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Chaos synchronization of uncertain coronary artery systems
through sliding mode
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Abstract. The chaotic phenomena of coronary artery systems are hazardous to health and may induce illness development. From the perspective
of engineering, the potential harm can be eliminated by synchronizing chaotic coronary artery systems with a normal one. This paper investigates
the chaos synchronization problem in light of the methodology of sliding mode control (SMC). Firstly, the nonlinear dynamics of coronary artery
systems are presented. Since the coronary artery systems suffer from uncertainties, the technique of derivative-integral terminal SMC is employed
to achieve the chaos synchronization task. The stability of such a control system is proven in the sense of Lyapunov. To verify the feasibility and
effectiveness of the proposed method, some simulation results are illustrated in comparison with a benchmark.
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1. Introduction

Coronary artery disease has dominated mortality for most of the
past century worldwide [1]. Its treatments, both pharmaceuti-
cal and surgical, have become leading sectors of the healthcare
economy. In 2015, coronary artery disease affected 110 million
people and resulted in 8.9 million deaths [2]. In order to ex-
plore new treatment options, both the medical and engineering
communities try to provide some insight into coronary artery
disease.

From the aspect of medicine, coronary arteries act as the
blood vessels that supply oxygen-rich blood to the heart mus-
cle. In case plaque builds up inside the coronary arteries, the
buildup of plaque gradually obstructs the coronary arteries. Such
obstruction may lead to vascular spasm. The vasospasms con-
stitute the basic cause of a variety of coronary artery disease.
Some drugs have been developed via the mechanism [3].

In the field of engineering, a coronary artery system con-
sists of the bio-mathematical model of blood vessels, where
the vasospasms are the chaotic states of the blood vessels
[4]. Since chaotic systems are sensitive to perturbations, the
chaotic phenomenon may result in fatal chaos in the coro-
nary arteries [5]. The chaotic phenomenon must be suppressed
to avoid serious health problems and illness development.
In order for treatment to be effective, the chaotic suppres-
sion has to achieve the state synchronization of the blood
vessels with the pathological changes and the normal blood
vessels.
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The state synchronization problem of a chaotic system was
proposed by Pecora and Carroll [6]. Since then, the solution of
this problem has become emerging because of lots of poten-
tial applications. Many synchronization approaches have been
developed for various systems. The approaches can be roughly
cataloged into two classes, that is, linear or partial linearisation
methods [7,8] and nonlinear approaches [9,10]. Especially, lin-
ear or partial linearisation methods are just appropriate for stable
linear systems that are characterised by a few distinct peaks in
their power spectrum.

Concerning the coronary artery system, this complex bio-
system is inherently nonlinear and requires nonlinear methods
to achieve its state synchronization. The research topic has been
paid more and more attention and some reports can be seen.
Some synchronization methods have been reported. Gong, Li
and Sun [12] developed a backstepping-based controller to syn-
chronize the spastic vessel with a normal vessel. Li [5] designed
a nonlinear tracking controller and the controller could robustly
and adaptively drive a chaotic coronary artery system into the
normal orbit. Wu et al [11] considered the drug absorption time
and presented the time-delay state feedback control synthesis.

As a nonlinear design tool, the methodology of sliding mode
control (SMC) is advocated for its invariance [13–15]. The in-
variance means that a SMC system on the sliding-mode stage
is completely insensitive to parametric uncertainties and ex-
ternal disturbances under certain matching conditions [16–18].
The characteristic makes the SMC exhibit better performances
than other robust control methods. In practice, Lin, Yang and
Yau [19] have investigated that the SMC-based method can be
carried out for the chaotic suppression problem of coronary
artery systems. Zhao and his colleagues also have applied the
higher-order sliding mode control [24] and the terminal sliding
mode control [20] for the same chaotic suppression problem.

BULLETIN OF THE POLISH ACADEMY OF SCIENCES 
TECHNICAL SCIENCES, Vol. 67, No. 3, 2019
DOI: 10.24425/bpasts.2019.129645

Abstract. The chaotic phenomena of coronary artery systems are hazardous to health and may induce illness development. From the perspective 
of engineering, the potential harm can be eliminated by synchronizing chaotic coronary artery systems with a normal one. This paper investigates 
the chaos synchronization problem in light of the methodology of sliding mode control (SMC). Firstly, the nonlinear dynamics of coronary 
artery systems are presented. Since the coronary artery systems suffer from uncertainties, the technique of derivative-integral terminal SMC is 
employed to achieve the chaos synchronization task. The stability of such a control system is proven in the sense of Lyapunov. To verify the 
feasibility and effectiveness of the proposed method, some simulation results are illustrated in comparison with a benchmark.

