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Variable order 3D models of bone remodelling
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Abstract. This paper presents simulations of a three-dimensional model of the bone remodelling process. The model consists of a set of variable
order partial differential equations, in which the varying order depends on the presence of tumour cells. The simulations are of a two-dimensional
bone, to make visualisation simpler. They show that this model corresponds to the known evolution of bone remodelling, and is simpler than
integer order models found in the literature.

Key words: variable order derivatives, bone remodelling, cancer.

1. Introduction

Bone tissue, just like every other tissue in the human body,
undergoes constant remodelling: it is absorbed by cells termed
osteoclasts and rebuilt by cells termed osteoblasts. It is possible
to model this remodelling activity using a system of differential
equations, as in [7]. Such a model shows how bone remodelling
may lead to periodic oscillations of the bone mass, around a
steady state value. This model can be adapted to include the
effects of a tumour, which modifies the equilibrium of bone
remodelling for its own profit. It is also possible to extend the
model, accounting for diffusion processes. This leads to a sys-
tem of partial differential equations. These improvements of the
model have been done in [1].

Diffusion processes in biological systems are often anoma-
lous [9]; this can be modelled using fractional derivatives [5].
And the model adaptation to the tumourous case can be simpli-
fied by considering that the fractional derivative is of variable
order: the effects of the tumour correspond to the case of sub-
diffusion [12]. Thus, variable order systems of partial differen-
tial equations can be used to model bone remodelling, of both
healthy and tumourous bone tissue, more concisely and easily
than using integer order derivatives only.

The effects of diffusion have always been considered in the
literature as taking place in one dimension (1D) only, as if the
bone were a straight line, or, in other words, as if the bone had
a neglectable section, when compared to its length. In this pa-
per, models are presented for the first time in three dimensions
(3D); for ease of visualisation, simulations are presented in two
dimensions (2D): the bone is now approximated by a rectan-
gle, with neglectable thickness. Equations are solved using a
mixed method. The extension of this numerical method to 3D
is straightforward.

∗e-mail: duarte.valerio@tecnico.ulisboa.pt

Section 2 presents the original, integer order models, from
[1, 7]. Section 3 presents the variable order model from [12],
extended to 3D. Simulation results when one of the dimensions
is neglectable are found in Section 4. Section 5 discusses these
results and offers a short conclusion.

2. The original integer order models

The model for healthy bone tissue remodelling of [7] has the
form of an S-system [14]. The normalised number of osteoclasts
C(t) and the normalised number of osteoblasts B(t) are related
through biochemical autocrine factors gCC and gBB , and also
through paracrine factors gBC gCB . The density of the bone z(t)
is determined by the extent to which C(t) and B(t) exceed their
steady state levels CSS and BSS . Below these steady state levels,
the populations of osteoclasts and osteoblasts are assumed to
consist of less differentiated cells that are unable to resorb or
build bone, but are able to participate in autocrine and paracrine
signaling. Constants κC and κB represent bone resorption and
formation activity.

dC(t)
dt

= αCC(t)gCC B(t)gBC −βCC(t), (1)

dB(t)
dt

= αBC(t)gCB B(t)gBB −βBB(t), (2)

dz(t)
dt

=−κC max [0,C(t)−Css]

+κB max [0,B(t)−Bss]. (3)

The 1D model for bone with an osteolytic tumour in [1] has the
autocrine and paracrine factors altered by the tumours through
ri j parameters. The tumour density T (x, t) has a Gompertz form
of constant growth γT > 0, independent of bone loss, corre-
sponding to a possible maximum tumour size of LT , as seen in
Fig. 1. The diffusion coefficients are σC , σB and σT ; as to σz, it
does not represent diffusion of (healthy) bone cells, but is rather
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Fig. 1. Tumour evolution

intended to model the stochastic nature of bone remodelling.
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LT
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, (6)

∂ z(x, t)
∂ t

= σz
∂ 2z(x, t)

∂x2 −κC max [0,C(x, t)−Css]

+κB max [0,B(x, t)−Bss]. (7)

3. The variable order model

Variable order derivatives generalise the concept of fractional
(or, more exactly, non-integer) order derivatives, which are
themselves a generalisation of the usual concept of integer or-
der derivatives (and integrals, which are derivatives of negative
order). Let us denote the derivative of order n as Dn; then by
definition

D1 f (t) = lim
h→0

f (t)− f (t −h)
h

(8)

and by mathematical induction we get

Dn f (t) = lim
h→0

n

∑
k=0

(−1)k
(

n
k

)
f (t − kh)

hn . (9)

This can be generalised for an arbitrary order α ∈R as

cDα
t f (t) = lim

h→0+

� t−c
h �

∑
k=0

(−1)k
(

α
k

)
f (t − kh)

hα , (10)

(
a
b

)
=




Γ(a+1)
Γ(b+1)Γ(a−b+1) , if a,b,a−b ∈R\Z−,

(−1)bΓ(b−a)
Γ(b+1)Γ(−a) , 0if a ∈ Z− ∧ b ∈ Z+,

0, if
(
(b ∈Z− ∨b−a ∈N)∧a ∈R\Z−)
∨(a,b ∈Z− ∧ |a|> |b|).

