and a high-resolution camera. An illustrative
photo obtained with this technique is shown in Fig. 1a. The resulting image has high resolution
and appropriate contrast between vessels and the surrounding tissue. For this type of acquisition,
there exist several techniques for segmentation of blood vessels [5], which are used for automatic
(computer) or manual detection of various pathologies. An important disadvantage of fundus
cameraimaging is the need of applying an intense (flash) lighting when taking a picture. Therefore,
for many patients such an examination causes a severe sense of discomfort.

Another technology, which can be used for the detailed analysis of the retinal vasculature, is
the optical coherence tomography (OCT). Typically, the standard OCT devices and their software
offer reconstruction of the fundus image (Fig. 1b). This is done either by using scanning laser
ophthalmoscopy (SLO) [6] or by summation of pixel intensity values in each column of every
cross-section of the 3D OCT scan (i.e., in a collection of OCT B-scans, see Fig. 1¢). The reason
for retinal blood vessels to be visible in the OCT cross-sections is the absorption of near-infrared
light by the haemoglobin molecules. This causes vessel silhouettes to appear below the position
of vessels as dark shadows in the OCT B-scan images (Fig. 1c).

Fig. 1. Illustrative retina images: a) fundus camera image; b) fundus reconstructed from OCT;
c¢) single OCT B-scan.

A reconstructed fundus image based on OCT has a lower contrast and signal to noise ratio in
comparison with that obtained using the colour fundus photography [7]. Thus, using OCT images
for vessel parameterization increases the overall process difficulty. However, an unquestionable
advantage of this technology, in addition to the noninvasive examination, is the ability to precisely
combine the image of the segmented vessels with the image of the retinal layers. It enables to
prepare a so-called virtual fundus map for a physician planning an operation [8].

Effectiveness of segmentation of blood vessels depends of course on the image quality (the
background should preferably be uniform). Moreover, the segmentation accuracy substantially
depends on whether a healthy eye or an eye with anomalies (not necessarily resulting from diseases
of blood vessels) is examined.

Figure 2 presents a general block diagram of both fully- [9] and semi-automatic [10] retina
vessel parameterization. The main steps are vessel segmentation (performed with various algo-
rithms) and extraction of the vessel central line. Next, for each point belonging to the central line,

OCT-based reconstructed Vessel Central line Measurement of
fundus image segmentation extraction parameters

Fig. 2. A general block diagram of the retina vessel parameterization algorithms.
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selected vessel parameters are measured. This applies to such characteristics as width, tortuosity,
or branching angle of the vessels. The calculated values are subjected to clinical evaluation.
Finally, the obtained parameter values can be used for the diagnostic evaluation.

Figure 3 illustrates an example of measuring diameter and branching angle of vessels with the
use of the reconstructed fundus image. These parameters reflect the existing cardiovascular risk
in the body, including angioedema, elevated blood pressure, overweight, and diabetes, and can be
used in predicting, for example, stroke or cardiac diseases. Examples of anomalies in the retinal
vascular net include more tortuous vessels, lower values of vascular angles, thinner arteries, and
larger vein diameters [11].

Fig. 3. Example of vessel parameters measured on the basis of reconstructed fundus image:
a) width; b) division angle.

2. Segmentation of retinal vessels using OCT data

The basic step leading to the analysis of the vessels’ net structure is a proper extraction of
vessels from the fundus image. There are various segmentation methods dedicated to the colour
fundus images. They take advantage of typical characteristics of the colour fundus images, such
as high resolution and high contrast of the vessels in relation to the surrounding tissue (especially
in the green monochromatic image). Further contrast enhancement can be achieved with the
modification of histogram during the pre-processing stage. Repeated execution of morphological
operations and image transformations gives the final extracted vessels’ net [12]. A comprehensive
review of both supervised and unsupervised approaches can be found in [5].

On the other hand, the OCT-reconstructed fundus image has a much lower resolution (primar-
ily in the non-fast scanning direction), as well as a lower contrast. Such image characteristics make
direct implementation of the well-established vessel segmentation methods unsuccessful. There-
fore, basing on several solutions [13, 14], we propose modified procedures for vessel segmentation
from the OCT-reconstructed fundus images.