Key words: chaos synchronization, coronary artery systems, sliding mode control, nonlinear dynamics.

Chaos synchronization of uncertain coronary artery systems 
through sliding mode

D.W. QIAN1, 3*, Y.F. XI1, and S.W. TONG2

1 School of Control and Computer Engineering, North China Electric Power University, Beijing, 102206, P.R. China 
2 College of Robotics, Beijing Union University, Beijing, 100101, P.R. China 

3 State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences,  
Beijing, 100190, P.R. China

*e-mail: dianwei.qian@ncepu.edu.cn

Manuscript submitted 2018-01-28, revised 2018-07-03 and 2018-09-04,  
initially accepted for publication  2018-10-01, published in June 2019.



456

D.W. Qian, Y.F. Xi, and S.W. Tong

Bull.  Pol.  Ac.:  Tech.  67(3)  2019

The terminal sliding mode control (T-SMC) method is char-
acterized by its terminal sliding surface. Usually, the method
has faster convergence speed and higher steady-state accuracy
than other SMC methods [21,22]. As an extension, the integral
T-SMC method introduces sign and fractional integral termi-
nal sliding mode concepts, it allows a system to start on the
integral terminal sliding surface, and it is able to track relative-
degree-one systems with uncertainties and disturbances [23].
Furthermore, the derivative-integral T-SMC method, a further
progress of the extension, is derived to track high-order sys-
tems because it can guarantee the exact estimation of finite error
convergence time [25].

Motivated by the merits of the progress, this paper investi-
gates the derivative-integral T-SMC method for the chaos syn-
chronization problem in a coronary artery system. The purpose
of the paper is to reduce the occurrence of coronary artery
disease by rejecting the abnormal chaotic behaviors of the coro-
nary artery system. Even when they have different initial condi-
tions, the abnormal chaotic behaviors can still be synchronized
with the normally unstable periodic orbit. For this purpose, the
derivative-integral T-SMC method is adopted to achieve the be-
havior synchronization.

Moreover, the coronary artery system suffers from external
disturbances such as the perturbations of blood pressure, blood
viscosity and body temperature in reality. The external distur-
bances challenge the chaos synchronization problem very much
because they are unknown and unpredictable [26–28]. In the
sense of Lyapunov, the stability of the synchronization con-
trol system with uncertainties is analyzed. Compared with some
published results, the feasibility and effectiveness of the solution
is illustrated via some numerical results.

The remainder of this paper is organized as follows. Section 2
introduces the bio-mathematical model of the coronary artery
system. Section 3 formulates the control problem. The syn-
chronization control via the derivative-integral T-SMC-based
controller is derived in Section 4 for the coronary artery sys-
tem. To show the synchronization performance, some numerical
simulations are carried out in Section 5. Finally, conclusions are
drawn in Section 6.

2. Bio-mathematical model

Inherently, coronary arteries are a kind of muscular blood
vessels. Concerning a coronary artery system, the lumped-
parameter model that describes its dynamics [19] has the form of

ẋ1 =−bx1 − cx2 ,

ẋ2 =−λ (1+b)x1 −λ (1+ c)x2 +λx3
1 +E cosωt,

(1)

where x1 is the inradius change of the vessel, x2 means the
pressure change in the vessel, t indicates the time variable, b, c
and λ denote lumped parameters of the coronary artery system
and E cosωt represents a periodical disturbance term.

As one factor that results in myocardial infarction, coro-
nary artery spasm is caused by partial or complete occlusion
of coronary arteries [1]. (1) reveals the medical phenomenon

from the perspective of mathematics. In (1), the initial con-
dition [x1(0) x2(0)]T = [0.2 0.2]T is taken into consideration,
where the parameters E and ω are determined by 0.3 and 1,
respectively.

Fig. 1 shows the bifurcation diagram of the coronary artery
system (1) with respect to the change of λ , where another pa-
rameters are set by b = 0.15 and c = −1.7. Fig. 2 reveals the
bifurcation diagram of the coronary artery system (1) with re-
spect to the change of b, where another parameters are set by
λ =−0.65 and c =−1.7. Fig. 3 shows the bifurcation diagram

Fig. 1. Bifurcation diagrams with respect to the change of λ
from −1 to 0.

