
557Bull.  Pol.  Ac.:  Tech.  67(3)  2019

BentSign: keyed hash algorithm based on bent Boolean function
and chaotic attractor

M. TODOROVA1, B. STOYANOV1, K. SZCZYPIORSKI2∗, W. GRANISZEWSKI2,
and K. KORDOV1

1 Konstantin Preslavsky University of Shumen, 115 Universitetska Str., 9712 Shumen, Bulgaria.
2 Warsaw University of Technology, Pl. Politechniki 1, 00-661 Warsaw, Poland.

Abstract. In this study, we propose a novel keyed hash algorithm based on a Boolean function and chaotic attractor. The hash algorithm called
BentSign is based on two Signature attractors and XOR function and a bent Boolean function. The provided theoretical and experimental results
confirm that the novel scheme can generate output hashes with a good level of security, collision resistance, and protection against most common
attacks.

Key words: hash algorithm, chaotic attractor, Bent Boolean function, pseudorandom bit generation scheme.

1. Introduction

Keyed hash algorithms play an important role in communication
services. They map data of arbitrary lengths to data of fixed
length. Applications include message authentication, password
storage, and data integrity. The cryptographic hash algorithms
were introduced in [8] by Diffie and Hellman for using in public
key infrastructure. They are characterized by: (a) sensitivity,
(b) collision resistance, (c) uniform distribution, and (d) static
confusion and diffusion properties.

In [6,14,17,20,21,28–31], and [36], a number of generation
schemes and program tools based on chaotic attractors and shift
registers, are proposed. They can be successfully integrated in
social networks [19] and [37].

In recent years, high dimensional chaotic systems have been
admirable scientific area and have got much emphasis in data
transmissions field. In [9], an image encryption constructed by
eight dimensional chaotic map is proposed. In [39], a video
encryption algorithm based on the twelve-dimensional chaotic
map and the Ikeda delay differential equation is presented. The
authors of [1] used high dimensional map to present novel par-
allel hash algorithm. A novel hash function based on a four-
dimensional hyperchaotic Lorenz system is designed in [22].
Other examples with research about high dimensional chaos
based hash algorithms can be found in [10–12, 15], and [38].
The high dimensional chaotic systems have significant charac-
teristics such as difficult dynamic reconstruction, long period
without any doubling, and ergodicity [1, 4].

In our humble opinion, the main contributions of our work
can be summarized as follows:

∗e-mail: ksz@tele.pw.edu.pl

• We propose novel pseudorandom bit algorithm based on two
Signature attractors, which has good statistical options;

• We combine the pseudorandom generator with bent Boolean
function to novel keyed hash algorithm;

• We evaluate the proposed algorithm, and the results illus-
trate that it has good capabilities of confusion and diffusion,
strong collision resistance and has desirable security proper-
ties that can withstand most common attack such as birthday
attack, meet-in-the-middle attack, and pre-image attack.

In Section 2 we present a novel pseudorandom output bit
scheme based on two Signature attractors. In Section 3 we pro-
vide some introduction to bent Boolean functions. In Section 4
we present the novel hash algorithm BentSign and complete se-
curity analysis is given. Finally, the last section concludes the
paper.

2. Pseudorandom bit construction based on
chaotic attractor

The work presented in this section was motivated by recent
developments in chaos-based pseudorandom generation [13,32–
34], and [35].

2.1. Proposed pseudorandom bit generation scheme. The
Signature attractor is presented in [26], Eq. (1):

xt+1 = xt cosθt − yt sinθt +1−0.8xtzt ,

yt+1 = xt sinθt + yt cosθt ,

zt+2 = 1.4zt+1 +0.3zt(1− zt),

θt = 5.5− 1√
x2

t + y2
t + z2

t
.

(1)

BULLETIN OF THE POLISH ACADEMY OF SCIENCES 
TECHNICAL SCIENCES, Vol. 67, No. 3, 2019
DOI: 10.24425/bpasts.2019.129654

Abstract. In this study, we propose a novel keyed hash algorithm based on a Boolean function and chaotic attractor. The hash algorithm called 
BentSign is based on two Signature attractors and XOR function and a bent Boolean function. The provided theoretical and experimental 
results confirm that the novel scheme can generate output hashes with a good level of security, collision resistance, and protection against most 
common attacks.

Key words: hash algorithm, chaotic attractor, Bent Boolean function, pseudorandom bit generation scheme.

BentSign: keyed hash algorithm based on bent Boolean function  
and chaotic attractor

M. TODOROVA1, B. STOYANOV1, K. SZCZYPIORSKI2, W. GRANISZEWSKI2,  
and K. KORDOV1

1 Konstantin Preslavsky University of Shumen, 115 Universitetska Str., 9712 Shumen, Bulgaria 
2 Warsaw University of Technology, Pl. Politechniki 1, 00-661 Warsaw, Poland

*e-mail: ksz@tele.pw.edu.pl

Manuscript submitted 2018-08-25, revised 2018-11-27, initially accepted  
for publication  2018-12-14, published in June 2019.



558

M. Todorova, B. Stoyanov, K. Szczypiorski, W. Graniszewski, and K. Kordov

Bull.  Pol.  Ac.:  Tech.  67(3)  2019

With initial values (xi,yi), for i = 150..950, x0 = −0.7390212,
y0 = −0.7244441, z0 = 0.3999123, and z1 = 1.454601, two-
dimensional model of Signature attractor is illustrated in Fig. 1,
and three-dimensional models viewed from two different angles
are plotted in Fig. 2.

Fig. 1. The two-dimensional plot of Signature attractor of Eq. (1), where
t = 150..950; x− y plane

The new generator is slightly modified scheme of the algo-
rithm presented in [13]. It is based on the following two Signa-
ture attractors:

x0,t+1 = x0,t cosθ0,t − y0,t sinθ0,t +1−0.8x0,t z0,t ,

y0,t+1 = x0,t sinθ0,t + y0,t cosθ0,t ,

z0,t+2 = 1.4z0,t+1 +0.3z0,t(1− z0,t)

θ0,t = 5.5− 1√
x2

0,t + y2
0,t + z2

0,t

,

x1,t+1 = x1,t cosθ1,t − y1,t sinθ1,t +1−0.8x1,t z1,t ,

y1,t+1 = x1,t sinθ1,t + y1,t cosθ1,t ,

z1,t+2 = 1.4z1,t+1 +0.3z1,t(1− z1,t),

θ1,t = 5.5− 1√
x2

1,t + y2
1,t + z2

1,t

(2)

and is based on the following steps:
1. The elements x0,0, y0,0, z0,0, z0,1, x1,0, y1,0, z1,0, and z1,1 from

Eq. (2) are initialized with values.
2. The attractors from Eq. (2) are iterated for L0 and L1 times.
3. The iteration of the Eq. (2) progresses, and we get six real

fractions x0,m, y0,m, z0,m+1, x1,n, y1,n, and z1,n+1, which are
post-processed as follows:

s1 = mod(abs(integer(x0,m ×107)),2),

s2 = mod(abs(integer(y0,m ×107)),2),

s3 = mod(abs(integer(z0,m+1 ×107)),2),

s4 = mod(abs(integer(x1,n ×107)),2),

(a)

(b)

Fig. 2. The three-dimensional plots of Signature attractor of Eq. (1),
where t = 150..950

s5 = mod(abs(integer(y1,n ×107)),2),

s6 = mod(abs(integer(z1,n+1 ×107)),2),

where integer(x) returns the integer part of x, truncating the
value at the decimal point, abs(x) returns the absolute value
of x, and mod(x,y) returns the reminder after division.