(11)

This definition (one among other possible ones) is due to the
work of Grünwald and Letnikoff [11,13,18,19], and uses the Γ
function to generalise combinations. Notice that terminals c and
t, similar to those of integrals, appear for all real non-integer
orders.

As the order α is real, it can change continuously with time
(the order of an integer derivative can only change in steps); one
of the possible ways of taking this variation of the order into
account is the recursive definition D of papers [8, 10, 15], used
in what follows for the variable order derivative D

0 Dα(t)
t , and

approximated with a finite sample time h = 1 day as follows:

D
0 Dα(t)

t f (t)≈

(
f (t)

hα(t)
−

n

∑
r=1

(−1)r
(
−α(t)

r

)D

0
Dα(t)

t−rh f (t)

)
. (12)

In the model presented in [12] it is the variable order
α(t,x,y,z) that induces the response of the tumourous bone.
The order is related to the tumour through (17), and changes as
well with time, with a constant θ scale factor. Its 3D version
will now be

∂ αC
∂ tα = σC

∂ 2C
∂x2 +σC

∂ 2C
∂y2 +σC

∂ 2C
∂ z2

+αCC(t)gCC BgBC −βCC, (13)

∂ α B
∂ tα = σB

∂ 2B
∂x2 +σB

∂ 2B
∂y2 +σB

∂ 2B
∂ z2

+αBC(t)gCB B(t)gBB −β BB(t), (14)

∂T
∂ t

= σT

∂ 2T
∂x2 +σT

∂ 2T
∂y2 +σT

∂ 2T
∂ z2

+ γCT log
LT

T
, (15)

∂ z
∂ t

= σz
∂ 2z

∂x2 +σz
∂ 2z

∂y2 +σz
∂ 2z

∂ z2

−κC [0,C−Css]+κB [0,B−Bss] , (16)

α = 1−T θ t. (17)

In these equations, the dependence of α(t,x,y,z), C(t,x,y,z),
B(t,x,y,z), T (t,x,y,z) and z(t,x,y,z) on space and time has
been dropped to alleviate the notation. Notice that, in both the
original and the variable order model, T is limited to the [0,1]
range, by definition.
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The new model’s steady-state is the same as that of the model
for healthy bone, and most parameters remain with the same
value, while the associated activity of osteoclasts and osteoblasts
in bone mass must differ from the original case. Then, a new

bone resorption-formation ratio, R =

∫ t
0 max [0,C(t)−Css]∫ t
0 max [0,B(t)−Bss]

, is

determined between 0 and t, that corresponds to the comple-
tion time of a single cycle of C(t) and B(t) in the new model.
This method is the same followed in [1], for a healthy bone
environment. Bone resorption and formation activities are then
recalculated and given by κC = rR and κB = r.

4. Simulation results

Simulation parameters are given in Table 1. The initial number
of osteoblasts is constant and taken from [1]; the initial (non-

Table 1
Variables and parameters used in simulations, from [12]. Parameters, in both meaning and value, follow what was

presented in [1]. In the case of the model of section 3, units day−1 are replaced by pseudo-units day−α(t,x,y,z)

Variables Description Units
t Time days
x, y, z Spatial dimensions non-dimensional
C Number of osteoclasts –
B Number of osteoblasts –
z Bone mass %
T Bone metastases size %
Parameters Description Units
αC Osteoclasts activation rate 3 day−1

αB Osteoblasts activation rate 4 day−1

βC Osteoclasts apoptosis rate 0.2 day−1

βB Osteoblasts apoptosis rate 0.02 day−1

gCC Osteoclasts autocrine regulator 1.1 –
gBC Osteoclasts paracrine regulator −0.5 –
gCB Osteoblasts paracrine regulator 1.0 –
gBB Osteoblasts autocrine regulator 0 –
LT Maximum size of bone metastases 100 %
B(0) Initial number of osteoblasts 316 –
z(0) Initial bone mass percentage 100 %
T (0) Initial bone mass percentage 1 %
α(t) Time dependent variable order – –
θ Variable order gradient 8.33×10−9 –
κC Bone resorption rate (for healthy bone) 0.45 % day−1

κB Bone formation rate (for healthy bone) 0.0048 % day−1

κC Bone resorption rate (for tumourous bone) 0.1548 % day−1

κB Bone formation rate (for tumourous bone) 6.8176×10−4 % day−1

γT Bone metastases growth rate 0.004 % day−1

σC Diffusion coefficient of osteoclasts 1×10−6 day−1

σB Diffusion coefficient of osteoblasts 1×10−6 day−1

σT Diffusion coefficient of tumour cells 1×10−6 day−1

σz Diffusion coefficient of bone cells 1×10−6 day−1

constant) distribution of osteoclasts is also based upon that used
in [1] (in 1D), and is given in the figures below. Simulations
were carried out using Simulink. Partial differential equations
were solved using, for time derivatives, a fixed-step third-order
method provided by the software, and, for space derivatives, a
fixed-step centred finite difference method, for which the bone
was approximated as a 10×10 square.