Fig. 2. Bifurcation diagrams with respect to the change of b from 0 to 1.

of the coronary artery system (1) with respect to the change of
c, where another parameters are set by λ =−0.65 and b = 0.15.
All the bifurcation diagrams share the aforementioned initial
condition. The time series are set by 0, 2π , 4π , 6π , 10π and
12π , where the system period is 2π .

Fig. 3. Bifurcation diagrams with respect to the change of c
from −2 to −1.5.

The bifurcation diagrams in Figs 1–3 illustrate that the coro-
nary artery system under some parameters is disordered and
will lead to chaos. As far as the coronary artery system is con-
cerned, the following lumped parameters are considered, that
is, λ = −0.65, b = 0.15, c = −1.7, E = 0.3 and ω = 1. With
the group of lumped parameters, Fig. 4 illustrates the coronary
artery system has very complex dynamics in the phase plane.

Fig. 4. Phase plane of the coronary artery system.

From Figs 1–4, the coronary artery system is apparently dis-
ordered with respect to the changes of these lumped parameters.
The coronary artery system may descend into chaos under some
initial conditions with respect to the change of the lumped pa-
rameters. The chaotic behaviors in clinic medicine indicate that

the vascular spasm of the coronary artery system may exhibit
a series of coronary artery disease, including but not limited to
angina, myocardial infarction, and sudden cardiac death. The
chaos may extremely hazard health and must be suppressed im-
mediately. Since the chaos synchronization problem of such a
coronary artery system is challenging and interesting, this pa-
per explores the problem from the aspect of control design via
derivative-integral terminal sliding mode.

3. Control problem formulation

From the bio-mathematical model (1), the coronary artery sys-
tem with uncertainties (2) can be drawn

ẋ1 =−bx1 − cx2 +d1 ,

ẋ2 =−λ (1+b)x1 −λ (1+ c)x2 +λx3
1

+E cosωt +u(t)+d2 .

(2)

Here x = [x1, x2]
T is defined as the state vector and u(t) gener-

ated by the designed controller is the control input. The vector
d = [d1, d2] describes the uncertainties, meaning unmodelled
dynamics, external disturbances and structural variations.

Assumption 1. d is bounded, that is, ||d||∞ ≤ d∗, where d∗ is a
known positive constant.

Assumption 2. d is slowly time varying, that is, ḋ � 02×1,
where 02×1 = [0, 0]T .

From (2), the nominal system of the coronary artery system
with no control input can be written as

˙̄x1 =−bx̄1 − cx̄2 ,

˙̄x2 =−λ (1+b) x̄1 −λ (1+ c) x̄2 +λ x̄3
1 +E cosωt .

(3)

Concerning the bio-mathematical model (1), (3) can display
different dynamics because it is highly sensitive to its param-
eters. This fact means that even small differences of the pa-
rameters yield widely diverging outcomes of the chaotic behav-
iors. Consequently, the purpose of chaos synchronization in the
coronary artery system is to synchronize the uncertain coronary
artery system (2) with the nominal system (3) via derivative-
integral terminal sliding mode, that is,

lim
t→∞

e = 02×1 . (4)

Here e = [e1, e2], e1 = x1 − x̄1 and e2 = x2 − x̄2
Considering (2), (3) and (4), the error system can be de-

scribed by

ė1 =−be1 − ce2 +d1 ,

ė2 =−λ (1+b)e1 −λ (1+ c)e2 +λe3
1

+3λx1x̄1e1 +u+d2 .

(5)

Further, define x̃1 = e1 and x̃2 = ė1 and differentiate x̃1 and x̃2
with respect to the time variable t. Then, substituting (5) into ˙̃x2
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T is defined as the state vector and u(t) gener-
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e = 02×1 . (4)

Here e = [e1, e2], e1 = x1 − x̄1 and e2 = x2 − x̄2
Considering (2), (3) and (4), the error system can be de-

scribed by

ė1 =−be1 − ce2 +d1 ,
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has the form of

˙̃x1 = x̃2 ,

˙̃x2 = λ (c−b) x̃1 − (b+λ + cλ ) x̃2 −λcx̃3
1 −3cλx1x̄1x̃1

− cu− cd2 + ḋ1 +λ (1+ c)d1 .

(6)

According to Assumption 2, ḋ1 � 0 in (6). Then, (6) can be
written by (7) in the form of state space.

˙̃x = F (x̃,d)+Bu,

y = H (x̃) .
(7)

Here x̃ = [x̃1, x̃2]
T , d = −cd2 + λ (1+ c)d1, H (x̃) = x̃1,

B = [0, −c]T , F (x̃,d) = [x̃2, f (x̃) + d]T and f (x̃) =
λ (c−b) x̃1 − (b+λ + cλ ) x̃2 −λcx̃3

1 −3cλx1x̄1x̃1.