4. Perform logical XOR between s1, s2, s3, s4, s5, and s6 to get
a single output bit.

5. Return to Step 3 until the bit stream limit is reached.
The proposed pseudorandom bit generation scheme is im-

plemented in C++ programming language, using the follow-
ing initial values: x0,0 = −0.4584282, y0,0 = −1.7876741,
z0,0 = 0.1964, z0,1 = 1.020591, x1,0 = −0.7390212, y1,0 =
−2.7244441, z1,0 = 0.3999123, z1,1 = 1.454601, L0 = 714, and
L1 = 1278.

2.2. Key space analysis. The set of all initial values compose
the key space. The novel generation scheme has eight input
parameters x1,0, y1,0, x2,0, and y2,0. According to [42], the com-

putational precision of the 64-bit double-precision number is
about 10−15, thus the key set is (1015)8 bits, which is more than
2398 bits. The novel pseudorandom generator posses a large
key space to defend against exhaustive key search attack [2].
Moreover, the initial iteration values L0 and L1 can also be used
as a part of the key space.

2.3. Statistical tests. In order to measure randomness of the
sequences of bits produced by the new pseudorandom num-
ber algorithm, we used the statistical applications NIST [5],
DIEHARD [16], and ENT [40].

For the NIST suite, we outputted 1000 binary series of length
1,000,000 bits. The results from the tests are given in Table 1.
The minimum pass rate for each statistical test with the exception
of the Random excursion (variant) test is approximately 980 for
a sample size of 1000 binary sequences. The minimum pass
rate for the Random excursion (variant) test is approximately
618 for a sample size of 632 binary sequences. The output bits
from the proposed pseudorandom bit generator scheme passed
successfully all the NIST tests.

Table 1
NIST test suite results

NIST test P-value Pass rate

Frequency (monobit) 0.190654 989/1000

Block-frequency 0.382115 991/1000

Cumulative sums (Forward) 0.095426 988/1000

Cumulative sums (Reverse) 0.278461 988/1000

Runs 0.803720 991/1000

Longest run of Ones 0.755819 981/1000

Rank 0.371941 995/1000

FFT 0.498313 989/1000

Non-overlapping templates 0.479685 990/1000

Overlapping templates 0.057510 982/1000

Universal 0.378705 991/1000

Approximate entropy 0.542228 986/1000

Random-excursions 0.347462 625/632

Random-excursions Variant 0.658650 625/632

Serial 1 0.270265 995/1000

Serial 2 0.339271 991/1000

Linear complexity 0.100109 989/1000

The DIEHARD application is a set of 19 statistical tests and
they return P− values, which should be uniform in [0,1), if the
input stream contains pseudorandom numbers. The P− values
are obtained by p = F(y), where F is the assumed distribution
of the sample random variable y, often the normal distribution.
BentSign algorithm passed successfully all DIEHARD tests,
Table 2.

The ENT software includes following tests: entropy, optimum
compression, χ2 distribution, arithmetic mean value, Monte

Table 2
DIEHARD statistical test results

DIEHARD test P-value

Birthday spacings 0.411472

Overlapping 5-permutation 0.619766

Binary rank (31×31) 0.887539

Binary rank (32×32) 0.371790

Binary rank (6×8) 0.493264

Bitstream 0.625534

OPSO 0.439096

OQSO 0.386868

DNA 0.513739

Stream count-the-ones 0.341532

Byte count-the-ones 0.484595

Parking lot 0.586842

Minimum distance 0.444122

3D spheres 0.502462

Squeeze 0.970210

Overlapping sums 0.585222

Runs up 0.519402

Runs down 0.409812

Craps 0.634792

Carlo value for π , and serial correlation coefficient. Sequences of
bytes are stored in files. We tested output series of 125,000,000
bytes of the BentSign. The algorithm passed successfully all
ENT test, Table 4, and Table 5, and Table 3.

Table 3
ENT statistical test results

ENT test Results

Entropy 7.999999 bits per byte

Optimum compression OC would reduce the size of
this 125000000 byte file
by 0%

χ2 distribution For 125000000 samples is
233.87, and randomly would
exceed this value 82.47%
of the time

Arithmetic mean value 127.4979 (127.5 = random)

Monte Carlo π estim. 3.141588914 (error 0.00%)

Serial correl. coeff. 0.000111
(totally uncorrelated = 0.0)

Based on the good test results, we can conclude that the novel
pseudorandom bit generation algorithm has satisfying statistical
properties and provides acceptable level of security.



559

BentSign: keyed hash algorithm based on bent Boolean function and chaotic attractor

Bull.  Pol.  Ac.:  Tech.  67(3)  2019

putational precision of the 64-bit double-precision number is
about 10−15, thus the key set is (1015)8 bits, which is more than
2398 bits. The novel pseudorandom generator posses a large
key space to defend against exhaustive key search attack [2].
Moreover, the initial iteration values L0 and L1 can also be used
as a part of the key space.

2.3. Statistical tests. In order to measure randomness of the
sequences of bits produced by the new pseudorandom num-
ber algorithm, we used the statistical applications NIST [5],
DIEHARD [16], and ENT [40].

For the NIST suite, we outputted 1000 binary series of length
1,000,000 bits. The results from the tests are given in Table 1.
The minimum pass rate for each statistical test with the exception
of the Random excursion (variant) test is approximately 980 for
a sample size of 1000 binary sequences. The minimum pass
rate for the Random excursion (variant) test is approximately
618 for a sample size of 632 binary sequences. The output bits
from the proposed pseudorandom bit generator scheme passed
successfully all the NIST tests.

Table 1
NIST test suite results

NIST test P-value Pass rate

Frequency (monobit) 0.190654 989/1000

Block-frequency 0.382115 991/1000

Cumulative sums (Forward) 0.095426 988/1000

Cumulative sums (Reverse) 0.278461 988/1000

Runs 0.803720 991/1000

Longest run of Ones 0.755819 981/1000

Rank 0.371941 995/1000

FFT 0.498313 989/1000

Non-overlapping templates 0.479685 990/1000

Overlapping templates 0.057510 982/1000

Universal 0.378705 991/1000

Approximate entropy 0.542228 986/1000

Random-excursions 0.347462 625/632

Random-excursions Variant 0.658650 625/632

Serial 1 0.270265 995/1000

Serial 2 0.339271 991/1000

Linear complexity 0.100109 989/1000

The DIEHARD application is a set of 19 statistical tests and
they return P− values, which should be uniform in [0,1), if the
input stream contains pseudorandom numbers. The P− values
are obtained by p = F(y), where F is the assumed distribution
of the sample random variable y, often the normal distribution.
BentSign algorithm passed successfully all DIEHARD tests,
Table 2.