In this paper, we propose three competitive approaches described in Subsection 2.3 for
automatic parameterization of retina vessels segmented using OCT data. They are based on
combinations of morphologic and filtering operations, namely: Blur, Minimum, LOG (BML,
Subsection 2.3.1), Blur, Difference, Dilation (BDD, Subsection 2.3.2), and Bottom Hat (BH,
Subsection 2.3.3). We present results of the tests and additionally examine the influence of a
selected vessel segmentation approach on the accuracy of measured parameters.

2.1. Pre-processing

To obtain an OCT-reconstructed fundus image, the following pre-processing steps have to be

performed:
— volumetric OCT noise reduction with adaptive block matching and 4D filtering (BM4D)
[15]. This algorithm incorporates Wiener filtering of a 3D dataset, thus providing a suitable
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denoising effectiveness for medical images. It also ensures contrast enhancement in 3D and
reduction of nonuniform tissue brightness.

— retina layer segmentation of layers containing the superficial vascular plexus: ganglion cell
layer (GCL) [16]; as well as hyper-reflective layers comprising shadows of those vessels:
outer photoreceptor segments (0S), and retinal pigment epithelium (RPE). For selected
regions upper and lower borders are segmented using our modified graph theory-based
approach [17].

Figure 4 shows an example of two superficial vessels marked with two red circles. These
vessels are visible as bright areas in the GCL layer and dark regions underneath (the shadows of
these vessels). Blue and green curves drawn in the B-scan image represent the upper and lower
boundaries of the GCL and OS+RPE layers, respectively.

a)

Fig. 4. Example of a) raw OCT B-scan image and b) filtered B-scan image with segmented GCL
and RPE layers.

2.2. Fundus image reconstruction

The literature provides several methods for fundus image reconstruction from 3D OCT data.
Early techniques, based on averaging each A-scan [18], included noise present in the area outside
the examined tissue. Such a fundus reconstruction has a low contrast due to incorporating pixels
with a higher reflectivity of blood cells and surrounding tissue. Other methods are based on the
projection of outer retinal layers [19, 20]. This ensures a better contrast between vessel shadows
and hyper-reflective tissue of RPE. Also, Hu et al. proposed a vessel-oriented OCT-projection
image creation, which incorporates computing the mean intensity values in the region of OS and
RPE layers [21].

In the performed experiments we tested two following approaches of the fundus image
reconstruction. For this purpose, we established a spatial coordinate system of the processed
OCT volume I(x, y, z), where x and y represent pixel indexes in horizontal fast and non-fast
scanning directions, and z stands for a pixel index in the vertical direction, as indicated in Fig. 1:

— vessel-oriented OCT-projection image P;(x, y) (as proposed by Hu et al. [21]) calculated

as mean of pixel intensity values in each B-scan column from the area of hyper-reflective
tissues, i.e., outer photoreceptor segments (OS) and retinal pigment epithelium (RPE).
Equation (1) describes this operation:

Lrpg/cHR(X,Y)

I(x,y,2)

z=Lis/0s(x,y)
Pi(x,y) = Pos+rRpE(X, y) = , 9]
i Lrpe/cHR(X, ¥) — Lis/0s (X, )
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where Lis,0s denotes the border location between the inner and outer segments of photore-
ceptors, Lrpr,cHr denotes the border location between the RPE and choroid layers,

— selectively reconstructed fundus image P, (x, y) calculated as a function of the projections
of GCL and OS+RPE layers, as described by (2):

P>(x,y) = wiPos+rpE(X, y) + W2 PGeL(x, y) + &, ()

where parameters w; and w; are used to weight the influence of vessels and their shadows,
parameter € € (0, 1) is used for enhancing intensity values of the projection, and the GCL
projection is calculated as follows:

LNFL/GeL (%,Y)

I(x,y,2)

z=LgcL/pL(X,y)

PgeL(x,y) = 3

LnrL/Gen (%, ) — LoeupL(x,y)

Figure 5 shows an example of normalized Pgcr, and Pos+RrpE projection images as well as P,
projection image with enhanced contrast of small vessels. These images were obtained from 3D
OCT data. It can be seen that the tissue reflectance in the GCL layer enables to emphasize vessels
that exist in the superficial vascular complex and are too small to leave a significant shadow trace.

a) b) c)

Fig. 5. Projections of layers and fundus reconstruction images using various retina regions:
a) GCL layer projection; b) OS+RPE layer projection; ¢) P, fundus reconstruction from GCL
and OS+RPE layers.