Assumption 3. The functions F(x̃,d) and H(x̃) are sufficiently
smooth so all Lie derivative calculations are well-defined.

Proven by Chiu [25], the derivative-integral T-SMC design
can be available for high relative-degree systems that have higher
relative degree than 1. According to Assumption 3, the relative
degree of (7) can be calculated as (8), (9) and (10) in order to
develop the derivative-integral T-SMC design for (7).

LBH (x̃,d) =
∂H (x̃,d)

∂ x̃
B =

[
1 0

]
×

[
0
−c

]
= 0, (8)

LF H (x̃,d) =
∂H (x̃,d)

∂ x̃
F =

[
1 0

]
×

[
x̃2

f (x̃)+d

]
= x̃2 , (9)

LBLF H (x̃,d) = LB (LF H (x̃,d)) =
∂ (LF H (x̃,d))

∂ x̃
B

=
[

0 1
]
×

[
0
−c

]
=−c �= 0.

(10)

From (8), (9) and (10), the relative degree of (7) can be
determined as 2 so that it is possible to develop a derivative-
integral terminal sliding mode controller for the chaos synchro-
nization [25]. Furthermore, the input-output dynamics can be
expressed as

ÿ = L2
F H (x̃,d)+LBLF H (x̃,d)u. (11)

Here L2
F H (x̃,d) =

∂ (LF H (x̃,d))
∂ x̃

F = f (x̃)+d. Then, (11) can
be written by

ÿ = f (x̃)+d − cu. (12)

4. Derivative-integral T-SMC design

This paper investigates the derivative-integral T-SMC method
for the chaos synchronization problem. The so-called derivative-
integral terminal sliding mode means that the derivative and in-
tegral terms exist in a sliding surface. Motivated by this purpose,

the following sliding surface s is taken into consideration.

s = eD1 +αeI1 . (13)

Here α > 0 is a design parameter, eD1 = ėp11/q11
D0 + βeD0,

eD0 = e1, ėI1 = eq21/p21
D1 (t) and eI1(0) =−eD1(0)

α
, where β > 0

is pre-defined and p11 > q11 > 0 chosen by designers are odd
integers, as well as p21 > q21 > 0.

Theorem 1. If the sliding surface is defined as (13), then
[x̃1, x̃2]

T in (6) will reach 02×1 in the finite convergence time
τDI , where τDI is formulated by

τDI =
|eD1(0)|

1− q21
p21

α
(

1− q21

p21

) +

∣∣eD0(t11)
∣∣1− q11

p11

β
(

1− q11

p11

) . (14)

Here t11 is the reaching time of the sliding mode eD1 = 0.

Proof. From (13), the sliding mode starts at t = 0. From then
on, eD1 =−αeI1 can always hold true via control design. Sub-
sequently, substituting eD1 =−αeI1 into ėI1 = eq21/p21

D1 (t) yields

ėI1 =−α
q21
p21 eI1

q21
p21 , (15)

where eI1(0) =−eD1(0)/α .
Solving (15), the convergent time of eI1 can be gotten as

t11 =
|eD1(0)|

1− q21
p21

α
(

1− q21

p21

) . (16)

On the sliding surface s = 0, eD1 =−αeI1 indicates that the
sliding mode of eD1 takes place at the same time t11 to zero.
When eD1 = 0, eD0 will successively converge to zero. At t = t11,
eD0 can be formulated by

ėD0(t11) =−β
q11
p11 e

q11
p11
D0

(t11). (17)

From (17), the time spent from eD0(t11) to eD0 = 0 can be
calculated as

t01 =

∣∣eD0(t11)
∣∣1− q11

p11

β
(

1− q11

p11

) . (18)

According to (16) and (18), the time spent from s(0) = 0 to
e1 = 0 is their summation because the integral and derivative
terms in (13) are independent. Consequently, the finite conver-
gence time can have the form of (14), that is, τDI = t11+ t01.

Remark 1. At t = 0, s = eD1(0) +αeI1(0). Considering the

definition eI1(0) = −eD1(0)
α

, we have s = 0 at t = 0. This fact
indicates that the sliding mode of the control design takes place
at the time t = 0.