The ENT software includes following tests: entropy, optimum
compression, χ2 distribution, arithmetic mean value, Monte

Table 2
DIEHARD statistical test results

DIEHARD test P-value

Birthday spacings 0.411472

Overlapping 5-permutation 0.619766

Binary rank (31×31) 0.887539

Binary rank (32×32) 0.371790

Binary rank (6×8) 0.493264

Bitstream 0.625534

OPSO 0.439096

OQSO 0.386868

DNA 0.513739

Stream count-the-ones 0.341532

Byte count-the-ones 0.484595

Parking lot 0.586842

Minimum distance 0.444122

3D spheres 0.502462

Squeeze 0.970210

Overlapping sums 0.585222

Runs up 0.519402

Runs down 0.409812

Craps 0.634792

Carlo value for π , and serial correlation coefficient. Sequences of
bytes are stored in files. We tested output series of 125,000,000
bytes of the BentSign. The algorithm passed successfully all
ENT test, Table 4, and Table 5, and Table 3.

Table 3
ENT statistical test results

ENT test Results

Entropy 7.999999 bits per byte

Optimum compression OC would reduce the size of
this 125000000 byte file
by 0%

χ2 distribution For 125000000 samples is
233.87, and randomly would
exceed this value 82.47%
of the time

Arithmetic mean value 127.4979 (127.5 = random)

Monte Carlo π estim. 3.141588914 (error 0.00%)

Serial correl. coeff. 0.000111
(totally uncorrelated = 0.0)

Based on the good test results, we can conclude that the novel
pseudorandom bit generation algorithm has satisfying statistical
properties and provides acceptable level of security.



560

M. Todorova, B. Stoyanov, K. Szczypiorski, W. Graniszewski, and K. Kordov

Bull.  Pol.  Ac.:  Tech.  67(3)  2019

Table 4
Number of occurrences of byte values from 0 to 127, and the fraction of the overall ENT test file made up by that value

Value Occurrences Fraction Value Occurrences Fraction Value Occurrences Fraction Value Occurrences Fraction

0 488434 0.003907 32 488970 0.003912 64 488601 0.003909 96 487327 0.003899

1 488041 0.003904 33 488365 0.003907 65 488914 0.003911 97 487886 0.003903

2 487859 0.003903 34 487089 0.003897 66 489029 0.003912 98 488817 0.003911

3 488381 0.003907 35 487947 0.003904 67 488325 0.003907 99 488313 0.003907

4 487539 0.0039 36 489023 0.003912 68 488872 0.003911 100 489391 0.003915

5 488168 0.003905 37 489400 0.003915 69 487761 0.003902 101 487559 0.0039

6 488817 0.003911 38 487621 0.003901 70 488248 0.003906 102 488578 0.003909

7 489126 0.003913 39 488079 0.003905 71 489001 0.003912 103 488247 0.003906

8 489424 0.003915 40 487768 0.003902 72 488352 0.003907 104 487674 0.003901

9 488326 0.003907 41 487504 0.0039 73 488962 0.003912 105 488875 0.003911

10 487377 0.003899 42 490046 0.00392 74 488285 0.003906 106 488122 0.003905

11 487978 0.003904 43 488676 0.003909 75 487644 0.003901 107 486532 0.003892

12 489190 0.003914 44 487995 0.003904 76 489441 0.003916 108 487817 0.003903

13 488502 0.003908 45 487208 0.003898 77 487622 0.003901 109 487480 0.0039

14 487949 0.003904 46 488932 0.003911 78 488530 0.003908 110 489642 0.003917

15 488637 0.003909 47 488470 0.003908 79 488261 0.003906 111 487480 0.0039

16 488322 0.003907 48 488692 0.00391 80 488534 0.003908 112 488491 0.003908

17 488490 0.003908 49 488422 0.003907 81 487814 0.003903 113 487942 0.003904

18 488391 0.003907 50 488813 0.003911 82 488796 0.00391 114 487759 0.003902

19 488586 0.003909 51 487790 0.003902 83 487018 0.003896 115 488511 0.003908

20 487332 0.003899 52 487904 0.003903 84 489481 0.003916 116 488991 0.003912

21 488497 0.003908 53 489553 0.003916 85 487332 0.003899 117 488032 0.003904

22 488036 0.003904 54 487598 0.003901 86 487919 0.003903 118 489352 0.003915

23 488123 0.003905 55 488752 0.00391 87 488090 0.003905 119 488394 0.003907

24 488078 0.003905 56 489107 0.003913 88 488140 0.003905 120 488113 0.003905

25 487889 0.003903 57 488204 0.003906 89 488045 0.003904 121 487815 0.003903

26 488790 0.00391 58 488280 0.003906 90 486882 0.003895 122 488694 0.00391

27 489068 0.003913 59 488376 0.003907 91 488770 0.00391 123 488863 0.003911

28 487177 0.003897 60 487683 0.003901 92 487961 0.003904 124 488895 0.003911

29 487529 0.0039 61 489153 0.003913 93 488357 0.003907 125 487743 0.003902

30 489931 0.003919 62 488148 0.003905 94 489199 0.003914 126 487995 0.003904

31 487215 0.003898 63 487322 0.003899 95 488848 0.003911 127 488685 0.003909

Table 5
Number of occurrences of byte values from 128 to 255, and the fraction of the overall ENT test file made up by that value

Value Occurrences Fraction Value Occurrences Fraction Value Occurrences Fraction Value Occurrences Fraction