Auvailable resolution of the above fundus image projections depends on the abilities and
protocol of the volumetric OCT acquisition. A typical reconstructed fundus image achievable
with a fixed scanning time of OCT registration results in uneven resolutions for the fast and
non-fast scanning directions. For example, a 385 x 141 pixel resolution image represents a
7 X7 mm retina area obtained using the Avanti RTvue device by Optovue Inc. USA [22]. Thus, to
obtain the resulting vessel image evenly corresponding to its real geometric structure, a properly
reconstructed fundus image must be resized (Fig. 5). For this purpose, we used the bicubic
interpolation.

2.3. Morphologic and filtering operations for reconstruction of blood vessel structure

Vessel segmentation from OCT data needs to overcome some severe problems. Among them
are low reconstructed fundus image resolution, uneven reflectivity of thick vessels in relation
to thin vessels, and acquisition problems such as involuntary eye movements. Methods that can
be considered to be good solutions of these problems are based on morphological operations.
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Their advantage is low complexity and good efficiency [13]. We have selected three combinations
of them, described below, which were then compared experimentally. The process of image
segmentation with the proposed algorithms is illustrated in Fig. 6.

Min(Blur Dilation Vessels
g > L Bl Bal ! > >
BML > original) 06 filling holes net 1
Blur
‘[ | Diff Bl Vi |
BDD ifference(Blur, Dilation Binarization Closure Erosion || Labeling [ essels

original) net 2

Input
fundus

image BH Bottom Hat > -»  Sum +| Closure }—V

Vessels
net 3

Fig. 6. A block diagram of proposed segmentation algorithms: BML, BDD, and BH.

2.3.1. BML (Blur, Minimum, LOG) combination

The first proposed method is based on three following operations: 1) blurring the input fundus
image using Gauss function (Fig. 7a); 2) calculating the minimum value between the blurred and
original images (Fig. 7b); 3) detection of vessel borders with an LOG (Laplacian of Gaussian)
filter (Fig. 7c). The obtained image is then subjected to: 4) binarization with a threshold #;
(Fig. 7d); 5) dilation and filling of holes; 6) labelling and removal of labels with the number of
pixels equal to a threshold #, (Fig. 7e). The result is named Vessel net 1.

a)

ke

Fig. 7. BML combination: a) blur; b) minimum operation; ¢) LOG filtering; d) binarization; e) labelling.

2.3.2. BDD (Blur, Difference, Dilation) combination

In this method, the first step is also blurring the input image with a Gauss function (Fig. 8a).
Next, we subtract the original image from its blurred version (as illustrated in Fig. 8b) to later
dilate it with a linear structural element at 4 angles (0, 45, 90, 135 degrees). The maximal value
of each pixel in these 4 images is chosen (Fig. 8c), and the resulting image is binarized with

Fig. 8. BDD combination: a) blur; b) subtraction; c) dilation; d) binarization; e) labelling.
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a threshold 7 (Fig. 8d). The final step includes morphological closing and erosion, then, similarly
to the BML method, labelling and elimination of small groups of pixels (with the number of
pixels lower than a threshold #,) (Fig. 8e). The result is named Vessel net 2.

2.3.3. BH (Bottom Hat) transformation

This method is based on the Bottom Hat transformation of the input fundus image. The
operation is performed in 6 directions (at angles of: 0, 30, 60, 90, 120, and 150 degrees) (Fig. 9a).
Then, binarization of each image with a threshold #; (Fig. 9b) is followed by detection of diagonal
and horizontal lines, and summation of the obtained images (Fig. 9c). Finally, closing (Fig. 9d)
and labelling (Fig. 9¢) operations are performed. The result is named Vessel net 3.

a)

Fig. 9. BH algorithm: a) BH transformation; b) binarization; c) summation; d) closure; e) labelling.

3. Parameterization of vessels

The primary procedure for the extraction of a blood vessel from a reconstructed fundus image
is the determination of the vessel central line. For this purpose, we used an algorithm for slimming
elongated objects, described by Lam et al. [23]. It is already implemented in the Matlab/Simulink
environment. In the next step selected vessel parameters are measured along the detected central
lines. In this paper, we present tests of calculation of two vessel net parameters, i.e., the vessel
diameter and the vessel branching angle. Fig. 10 illustrates our methodology for determining
these parameters. The proposed approach is described in detail in the following subsections.