Theorem 2. Consider the bio-mathematical model of the coro-
nary artery system (2); take Assumptions 1, 2 and 3 into account;
define the error system (5) and have the input-output dynamics
(12); formulate the derivative-integral terminal sliding surface
(13). If the derivative-integral T-SMC law is formulated by (19),
the closed-loop chaos synchronization system is then asymptot-
ically stable in the presence of uncertainties.

u =−1
c

[
−ke|ψ|

(
q11

p11

)
A−1 s

|s|

− f (x̃)− [κ sgn(s)+ηs]−d∗
0

]
,

(19)

where A =





ė

(
p11
q11

−1
)

D01 , for

∣∣∣∣∣ė
(

p11
q11

−1
)

D01

∣∣∣∣∣≥ ε

ε, otherwise
, κ > d∗

0 −d >

0, d∗
0 = [|c|+ |λ (1+ c)|]d∗, ke >

1
1−φ

, 0 < φ < 1 and η > 0.

Proof. In order to obtain the derivative-integral T-SMC law, a

Lyapunov candidate is selected as V0 =
1
2

s2. Differentiate V0

with respect to the time variable t. V̇0 = sṡ can be obtained.
Further, the derivative of s can be formulated by

ṡ =
p11

q11
ė

(
p11
q11

−1
)

D0 ëD0 +β ėD0 +α
(

ė
p11
q11
D0 +βeD0

) q21
p21

. (20)

Substituting (12) into (20) yields

ṡ =
p11

q11
ė

(
p11
q11

−1
)

D0 [ f (x̃)+d − cu]+ψ, (21)

where ψ = β ėD0 +α
(

ė
p11
q11
D0 +βeD0

) q21
p21

.

Replacing ṡ in V̇0 by (21) gives

V̇0 = s
p11

q11
ė

(
p11
q11

−1
)

D0 [ f (x̃)+d − cu]+ sψ. (22)

Consider the derivative-integral T-SMC law (19). Then, (22)
can be written by

V̇0 = sψ − sė

(
p11
q11

−1
)

D0 ke|ψ|A−1 s
|s|

+ s
p11

q11
ė

(
p11
q11

−1
)

D0 [d −d∗
0 − (κ sgn(s)+ηs)] .

(23)

Owing to p11 > 0, q11 > 0 and p11 > q11,
p11

q11
> 1 exists

such that ė

(
p11
q11

−1
)

D01 > 0 holds true in (19) for all ė

(
p11
q11

−1
)

D01 �= 0.
Consequently, the first and second terms in (23) can have the

form of

sψ − sė

(
p11
q11

−1
)

D0 ke |ψ|A−1 s
|s|

= sψ − ke |ψ|s+ ke |ψ|AA−1s− sė

(
p11
q11

−1
)

D0 ke |ψ|A−1 s
|s|

≤ |ψs|− ke|ψs|+ ke

∣∣∣∣∣ψ
(

A− ė

(
p11
q11

−1
)

D0

)
A−1s

∣∣∣∣∣ .

(24)

Concerning the expression of A, a parameter φ > 0 exists such
that ∣∣∣∣∣

(
A− ė

(
p11
q11

−1
)

D01

)
A−1

∣∣∣∣∣≤ φ < 1. (25)

Consequently, (24) can be written by

sψ − sė

(
p11
q11

−1
)

D0 ke|ψ|A−1 s
|s|

≤ |ψs|− ke(1−φ)|ψs|. (26)

In order to have sψ − sė

(
p11
q11

−1
)

D0 ke|ψ|A−1 s
|s| < 0, ke >

1
1−φ

is

picked up.
Further, the third term in (23) can be written by

s
p11

q11
ė

(
p11
q11

−1
)

D0 [d −d∗
0 − (κ sgn(s)+ηs)]

=
p11

q11
ė

(
p11
q11

−1
)

D0

[
(d −d∗

0)s−κ|s|−ηs2]

≤ p11

q11
ė

(
p11
q11

−1
)

D0

{
[(d∗

0 −d)−κ] |s|−ηs2} .

(27)

In order to have s
p11

q11
ė

(
p11
q11

−1
)

D0 [d −d∗
0 − (κ sgn(s)+ηs)] < 0,

κ > d∗
0 −d > 0 and η > 0 are selected.

From (26) and (27), V̇0 < 0 holds true by the derivative-
integral T-SMC design, that is, the control design can synchro-
nize the uncertain coronary artery system.

Remark 2. From the control design and proof, the uncertainties
do not necessarily satisfy the matched condition of the sliding
mode control [13]. In fact, they can be either matched or mis-
matched. Even, they could be mixed uncertainties that contain
both matched and mismatched uncertainties.