128 488965 0.003912 160 488106 0.003905 192 488417 0.003907 224 487036 0.003896

129 487572 0.003901 161 487668 0.003901 193 488296 0.003906 225 488236 0.003906

130 488400 0.003907 162 487549 0.0039 194 488275 0.003906 226 489551 0.003916

131 488324 0.003907 163 489289 0.003914 195 488354 0.003907 227 488558 0.003908

132 487821 0.003903 164 487296 0.003898 196 488052 0.003904 228 489241 0.003914

133 488265 0.003906 165 488344 0.003907 197 489443 0.003916 229 487794 0.003902

134 487534 0.0039 166 488156 0.003905 198 488413 0.003907 230 488209 0.003906

135 488290 0.003906 167 488168 0.003905 199 487965 0.003904 231 487687 0.003901

136 486413 0.003891 168 488912 0.003911 200 488261 0.003906 232 488684 0.003909

137 486966 0.003896 169 488210 0.003906 201 490119 0.003921 233 489030 0.003912

138 488850 0.003911 170 488477 0.003908 202 487254 0.003898 234 488585 0.003909

139 488185 0.003905 171 487564 0.003901 203 489182 0.003913 235 488461 0.003908

140 487509 0.0039 172 489899 0.003919 204 487792 0.003902 236 487620 0.003901

141 489092 0.003913 173 488677 0.003909 205 489208 0.003914 237 488086 0.003905

142 487988 0.003904 174 489141 0.003913 206 488935 0.003911 238 487762 0.003902

143 486979 0.003896 175 487903 0.003903 207 488006 0.003904 239 487811 0.003902

144 488299 0.003906 176 487777 0.003902 208 486490 0.003892 240 488139 0.003905

145 488921 0.003911 177 488750 0.00391 209 487821 0.003903 241 488213 0.003906

146 488418 0.003907 178 488383 0.003907 210 487826 0.003903 242 487737 0.003902

147 487972 0.003904 179 487878 0.003903 211 489176 0.003913 243 488624 0.003909

148 487476 0.0039 180 487760 0.003902 212 489027 0.003912 244 488013 0.003904

149 488524 0.003908 181 489304 0.003914 213 487546 0.0039 245 487734 0.003902

150 488133 0.003905 182 488200 0.003906 214 488207 0.003906 246 488646 0.003909

151 488231 0.003906 183 488435 0.003907 215 488672 0.003909 247 488245 0.003906

152 488906 0.003911 184 488561 0.003908 216 488826 0.003911 248 487925 0.003903

153 488220 0.003906 185 487562 0.0039 217 488481 0.003908 249 488648 0.003909

154 488151 0.003905 186 487178 0.003897 218 487678 0.003901 250 488224 0.003906

155 487810 0.003902 187 489543 0.003916 219 488522 0.003908 251 487302 0.003898

156 487332 0.003899 188 487620 0.003901 220 488148 0.003905 252 488137 0.003905

157 489194 0.003914 189 487508 0.0039 221 489439 0.003916 253 488672 0.003909

158 489802 0.003918 190 487486 0.0039 222 488162 0.003905 254 487645 0.003901

159 488559 0.003908 191 488429 0.003907 223 488405 0.003907 255 489372 0.003915



561

BentSign: keyed hash algorithm based on bent Boolean function and chaotic attractor

Bull.  Pol.  Ac.:  Tech.  67(3)  2019

Table 5
Number of occurrences of byte values from 128 to 255, and the fraction of the overall ENT test file made up by that value

Value Occurrences Fraction Value Occurrences Fraction Value Occurrences Fraction Value Occurrences Fraction

128 488965 0.003912 160 488106 0.003905 192 488417 0.003907 224 487036 0.003896

129 487572 0.003901 161 487668 0.003901 193 488296 0.003906 225 488236 0.003906

130 488400 0.003907 162 487549 0.0039 194 488275 0.003906 226 489551 0.003916

131 488324 0.003907 163 489289 0.003914 195 488354 0.003907 227 488558 0.003908

132 487821 0.003903 164 487296 0.003898 196 488052 0.003904 228 489241 0.003914

133 488265 0.003906 165 488344 0.003907 197 489443 0.003916 229 487794 0.003902

134 487534 0.0039 166 488156 0.003905 198 488413 0.003907 230 488209 0.003906

135 488290 0.003906 167 488168 0.003905 199 487965 0.003904 231 487687 0.003901

136 486413 0.003891 168 488912 0.003911 200 488261 0.003906 232 488684 0.003909

137 486966 0.003896 169 488210 0.003906 201 490119 0.003921 233 489030 0.003912

138 488850 0.003911 170 488477 0.003908 202 487254 0.003898 234 488585 0.003909

139 488185 0.003905 171 487564 0.003901 203 489182 0.003913 235 488461 0.003908

140 487509 0.0039 172 489899 0.003919 204 487792 0.003902 236 487620 0.003901

141 489092 0.003913 173 488677 0.003909 205 489208 0.003914 237 488086 0.003905

142 487988 0.003904 174 489141 0.003913 206 488935 0.003911 238 487762 0.003902

143 486979 0.003896 175 487903 0.003903 207 488006 0.003904 239 487811 0.003902

144 488299 0.003906 176 487777 0.003902 208 486490 0.003892 240 488139 0.003905

145 488921 0.003911 177 488750 0.00391 209 487821 0.003903 241 488213 0.003906

146 488418 0.003907 178 488383 0.003907 210 487826 0.003903 242 487737 0.003902

147 487972 0.003904 179 487878 0.003903 211 489176 0.003913 243 488624 0.003909

148 487476 0.0039 180 487760 0.003902 212 489027 0.003912 244 488013 0.003904

149 488524 0.003908 181 489304 0.003914 213 487546 0.0039 245 487734 0.003902

150 488133 0.003905 182 488200 0.003906 214 488207 0.003906 246 488646 0.003909

151 488231 0.003906 183 488435 0.003907 215 488672 0.003909 247 488245 0.003906

152 488906 0.003911 184 488561 0.003908 216 488826 0.003911 248 487925 0.003903

153 488220 0.003906 185 487562 0.0039 217 488481 0.003908 249 488648 0.003909

154 488151 0.003905 186 487178 0.003897 218 487678 0.003901 250 488224 0.003906

155 487810 0.003902 187 489543 0.003916 219 488522 0.003908 251 487302 0.003898

156 487332 0.003899 188 487620 0.003901 220 488148 0.003905 252 488137 0.003905

157 489194 0.003914 189 487508 0.0039 221 489439 0.003916 253 488672 0.003909

158 489802 0.003918 190 487486 0.0039 222 488162 0.003905 254 487645 0.003901

159 488559 0.003908 191 488429 0.003907 223 488405 0.003907 255 489372 0.003915



562

M. Todorova, B. Stoyanov, K. Szczypiorski, W. Graniszewski, and K. Kordov

Bull.  Pol.  Ac.:  Tech.  67(3)  2019

3. Bent Boolean functions

In this section we refer to works of [7, 23], and [25].

Definition 1. A Boolean function f in n variables is map
from Vn (the vector space on n dimension) to the two-
element Galois field F2. The (0,1)-sequence defined by
( f (x0), f (x1), . . . , f (x2n−1)) is called the truth table of f , where
v0 = (0, . . . ,0,0), v1 = (0, . . . ,0,1), . . . , v2n−1 = (1, . . . ,1,1),
lexicographically sorted list.

To each Boolean function f : Vn → Fn we associate sign
function, denoted by f̂ : Vn → R∗ ⊆ C∗ and defined by f̂ (x) =
(−1) f (x).