3.1. Measurement of vessel diameter

Semi-automatic measurements of vascular diameters with standard procedures, i.e., using a
fundus camera and the resulting high-resolution fundus images, are limited to the area around
the optic nerve head inside a circle of the diameter equal to three times the diameter of the optic
nerve disc [24]. However, the algorithms of segmentation and measurement of vessel thickness
were also tested in other areas [25].

The region of the retina examined with the OCT in the presented experiments does not merely
include the optic nerve head. Therefore, the whole vascular network was checked, and the overall
efficiency of vessel thickness was measured. The widths of the vessels were calculated at regular
intervals of 3 pixels along the central line of the vessels. First, for each of the selected pixels,
the orientation of the central line was determined by using a Matlab/Simulink build-in function
regionprops. This function enables to calculate an angle between the x-axis and the major axis of
the section of the central line in a 5-by-5 pixel region of the image. Next, using the binary image
of the segmented vessel net, the diameter of the vessel was measured along the line perpendicular
to the central line. The range of the measured diameters varied from 1 to 7 pixels.
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3.2. Measurement of branching angle

In the process of analysis of retinal blood vessel structure, the angle of vascular branching is
defined as an angle between side branches calculated in the place of disintegration [26], as shown
in Fig. 10. For each of the side vessels, it is also possible to determine the distribution angles
between the side branches and the main branch. The sum of them is equal to the branching angle.

Segmented
vessels net

@)

Extraction
of central line

Measurement

of vessel thickness
perpendicularly

to the center line

Detection

of branching
points with
3x3 pixel mask

7/'

v

Labeling
of vessels
branches

Measurement

of angle

between 7
branches f

Fig. 10. Automatic parameterization of vessel structure.

In the carried out experiments, a semi-automatic method was used, in which the points of
vessel separation were determined manually. The vectors located along the extracted central lines
(those between the distribution angles) were 10 pixel long.

4. Analysis of vessel segmentation and parameterization accuracy

4.1. Data and experimental setup

As it was mentioned, the experiments concerning analysis of the vessel segmentation accuracy
were performed using fundus images reconstructed from 3D OCT data. The OCT scans were
acquired from 12 healthy volunteers (24 eyes) of 27 on average. Each 3D OCT scan consisted
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of 141 x 385 x 640 data points. The device used for this purpose was an Avanti RTvue OCT
(manufactured by Optovue Inc., Freemont, USA) [22]. Each volumetric dataset was subjected
to retina layer segmentation with our modified graph-theory based approach [17]. Retina layer
segmentation, fundus image reconstruction, and subsequent vessel segmentation were performed
in the Matlab/Simulink environment with the use of Image Processing Toolbox. The resulting
fundus images showed maculae with a resolution of 141 x 385 pixels.

In order to evaluate the received results of the automatic and semi-automatic vessel structure
analysis, the gathered images were also manually segmented by a group of experts from the
Clinical Eye Unit and Pediatric Ophthalmology Service Heliodor Swigcicki University Hospital,
Poznari University of Medical Sciences, to obtain the reference vessel structure. The reference
vessel net was next compared with the automatically segmented retina images, to calculate the
error of proposed automatic segmentation algorithms.

4.2. Results of vessel segmentation

Since the proposed methods have several parameters that need to be set, and not all of them
can be selected automatically, we have analysed the reconstructed fundus images by ourselves to
determine the optimal parameter values presented in Table 1. The optimization criterion was the
best value of F1 score that represents the optimal values of accuracy, precision, sensitivity, and
specificity [27]. Thresholds for binarization were selected from the range of (0, 1).

Table 1. Optimal parameters for segmentation methods.