5. Simulation results

This section presents some numerical simulation results that
illustrate the feasibility, validity and robustness of the presented
method in comparison with a benchmark. Consider a coronary
artery system. Its lumped parameters are fixed to λ = −0.65,
b = 0.15, c = −1.7, E = 0.3 and ω = 1 in (2) and (3). These
parameters are kept unchanged from the model presented by
[24], as well as the initial states [x̄1(0), x̄2(0)]T = [0.2, 0.2]T .
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Theorem 2. Consider the bio-mathematical model of the coro-
nary artery system (2); take Assumptions 1, 2 and 3 into account;
define the error system (5) and have the input-output dynamics
(12); formulate the derivative-integral terminal sliding surface
(13). If the derivative-integral T-SMC law is formulated by (19),
the closed-loop chaos synchronization system is then asymptot-
ically stable in the presence of uncertainties.

u =−1
c

[
−ke|ψ|

(
q11

p11

)
A−1 s

|s|

− f (x̃)− [κ sgn(s)+ηs]−d∗
0

]
,

(19)

where A =





ė

(
p11
q11

−1
)

D01 , for

∣∣∣∣∣ė
(

p11
q11

−1
)

D01

∣∣∣∣∣≥ ε

ε, otherwise
, κ > d∗

0 −d >

0, d∗
0 = [|c|+ |λ (1+ c)|]d∗, ke >

1
1−φ

, 0 < φ < 1 and η > 0.

Proof. In order to obtain the derivative-integral T-SMC law, a

Lyapunov candidate is selected as V0 =
1
2

s2. Differentiate V0

with respect to the time variable t. V̇0 = sṡ can be obtained.
Further, the derivative of s can be formulated by

ṡ =
p11

q11
ė

(
p11
q11

−1
)

D0 ëD0 +β ėD0 +α
(

ė
p11
q11
D0 +βeD0

) q21
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. (20)

Substituting (12) into (20) yields

ṡ =
p11

q11
ė

(
p11
q11

−1
)

D0 [ f (x̃)+d − cu]+ψ, (21)

where ψ = β ėD0 +α
(

ė
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D0 +βeD0

) q21
p21

.

Replacing ṡ in V̇0 by (21) gives

V̇0 = s
p11

q11
ė

(
p11
q11

−1
)

D0 [ f (x̃)+d − cu]+ sψ. (22)

Consider the derivative-integral T-SMC law (19). Then, (22)
can be written by
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+ s
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ė
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(23)

Owing to p11 > 0, q11 > 0 and p11 > q11,
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D01 > 0 holds true in (19) for all ė
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−1
)

D01 �= 0.
Consequently, the first and second terms in (23) can have the

form of
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(
p11
q11

−1
)

D0 ke |ψ|A−1 s
|s|

= sψ − ke |ψ|s+ ke |ψ|AA−1s− sė
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Concerning the expression of A, a parameter φ > 0 exists such
that ∣∣∣∣∣
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)
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Consequently, (24) can be written by
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picked up.
Further, the third term in (23) can be written by
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In order to have s
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ė

(
p11
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)

D0 [d −d∗
0 − (κ sgn(s)+ηs)] < 0,

κ > d∗
0 −d > 0 and η > 0 are selected.

From (26) and (27), V̇0 < 0 holds true by the derivative-
integral T-SMC design, that is, the control design can synchro-
nize the uncertain coronary artery system.

Remark 2. From the control design and proof, the uncertainties
do not necessarily satisfy the matched condition of the sliding
mode control [13]. In fact, they can be either matched or mis-
matched. Even, they could be mixed uncertainties that contain
both matched and mismatched uncertainties.

5. Simulation results

This section presents some numerical simulation results that
illustrate the feasibility, validity and robustness of the presented
method in comparison with a benchmark. Consider a coronary
artery system. Its lumped parameters are fixed to λ = −0.65,
b = 0.15, c = −1.7, E = 0.3 and ω = 1 in (2) and (3). These
parameters are kept unchanged from the model presented by
[24], as well as the initial states [x̄1(0), x̄2(0)]T = [0.2, 0.2]T .
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Further, the uncertain system (2) contains two disturbance
sources, that is, d1 and d2. From the viewpoint of sliding mode
control, the two disturbances have different characteristics that
d2 is matched and d1 is mismatched. Further, d1 and d2 are
merged into d in (6). From the expression of d, both u and
d2 share the same coefficient −c. This fact indicates that d2
is matched. Meanwhile, d1 can hardly be matched because its
coefficient λ (1+ c) is almost impossible to −c.