Definition 2. The Walsh transform of a function f on Vn (with
the values of f taken to be real numbers 0 and 1) is the map
W ( f ) : Vn → R, defined by

W ( f )(w) = ∑
x∈Vn

f (x)(−1)w·x ,

which defines the coefficients of f with respect to the orthonor-
mal basis of the group characters Qx(w) = (−1)w·x (where w ·x
is the scalar product); f can be recovered by the inverse Walsh
transform

f (x) = 2−n ∑
w∈Vn

W ( f )(w)(−1)w·x .

Definition 3. A Boolean function f in n variables is called bent
if and only if the Walsh transform coefficients of f̂ are all±2n/2,
that is, W ( f̂ )2 is constant.

Lemma 1. If a bent function f exists, then n must be even,
n = 2k.

They are designed two classes of bent Boolean functions on
Vn, n = 2k. The first one is: Let x1,y1, . . . ,xk,yk be independent
variables and let P(x) be an arbitrary polynomial, where x =
(x1, . . . ,xk). Then

f1(x1,y1, . . . ,xk,yk) =
k

∑
i=1

xiyi ⊕P(x)

is bent function. This generalizes Corollary 2.

Lemma 2. The function

f (x) = x1x2 ⊕·· ·⊕ x2k−1x2k, k ≥ 1, (3)

is bent.

4. Hash algorithm based on bent Boolean
function and chaotic attractor

In this section, we extend the work of Ref. [38] by combining
chaotic attractors with bent Boolean function.

4.1. Proposed Keyed hash algorithm based on bent Boolean
function and chaotic attractor. In this subsection, the combi-
nation of bent Boolean and Signature attractors is used to design
a keyed hash algorithm named BentSign.

Let n be the bit of the final hash value. The parameter n usually
supports five bit lengths, 128, 160, 256, 512, and 1024 bits. We
consider input message (string) M′ with arbitrary length. The
proposed hash algorithm BentSign consists of the following
steps:
1. The input message M is converted into binary sequence

using ASCII table.
2. The binary sequence from Step 1 is padded with a single bit

of one followed by bits of zeroes until the M′ has length m,
obtained as multiple of n.

3. The novel pseudorandom bit generation algorithm (Sec-
tion 2) based on two Signature attractors and XOR function
is repeatedly iterated, getting m bits. m-sized vector P is
produced.

4. The m-sized vectors M′ and P are united in a new m-sized
vector, N, using XOR operation.

5. The vector N is split into p blocks, N1,N2, ...,Np, each of
length n and m = np is the total length of the vector N.

6. A temporary n-sized vector T is obtained by T = N1 ⊕N2 ⊕
·· ·⊕Np.

7. A temporary n-sized vector U is taken and all of its elements
are initialized to 0s.

8. The bits from the temporary vector T are processed one
by one sequentially. If the current bit ti is 1 then update
ti = ti ⊕ s, where s is the next bit from the novel pseudoran-
dom generator based on two Signature attractors and XOR
function (Section 2).

9. The novel pseudorandom bit generation algorithm (Sec-
tion 2) based on two Signature attractors and XOR func-
tion is repeatedly iterated, getting n bits. n-sized vector R is
produced.

10. Take the Eq. (3) for k = 2n, substitute the odd elements with
the bits from vector T and the even elements with the bits
from vector R, and calculate the function f (x) to take one
single bit u.

11. If the current bit u is 1, the vector U is XOR-ed with the
next n bits from the novel pseudorandom generator based
on two Signature attractors and XOR function (Section 2).
If the current bit u is 0, the matrix U is bitwise rotated left
by one bit position.

12. Return to Step 8, until the end of the vector T .
13. The final hash value is obtained by H = T ⊕U .

The proposed BentSign hash algorithm is implemented in
C++ programming language.

4.2. Distribution analysis. In this subsection, we demonstrate
uniformly distributed hash values in the compressed range, when
n = 128. The input message is taken from Ref. [38]:

Konstantin Preslavsky University of Shumen has inherited
a centuries-long educational tradition dating back to the fa-
mous Pliska and Preslav Literary School (10th c). Shumen
University is one of the five classical public universities in
Bulgaria it is recognized as a leading university that offers

modern facilities for education, scientific researches and
creative work.
The ASCII code distribution of input message and the cor-

responding BentSign hexadecimal values are shown in Fig. 3a
and 3b. Another input message with the same length but all of
blank spaces, is created. The ASCII code distribution of the
blank-spaced input message and the corresponding BentSign
hexadecimal hash value are shown in Fig. 3c and 3d. The
BentSign hash plots, 3b and 3d, are uniformly distributed in
compress range even under particularly conditions.

4.3. Sensitivity analysis. To illustrate the sensitivity of
BentSign, simulation experiments have been accomplished un-
der the following 10 conditions [38]:

Condition 0: Blank message.
Condition 1: The input string is the same as the one in Sec-

tion 4.2;
Condition 2: Change the letter ‘K’ in the input into ‘k’.
Condition 3: Change the zero in the input to one.
Condition 4: Change the word ‘School’ in the input message

to ‘school’.
Condition 5: Change the comma ‘,’ in the input string to ‘.’.

(a) (b)

(c) (d)

Fig. 3. Distribution of input message and corresponding hash value

Condition 6: Add a blank space at the end of the input string.
Condition 7: Change the word ‘recognized’ in the input string

to ‘recognize’.
Condition 8: Subtracts 1×10−15 from the input value x1,0.
Condition 9: Adds 1×10−15 to the input key value y2,0.
The corresponding 128-bit hash values in hexadecimal num-

ber system are the following:
Condition 0: FAA8C89DD3970E19A3856027FFF3ED79
Condition 1: B26D06E24E790A34A26C1C0E07B55313
Condition 2: 79F521281FDB6DBA897CF3D4A12CB701
Condition 3: 30DDCB05DD103FAB7241D2029CAF9A23
Condition 4: 953A4A42777F2CC24301A0CD6A612AA6
Condition 5: A6AB45F273F67861927CADF07041CDF7
Condition 6: D5F9F9836AAFE5F7018EBAF2DA044594
Condition 7: 0758DC3F6022E3881D4EA3A6004E0061
Condition 8: 0FC1618D766D4F7E69A3807A440DE4EE
Condition 9: 3E8BD43EBF8C31EA6FC819D851DCAAC1
The corresponding binary representation of the hash values

are illustrated in Figure 4. The values from sensitivity analysis
illustrate that the BentSign possesses high sensitivity to any
changes in input messages, which make serious differences of
output hashes.



563

BentSign: keyed hash algorithm based on bent Boolean function and chaotic attractor

Bull.  Pol.  Ac.:  Tech.  67(3)  2019

modern facilities for education, scientific researches and
creative work.
The ASCII code distribution of input message and the cor-

responding BentSign hexadecimal values are shown in Fig. 3a
and 3b. Another input message with the same length but all of
blank spaces, is created. The ASCII code distribution of the
blank-spaced input message and the corresponding BentSign
hexadecimal hash value are shown in Fig. 3c and 3d. The
BentSign hash plots, 3b and 3d, are uniformly distributed in
compress range even under particularly conditions.