METHOD OPERATION PARAMETER VALUE
sk si 21 x21
Gauss blurring fask size
o 24
k si 5x5
BML Log filter mask stze
o 0.5
Binarization 1 0.28
Labelling 15} 12
Gauss blurring mask size 21 x21
o 24
Dilation line size 3
BDD Binarization 1 0.12
Closing line size 3
Erosion line size 3
Labelling 23 20
Bottom Hat size 3
Binarization 1 0.4
BH
Labelling diagonal 1) 30
Labelling horizontal 12} 10

Table 2 presents the results of comparison of each automatic method with the manually
segmented reference vessel nets. This test illustrates the results obtained using a selectively
reconstructed fundus image P,. The data indicate that the best efficiency can be obtained with
the BML method and the worst with the BH method. Low accuracy of the BDD method can be
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the effect of an improper vessel thickness estimation. The BH method also results in thicker and
irregular vessel lines what is reflected by lower overall score values. Fig. 11 illustrates an example
of the reference vessel net and the results of proposed segmentation algorithms.

Table 2. Efficiency of automated vessel segmentation methods.

METHOD ACC[I(;I:]ACY PRE[C07I§ION SENS[IO';;I]VITY SPEC[IOI;;I]CITY F1 score
BML 97.18 83.90 79.09 98.64 0.8156
BDD 92.35 50.84 81.06 93.20 0.6249
BH 90.69 45.04 65.59 92.96 0.5341

Fig. 11. Automatically segmented retina vessels overlaid in red on the fundus image for:
a) reference segmentation; b) BML; ¢) BDD; d) BH.

Effectiveness of the methods for segmentation of blood vessels also depends on the selection
of layers used for the reconstruction of the fundus image. As it is shown in Fig. 12, better results
are obtained in the case of the fundus reconstructed from GCL and OS+RPE layers, but not only

from the latter.
0,82
0,68
0,62
I 0,53 052 053
BML

BDD BH
M using O5+RPE projection M using GCL and OS+RPE projection

Fig. 12. Segmentation F1-score values for selected fundus reconstruction methods.

4.3. Influence of automatic vessel segmentation methods on parameterization step

The experimental studies also included analysis of the effectiveness of automatic measure-
ments of blood vessel parameters calculated with the proposed segmentation methods. Table 3
contains the results of analysis of measurements of vascular diameter and branching angles. The
measurements were performed according to the procedures described in Section 3. The analysis
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was based on the comparison of parameters calculated from the automatically and manually seg-
mented vessel structures. It illustrates the impact of the vascular network segmentation methods
on the parameterization step. Table 3 shows that the best measurement efficiency was obtained for
the vessel segmentation using the BML method. The BH method is the least suited for measuring
the vessel parameters. The BDD method also gives worse results than the other two. As can be
expected, the measurement precision is directly influenced by the resolution of the original fundus
image. Thus, in a situation when an average vessel is estimated to be 3 pixels in diameter, even
a 1-pixel error gives a significant difference in evaluation accuracy. It should also be noted, that
even a small distortion in vessel segmentation causes a noticeable error in the branching angle
measurement.

Table 3. Influence of automatic vessel segmentation method on vessel parameterization accuracy.

METHOD WIDTH MEASUREMENT DIVISION ANGLE MEASUREMENT
MSE STD. DEV. MSE STD. DEV.
[pxI] [px] [deg] [deg]
BML 3.15 1.77 12.49 21.86
BDD 17.76 3.02 17.01 21.53
BH 21.20 3.05 25.00 33.83

5. Conclusions

In this paper, we present a new approach to segmentation and parameterization of the retinal
vascular net with the use of OCT examination. The proposed segmentation methods based on
morphological image processing operations were selected and tested due to their marvellous
effectiveness (up to 97%). Further improvement of the effectiveness is, in our opinion, still
possible with the use of adaptive binarization. We plan to examine this problem in the future.

Some difficulties in the fully automatic segmentation resulted from a low contrast between
the thin vessels and the surrounding tissue. Differences in segmentation regarding the vessel
thickness are reflected in the obtained numerical results.

In the case of parameterization of blood vessels, it can be observed that the choice of a
segmentation method is important because it directly influences the parameters of the vascular
net structure description, such as the vessel diameter or angles of vascular distribution.

Currently, there is no normative database for this type of automatic measurements, and they
are not performed in commercial diagnostic systems. The proposed methods as an advanced
diagnostic tool can support ophthalmology specialists. In addition, the authors are currently
working on a proposal to extend the existing methods with 3D OCT data analysis. This will
enable to fully use the available data on the three-dimensional architecture of a vascular net.
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