Pointed out by Utkin [13], the matched uncertainties enter the
coronary artery system through the control channel u, so that
the control system is insensitive to the uncertainties when the
sliding mode is reached. Concerning the presented derivative-
integral T-SMC design, its sliding mode takes place at t = 0,
that is, such a control design is inherently robust regardless of
the matched term d2 in (2) and (6).

In order to demonstrate the robustness of the presented control
design, the two kinds of uncertainties will be taken into consid-
eration, respectively. Both d1 and d2 are injected to the coronary
artery system, separately. Irrespective of the kind of uncertain-
ties, the following parameters of the derivative-integral terminal
sliding mode controller are kept unchanged, that is, α = β = 2,

Fig. 5. Errors, sliding mode variable and control input in (7) in comparison with the benchmark
under the effects of matched uncertainties.

Fig. 6. Phase plane trajectories of the error system (7), the nominal system (3) and the uncertain system (2) under the
effects of matched uncertainties.

p11 = p21 = 9, q21 = q11 = 7, ε = 6, φ = 0.9, ke = 20 and
η = 0.1.

5.1. Matched uncertainties. In order to illustrate the effects
of matched uncertainties, d1 is set to 2sin(t) and d2 is set to
be 0. Under the condition, the other controller parameters are
determined by d∗ = 3.5, d∗

0 = 7.54 and κ = 8.0. Figure 5 dis-
plays the presented approach can effectively suppress the chaotic
phenomenon under the effects of matched uncertainties. In con-
trast, the control performance via the method in [24] is not as
well as expected although this method can achieve the chaotic
suppression. Proven by Theorem 2, the error system can be
asymptotically stabilized by the presented method. Meanwhile,
the sliding mode of the presented method starts at t = 0 and
can be reached in the finite time, indicating that the errors are
convergent to zero in the finite time as proven by Theorem 1.
Although the curves of the control input almost make no differ-
ence, the presented method has better control performance in
Figure 5.

Figure 6 depicts the phase plane trajectories of the error
system (7), the nominal system (3) and the uncertain system (2).

Further, the uncertain system (2) contains two disturbance
sources, that is, d1 and d2. From the viewpoint of sliding mode
control, the two disturbances have different characteristics that
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merged into d in (6). From the expression of d, both u and
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integral T-SMC design, its sliding mode takes place at t = 0,
that is, such a control design is inherently robust regardless of
the matched term d2 in (2) and (6).

In order to demonstrate the robustness of the presented control
design, the two kinds of uncertainties will be taken into consid-
eration, respectively. Both d1 and d2 are injected to the coronary
artery system, separately. Irrespective of the kind of uncertain-
ties, the following parameters of the derivative-integral terminal
sliding mode controller are kept unchanged, that is, α = β = 2,

Fig. 5. Errors, sliding mode variable and control input in (7) in comparison with the benchmark
under the effects of matched uncertainties.

Fig. 6. Phase plane trajectories of the error system (7), the nominal system (3) and the uncertain system (2) under the
effects of matched uncertainties.
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η = 0.1.

5.1. Matched uncertainties. In order to illustrate the effects
of matched uncertainties, d1 is set to 2sin(t) and d2 is set to
be 0. Under the condition, the other controller parameters are
determined by d∗ = 3.5, d∗

0 = 7.54 and κ = 8.0. Figure 5 dis-
plays the presented approach can effectively suppress the chaotic
phenomenon under the effects of matched uncertainties. In con-
trast, the control performance via the method in [24] is not as
well as expected although this method can achieve the chaotic
suppression. Proven by Theorem 2, the error system can be
asymptotically stabilized by the presented method. Meanwhile,
the sliding mode of the presented method starts at t = 0 and
can be reached in the finite time, indicating that the errors are
convergent to zero in the finite time as proven by Theorem 1.
Although the curves of the control input almost make no differ-
ence, the presented method has better control performance in
Figure 5.

Figure 6 depicts the phase plane trajectories of the error
system (7), the nominal system (3) and the uncertain system (2).

As proven by Theorem 2, the coronary artery system with
matched uncertainties can synchronize the nominal coronary
artery system by the presented method in Fig. 7. Meanwhile,
the tracking errors can be convergent to zero in the limited time
given in (14).