4.3. Sensitivity analysis. To illustrate the sensitivity of
BentSign, simulation experiments have been accomplished un-
der the following 10 conditions [38]:

Condition 0: Blank message.
Condition 1: The input string is the same as the one in Sec-

tion 4.2;
Condition 2: Change the letter ‘K’ in the input into ‘k’.
Condition 3: Change the zero in the input to one.
Condition 4: Change the word ‘School’ in the input message

to ‘school’.
Condition 5: Change the comma ‘,’ in the input string to ‘.’.

(a) (b)

(c) (d)

Fig. 3. Distribution of input message and corresponding hash value

Condition 6: Add a blank space at the end of the input string.
Condition 7: Change the word ‘recognized’ in the input string

to ‘recognize’.
Condition 8: Subtracts 1×10−15 from the input value x1,0.
Condition 9: Adds 1×10−15 to the input key value y2,0.
The corresponding 128-bit hash values in hexadecimal num-

ber system are the following:
Condition 0: FAA8C89DD3970E19A3856027FFF3ED79
Condition 1: B26D06E24E790A34A26C1C0E07B55313
Condition 2: 79F521281FDB6DBA897CF3D4A12CB701
Condition 3: 30DDCB05DD103FAB7241D2029CAF9A23
Condition 4: 953A4A42777F2CC24301A0CD6A612AA6
Condition 5: A6AB45F273F67861927CADF07041CDF7
Condition 6: D5F9F9836AAFE5F7018EBAF2DA044594
Condition 7: 0758DC3F6022E3881D4EA3A6004E0061
Condition 8: 0FC1618D766D4F7E69A3807A440DE4EE
Condition 9: 3E8BD43EBF8C31EA6FC819D851DCAAC1
The corresponding binary representation of the hash values

are illustrated in Figure 4. The values from sensitivity analysis
illustrate that the BentSign possesses high sensitivity to any
changes in input messages, which make serious differences of
output hashes.



564

M. Todorova, B. Stoyanov, K. Szczypiorski, W. Graniszewski, and K. Kordov

Bull.  Pol.  Ac.:  Tech.  67(3)  2019

(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Fig. 4. 128-bit hash values of the input messages under ten different conditions: a) Condition 0, b) Condition 1, c) Condition 2, d) Condition 3,
e) Condition 4, f) Condition 5, g) Condition 6, h) Condition 7, i) Condition 8, and j) Condition 9

4.4. Statistic analysis of diffusion and confusion Confusion
can hide the relationship between the input message and the hash
value, and diffusion effect should be that any small changes in
the initial data lead to a 50% changing probability of each bit of
hash value.

Six functions used here are defined as follows:
Minimum number of changed bits: Bmin = min

(
{Bi}N

i=1

)
;

Maximum number of changed bits: Bmax = max
(
{Bi}N

i=1

)
;

Mean changed bit number: B̄ =
1
N

N

∑
i=1

Bi;

Mean changed probability: P =
B̄
n
×100%;

Standard deviation of numbers of changed bits:

∆B =

√
1

N −1

N

∑
i=1

(Bi − B̄)2

Standard deviation: ∆P =

√
1

N −1

N

∑
i=1

(
Bi

n
−P)2 × 100%,

where N is the total number of tests and Bi is the number of
changed bits in the i-th test (Hamming distance).

Two types of statistical tests are performed [10, 11]: type A
and type B. In the type A test, an input string, of size L = 50n is
generated and its corresponding n−bit hash value is computed.
Then, a new string is generated by choosing a single bit at
random from the original string and modified to zero if it is one
or to one if it is zero. The n-bit hash value of the new string is
then compared with that of the original string and the Hamming
distance between the two hash values is recorded as Bi. This is
then repeated N times, where each time, a new original string is
chosen and one of its bits is randomly chosen and modified to

zero if it is one or to one if it is zero. Tables 6–10 present results
of these tests for n = 128, 160, 256, 512, 1024.

Table 6
Statistical results for 128-bit hash values generated under tests of type A

N=256 N=512 N=1024 N=2048 N=10,000

Bmin 49 48 48 48 44

Bmax 85 85 85 85 85

B̄ 64.32 63.17 64.07 63.95 63.99

P (%) 50.25 50.13 50.06 49.96 49.99

∆B 5.68 5.79 5.7 5.68 5.61

∆P (%) 4.44 4.52 4.45 4.43 4.38

Table 7
Statistical results for 160-bit hash values generated under tests of type A

N=256 N=512 N=1024 N=2048 N=10,000

Bmin 59 59 59 59 55

Bmax 97 97 97 98 102

B̄ 79.71 80.19 79.74 79.78 79.96

P (%) 49.82 50.12 49.83 49.86 49.98

∆B 6.6 6.34 6.36 6.22 6.29

∆P (%) 4.12 3.96 3.97 3.88 3.93

Table 11 lists values from few chaos based hash algorithm.
The BentSign has comparable results.

Table 8
Statistical results for 256-bit hash values generated under tests of type A

N=256 N=512 N=1024 N=2048 N=10,000

Bmin 104 96 96 96 96

Bmax 148 153 153 153 158

B̄ 128.18 127.99 127.64 128.042 127.94

P (%) 50.07 49.99 49.86 50.01 49.97

∆B 7.78 8.1 7.88 7.97 7.96

∆P (%) 3.04 3.16 3.08 3.11 3.1

Table 9
Statistical results for 512-bit hash values generated under tests of type A

N=256 N=512 N=1024 N=2048 N=10,000

Bmin 215 215 215 215 213

Bmax 290 290 302 302 302

B̄ 254.95 255.14 255.44 255.48 255.81

P (%) 49.79 49.83 49.89 49.89 49.96

∆B 11.5 11.64 11.37 11.34 11.36

∆P (%) 2.24 2.27 2.22 2.21 2.21

Table 10
Statistical results for 1024-bit hash values generated under tests of

type A

N=256 N=512 N=1024 N=2048 N=10,000

Bmin 474 464 464 456 456

Bmax 561 562 562 482 483

B̄ 511.87 511.77 511.72 511.94 511.96

P (%) 49.98 49.97 49.97 49.99 50

∆B 14.08 15.41 15.7 16.03 16.04

∆P (%) 1.37 1.5 1.53 1.56 1.57

Table 11
Comparison of statistical results for 128-bit hash values and N=10,000,

under tests of type A

Bmin Bmax B̄ P (%) ∆B ∆P (%)

BentSign 44 85 63.99 49.99 5.61 4.38

Ref. [15] 44 84 63.95 49.96 5.62 4.39

Ref. [38] 45 89 64 50.01 5.6 4.37

Ref. [41] 42 83 63.986 49.988 5.616 4.388

In the type B test, the plain data M of size L = 50n bits is
generated at random and its corresponding n-bit hash value is
computed. Then, a single bit of the plain data is chosen, modified
to zero if it is one or to one if it is zero, and the hash value of the
modified data is calculated. The two hash values are compared,
and the number of changed bits is calculated and recorded as Bi.
The same original string is used for all N iterations.