Figure 2 shows the results of a simulation in which there is
no tumour (T (x, t,z, t) = 0 always and everywhere). Figures 3
and 4 show a simulation in which a tumour begins in one point
and spreads. The simulation time is 700 days (slightly under
2 years) in both cases. Notice that healthy bone has a mass
that oscillates around 100%, both in space and in time, with
a period under one year. Equation parameters are adjusted so
that this behaviour takes place, as it is what can be observed
in vivo. The growth of the tumour causes a steady decrease of
bone mass, even in zones not yet affected by the tumour it-
self, which is a consequence of the deregulation of the biochemi-
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Fig. 2. Bone mass evolution for healthy bone



505

Variable order 3D models of bone remodelling

Bull.  Pol.  Ac.:  Tech.  67(3)  2019

0

2

4

6

8

10

0

2

4

6

8

10

99.5

100

100.5

x

1 days

y

b
o

n
e

 m
a

s
s

0

2

4

6

8

10

0

2

4

6

8

10

99

99.5

100

100.5

101

101.5

102

102.5

x

100 days

y

b
o

n
e

 m
a

s
s

0

2

4

6

8

10

0

2

4

6

8

10

90

91

92

93

94

95

96

97

98

x

200 days

y

b
o

n
e

 m
a

s
s

0

2

4

6

8

10

0

2

4

6

8

10

87

88

89

90

91

92

93

94

95

x

300 days

y

b
o

n
e

 m
a

s
s

0

2

4

6

8

10

0

2

4

6

8

10

84

85

86

87

88

89

90

91

92

93

x

400 days

y

b
o

n
e

 m
a

s
s

0

2

4

6

8

10

0

2

4

6

8

10

78

79

80

81

82

83

84

85

86

x

500 days

y

b
o

n
e

 m
a

s
s

0

2

4

6

8

10

0

2

4

6

8

10

74

76

78

80

82

84

86

88

x

600 days

y

b
o

n
e

 m
a

s
s

0

2

4

6

8

10

0

2

4

6

8

10

62

64

66

68

70

72

74

76

78

80

x

700 days

y

b
o

n
e

 m
a

s
s

Fig. 3. Bone mass evolution in the presence of a tumour
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Fig. 4. Tumour evolution in the case shown in Fig. 3
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cal equilibria, and of the diffusion of osteoblasts and osteoclasts.
This behaviour corresponds to a particular type of bone lesion
called osteolytic disease, in which mass decreases in this wise.
Other bone cancers are osteoblastic, and in that situation bone
regulation is disrupted so that its mass increases undesirably;
this could be simulated with a different variation of the order of
the fractional derivatives.

5. Discussion and conclusions

Models for bone remodelling based upon the corresponding bio-
chemical processes can give important insights about how bone
tissue behaves, and can support the development of clinical de-
cision systems for bone pathologies, and for efficient targeted
therapies. Thus simplified models mimicking bone behaviour
with tumours are important for a treatment tailored for each
particular patient. This paper presents one further step in new
approaches to the existing biochemical models [1,7], by includ-
ing diffusion in more than one dimension. The use of variable
order derivatives [12] allows a reduced set of parameters to de-
scribe results similar to those from the original formulations,
and a more compact model is achieved, with good qualitative
simulations of what is known for the bone dynamics. These
are the strengths of this variable order model over integer order
models: taking into account anomalous diffusion, which integer
order derivatives do not, and modelling all the phenomena with
less parameters.

Future work should address the following points:
• There are integer order models with a more detailed descrip-

tion of the biochemical processes involved [6,17]. They too
could be simplified using variable order derivatives.

• Mechanical solicitations also affect bone remodelling [2,3].
The biochemical effects of these mechanical solicitations
can be found and incorporated in the models, coupled with
the biochemical physiology already analysed.

• It is possible to include in the models of tumours the results
of cancer treatments [1,6]. Pharmacokinetic and pharmaco-
dynamic effects can be included. Simulations for these cases
are still wanting.

• Optimal control and adaptive control can be used to find
the best possible treatment for a particular case, provided
that accurate parameters can be found [16]. These control
techniques can be employed here as well.

Concerning this last issue, it surely would be most desirable
to have experimental data to find values for the coefficients of
the models. It is even possible to conceive different parameters
being found for particular patients, allowing treatments adjusted
in advance for each case (personalised medicine). It is possible
that such data may be extrapolated from experiments with ani-
mals, since collecting the data from humans is likely to be too
expensive, and, furthermore, unethical, due to the invasiveness
of collection procedures. Data could also result from medical
imaging techniques [4]. Model parameters in this paper are little
more than educated guesses by clinicians and oncobiologists at
the magnitude of the values; while current results are reasonable

from the qualitative point of view, finding actual experimental 
values is probably the model’s biggest challenge.

The analysis and simulation of these models may bring new 
insights on bone physiology and provide a better understanding 
of cancer treatments, thus supporting the relief of the millions 
of patients diagnosed each year.
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