5.2. Mismatched uncertainties. Since the mismatched uncer-
tainties can not be suppressed by the invariance of SMC, it is
indispensable to illustrate their effects on the control perfor-
mance. In order to illustrate the effects of mismatched uncer-
tainties, d1 is set to 0 and d2 is set to be 2sin(t). Under the
condition, the other controller parameters are determined by
d∗ = 2, d∗

0 = 4.15 and κ = 6.0. Figure 7 shows that the pre-
sented method can also suppress the chaotic phenomenon even
if the mismatched uncertainties exist in the coronary artery sys-
tem. Although the invariance of SMC can not overcome the mis-
matched uncertainties, the presented method can deal with them
via the derivative-integral terminal sliding mode control design.
Further, the sliding surface variable is also demonstrated. Com-
pared with the curve by the method in [24], the sliding mode of

Fig. 7. Errors, sliding mode variable and control input in (7) in comparison with the benchmark
under the effects of mismatched uncertainties.

Fig. 8. Phase plane trajectories of the error system (7), the nominal system (3) and the uncertain system (2) under the
effects of mismatched uncertainties.

the presented method can be reached at a shorter time and keep
on sliding on the surface even if the mismatched uncertainties
have adverse effects.

Figure 8 shows the phase plane trajectories of the error sys-
tem (7), the nominal system (3) and the uncertain system (2)
under the effects of mismatched uncertainties. Shown in Fig. 8,
the coronary artery system with mismatched uncertainties can
achieve the synchronization with the nominal coronary artery
system as proven by Theorem 2.

Regardless of the kinds of uncertainties, the presented
method in Figs. 5–8 can solve the adverse effects of the
uncertainties and synchronize the uncertain coronary artery
system with the nominal one. In clinic, the solution can
contribute to the reduction and elimination of chaotic va-
sospasms, where the mechanism is to synchronize any chaotic
blood vessels with a nominal one. The presented method can
also benefit the research and development of clinical phar-
macy for therapeutic purposes because medications can be
treated as a kind of control input to suppress the chaotic va-
sospasms.
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system with the nominal one. In clinic, the solution can
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blood vessels with a nominal one. The presented method can
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Fig. 6. Phase plane trajectories of the error system (7), the nominal system (3) and the uncertain system (2) under the effects of matched 
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Fig. 5. Errors, sliding mode variable and control input in (7) in comparison with the benchmark under the effects of matched uncertainties
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As proven by Theorem 2, the coronary artery system with
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the tracking errors can be convergent to zero in the limited time
given in (14).
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mance. In order to illustrate the effects of mismatched uncer-
tainties, d1 is set to 0 and d2 is set to be 2sin(t). Under the
condition, the other controller parameters are determined by
d∗ = 2, d∗

0 = 4.15 and κ = 6.0. Figure 7 shows that the pre-
sented method can also suppress the chaotic phenomenon even
if the mismatched uncertainties exist in the coronary artery sys-
tem. Although the invariance of SMC can not overcome the mis-
matched uncertainties, the presented method can deal with them
via the derivative-integral terminal sliding mode control design.
Further, the sliding surface variable is also demonstrated. Com-
pared with the curve by the method in [24], the sliding mode of
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Fig. 8. Phase plane trajectories of the error system (7), the nominal system (3) and the uncertain system (2) under the
effects of mismatched uncertainties.
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system with the nominal one. In clinic, the solution can
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sospasms, where the mechanism is to synchronize any chaotic
blood vessels with a nominal one. The presented method can
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6.	 Conclusions

Coronary artery disease can be induced by blood vessel spasms. 
Since the vasospasms can be considered as chaos in the aspect 
of engineering, this paper has explored the chaos synchroniza-
tion problem of coronary artery systems. In order to have some 
insight into the bio-mathematical model of coronary artery 
systems, their nonlinear behaviors are presented by a series of 
bifurcation diagrams with respect to the changes of lumped 
parameters. The degree of complexity is described by the phase 
plane trajectory of coronary artery systems. The purpose is to 
synchronize any chaotic coronary arteries with a nominal one. 
Motivated by the purpose, the method of derivative-integral 
terminal sliding mode control is taken into consideration. Coro-
nary artery systems suffer from uncertainties. Provided that the 
uncertainties have a known boundary, the stability of the pre-
sented approach has been proven in the sense of Lyapunov. The 
uncertainties integrate both matched and mismatched uncertain-
ties, where the mismatched uncertainties can not be suppressed 
by the invariance. The simulation results via some comparisons 
have demonstrated the effectiveness, feasibility and robustness 
of the presented method regardless of uncertainties. The pre-
sented approach is beneficial to the research and development 
of clinical pharmacy.
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