In Fig. 5, the Hamming distance obtained from test type A
with n = 128 and N = 10000 is shown.

Fig. 5. Distribution of the Bi values obtained in a type A test with
n = 128 and N = 10000

Tables 12–16 list the results obtained in tests of type B for
n = 128,160,256,512,1024, and various values of N.

Table 12
Statistical results for 128-bit hash values generated under tests of type B

N=256 N=512 N=1024 N=2048 N=50×128

Bmin 49 49 49 44 44

Bmax 78 80 80 83 83

B̄ 63.98 64.19 64.67 64.43 64.09

P (%) 49.98 50.15 50.52 50.34 50.07

∆B 6.24 6.58 6.04 5.99 5.63

∆P (%) 4.87 5.14 4.72 4.68 4.4

Table 13
Statistical results for 160-bit hash values generated under tests of type B

N=256 N=512 N=1024 N=2048 N=50×160

Bmin 66 65 65 63 59

Bmax 97 100 103 103 103

B̄ 80.08 80.72 80.46 80.154 80.06

P (%) 50.05 50.45 49.29 50.09 50.04

∆B 7.17 7.35 6.58 6.38 6.27

∆P (%) 4.48 4.59 4.11 3.99 3.91

Comparing the results with three chaos based hash algorithms
given in Table 17, the BentSign has analogous values.

In Tables 6–16 we can see that both types of tests, the mean
changed bit number B̄ and the mean probability P are very close
to the ideal values n/2 and 50%. These results illustrate that the
BentSign algorithm has strong capacity against confusion and
diffusion attacks.



565

BentSign: keyed hash algorithm based on bent Boolean function and chaotic attractor

Bull.  Pol.  Ac.:  Tech.  67(3)  2019

Table 8
Statistical results for 256-bit hash values generated under tests of type A

N=256 N=512 N=1024 N=2048 N=10,000

Bmin 104 96 96 96 96

Bmax 148 153 153 153 158

B̄ 128.18 127.99 127.64 128.042 127.94

P (%) 50.07 49.99 49.86 50.01 49.97

∆B 7.78 8.1 7.88 7.97 7.96

∆P (%) 3.04 3.16 3.08 3.11 3.1

Table 9
Statistical results for 512-bit hash values generated under tests of type A

N=256 N=512 N=1024 N=2048 N=10,000

Bmin 215 215 215 215 213

Bmax 290 290 302 302 302

B̄ 254.95 255.14 255.44 255.48 255.81

P (%) 49.79 49.83 49.89 49.89 49.96

∆B 11.5 11.64 11.37 11.34 11.36

∆P (%) 2.24 2.27 2.22 2.21 2.21

Table 10
Statistical results for 1024-bit hash values generated under tests of

type A

N=256 N=512 N=1024 N=2048 N=10,000

Bmin 474 464 464 456 456

Bmax 561 562 562 482 483

B̄ 511.87 511.77 511.72 511.94 511.96

P (%) 49.98 49.97 49.97 49.99 50

∆B 14.08 15.41 15.7 16.03 16.04

∆P (%) 1.37 1.5 1.53 1.56 1.57

Table 11
Comparison of statistical results for 128-bit hash values and N=10,000,

under tests of type A

Bmin Bmax B̄ P (%) ∆B ∆P (%)

BentSign 44 85 63.99 49.99 5.61 4.38

Ref. [15] 44 84 63.95 49.96 5.62 4.39

Ref. [38] 45 89 64 50.01 5.6 4.37

Ref. [41] 42 83 63.986 49.988 5.616 4.388

In the type B test, the plain data M of size L = 50n bits is
generated at random and its corresponding n-bit hash value is
computed. Then, a single bit of the plain data is chosen, modified
to zero if it is one or to one if it is zero, and the hash value of the
modified data is calculated. The two hash values are compared,
and the number of changed bits is calculated and recorded as Bi.
The same original string is used for all N iterations.

In Fig. 5, the Hamming distance obtained from test type A
with n = 128 and N = 10000 is shown.

Fig. 5. Distribution of the Bi values obtained in a type A test with
n = 128 and N = 10000

Tables 12–16 list the results obtained in tests of type B for
n = 128,160,256,512,1024, and various values of N.

Table 12
Statistical results for 128-bit hash values generated under tests of type B

N=256 N=512 N=1024 N=2048 N=50×128

Bmin 49 49 49 44 44

Bmax 78 80 80 83 83

B̄ 63.98 64.19 64.67 64.43 64.09

P (%) 49.98 50.15 50.52 50.34 50.07

∆B 6.24 6.58 6.04 5.99 5.63

∆P (%) 4.87 5.14 4.72 4.68 4.4

Table 13
Statistical results for 160-bit hash values generated under tests of type B

N=256 N=512 N=1024 N=2048 N=50×160

Bmin 66 65 65 63 59

Bmax 97 100 103 103 103

B̄ 80.08 80.72 80.46 80.154 80.06

P (%) 50.05 50.45 49.29 50.09 50.04

∆B 7.17 7.35 6.58 6.38 6.27

∆P (%) 4.48 4.59 4.11 3.99 3.91

Comparing the results with three chaos based hash algorithms
given in Table 17, the BentSign has analogous values.

In Tables 6–16 we can see that both types of tests, the mean
changed bit number B̄ and the mean probability P are very close
to the ideal values n/2 and 50%. These results illustrate that the
BentSign algorithm has strong capacity against confusion and
diffusion attacks.



566

M. Todorova, B. Stoyanov, K. Szczypiorski, W. Graniszewski, and K. Kordov

Bull.  Pol.  Ac.:  Tech.  67(3)  2019

Table 14
Statistical results for 256-bit hash values generated under tests of type B

N=256 N=512 N=1024 N=2048 N=50×256

Bmin 109 105 105 105 96

Bmax 153 153 153 153 155

B̄ 128.35 129.38 128.58 128.73 128.145

P (%) 50.13 50.14 50.22 50.28 50.05

∆B 9.34 8.22 7.96 7.81 7.98

∆P (%) 3.64 3.21 3.04 3.05 3.12

Table 15
Statistical results for 512-bit hash values generated under tests of type B

N=256 N=512 N=1024 N=2048 N=50×512

Bmin 227 227 227 221 216

Bmax 285 291 291 292 294

B̄ 256.03 256.18 256.82 256.53 255.97

P (%) 50 50.03 50.16 50.1 49.99

∆B 10.43 10.43 10.43 10.47 11.26

∆P (%) 2.03 2.03 2.01 2.04 2.19

Table 16
Statistical results for 1024-bit hash values generated under tests of

type B

N=256 N=512 N4=102 N=2048 N=50×1024

Bmin 470 463 463 448 449

Bmax 542 553 553 565 565

B̄ 509.92 507.36 509.37 511.12 510.13

P (%) 49.79 49.54 49.74 49.91 49.92

∆B 16.19 17.26 17.43 16.83 16.89

∆P (%) 1.58 1.68 1.7 1.64 1.66

Table 17
Comparison of statistical results for 128-bit hash values and N=2048,

under tests of type B

Bmin Bmax B̄ P (%) ∆B ∆P (%)

BentSign 44 83 64.43 50.34 5.99 4.68

Ref. [11] 48 83 64.22 50.17 5.65 4.42

Ref. [12] 47 84 63.94 49.95 5.69 4.44

Ref. [38] 43 43 64.11 50.08 5.59 4.37

4.5. Collision analysis. A general feature of a hash algorithm
is to possess collision resistance capability, the following two
types of tests are performed, type A and type B [10]. In tests of
type A, an original string of size L = 50n is generated and its
corresponding n-bit hash code is calculated and stored in ASCII
format. Then, a new string is generated by choosing a single
bit at random from the input string and modified to zero if it
is one or to one if it is zero. The n-bit hash code of the new

string is calculated and stored in ASCII format. The two hash
codes are compared, and the number of ASCII symbols with the
same value at the same location is counted. Moreover, the ab-
solute difference D between the two hash codes is calculated by
the following formula D = ∑n/8

i=1

∣∣decimal(ei)−decimal(e′i)
∣∣,

where ei and e′i be the i-th entry of the input and new hash
value, respectively, and function decimal() converts the entries
to their equivalent decimal values. The test of type A is repeated
N = 10,000 times, and experimental minimum, maximum, and
mean of D are presented in Table 18 for different hash values of
size n = 128, 160, 256, and 512.

Table 18
Absolute difference D for hash values generated under tests of type A,

where N = 10,000

n Maximum Minimum Mean

128 2450 573 1362

160 2744 791 1709

256 4007 1543 2731

512 7275 3712 5459

Table 19 shows the absolute differences of 128-hash codes
generated under tests of type A, where N = 10,000, and re-
lated hash algorithms. The results illustrate that BentSign has
comparable values.

Table 19
Comparison of the absolute difference for 128-hash values generated

under tests of type A, where N = 10,000

n Maximum Minimum Mean

BentSign 2450 573 1362

Ref. [10] 2391 656 1364

Ref. [38] 2386 537 1367

Ref. [41] 2064 655 1367

The count of locations where the ASCII characters are equal,
where N = 10,000 and the hash codes are calculated under tests
of type A, is presented in Table 20 and distributions of the
128-hash and 160-hash values, are illustrated in Figure 6 and
Figure 7.

Table 20
Count of positions in Collision test for N = 10,000, generated under

tests of type A

n 0 1 2 3 4 5

128 9373 607 20 0 0 0

160 9290 688 21 1 0 0

256 8809 1126 60 4 1 0

512 7782 1949 251 17 1 0

In the type B tests, an input message M of a fixed size L = 50n
bits is created at random and its corresponding n-bit input hash

Fig. 6. Distribution of the number of locations where the ASCII symbols
are equal in the 128-bit hash values generated under tests of type A,

where N = 10,000

Fig. 7. Distribution of the number of locations where the ASCII symbols
are equal in the 160-bit hash values generated under tests of type A,

where N = 10,000

value is computed. Then, a single bit of the input message is
chosen, modified to 0 if it is 1 or to 1 if it is 0, and the hash
value of the modified message is calculated. Table 21 presents
minimum, maximum, and mean values of D for different hash
values of size n = 128, 160, 256, and 512 generated under tests
of type B. The same input message is used for all N iterations.
Comparison with other algorithm is presented in Table 22.

Table 21
Absolute difference D for hash values generated under tests of type B,

where N = 50n

n Maximum Minimum Mean N

128 2225 658 1382 6400

160 2533 886 1677 8000

256 4132 1871 2953 12800

512 7224 3687 5345 25600

Table 22
Comparison of absolute difference D for 128-hash values generated

under tests of type B, where N = 6400

n Maximum Minimum Mean

BentSign 2225 658 1382

Ref. [10] 2421 735 1576

Ref. [11] 2294 661 1360

Ref. [38] 2035 636 1248

In addition to the above experiments, the tests of type B
are repeated for very short input data consisting of a single
n−bit block, Table 23. The count of positions where the ASCII
symbols are equal, generated under tests of type B, is listed in
Table 24 and distribution of 160-hash values and N = 8000, is
illustrated in Figure 8.

Table 23
Absolute difference D for hash values generated under tests of type B,

where N = n

n Maximum Minimum Mean N

128 1983 942 1456 128

160 2409 1301 1802 160

256 3821 2327 2977 256

512 6699 4125 5306 512

Table 24
Count of positions in Collision test, generated under tests of type B

n N 0 1 2 3

128 128 128 0 0 0

128 6400 6021 356 23 0

160 8000 7497 489 14 0

256 12800 11460 1286 54 0

Fig. 8. Distribution of the number of locations where the ASCII symbols
are equal in the 160-bit hash values generated under tests of type B,

where N = 8000



567

BentSign: keyed hash algorithm based on bent Boolean function and chaotic attractor

Bull.  Pol.  Ac.:  Tech.  67(3)  2019

Fig. 6. Distribution of the number of locations where the ASCII symbols
are equal in the 128-bit hash values generated under tests of type A,

where N = 10,000

Fig. 7. Distribution of the number of locations where the ASCII symbols
are equal in the 160-bit hash values generated under tests of type A,

where N = 10,000

value is computed. Then, a single bit of the input message is
chosen, modified to 0 if it is 1 or to 1 if it is 0, and the hash
value of the modified message is calculated. Table 21 presents
minimum, maximum, and mean values of D for different hash
values of size n = 128, 160, 256, and 512 generated under tests
of type B. The same input message is used for all N iterations.
Comparison with other algorithm is presented in Table 22.

Table 21
Absolute difference D for hash values generated under tests of type B,

where N = 50n

n Maximum Minimum Mean N

128 2225 658 1382 6400

160 2533 886 1677 8000

256 4132 1871 2953 12800

512 7224 3687 5345 25600

Table 22
Comparison of absolute difference D for 128-hash values generated

under tests of type B, where N = 6400

n Maximum Minimum Mean

BentSign 2225 658 1382

Ref. [10] 2421 735 1576

Ref. [11] 2294 661 1360

Ref. [38] 2035 636 1248

In addition to the above experiments, the tests of type B
are repeated for very short input data consisting of a single
n−bit block, Table 23. The count of positions where the ASCII
symbols are equal, generated under tests of type B, is listed in
Table 24 and distribution of 160-hash values and N = 8000, is
illustrated in Figure 8.

Table 23
Absolute difference D for hash values generated under tests of type B,

where N = n

n Maximum Minimum Mean N

128 1983 942 1456 128

160 2409 1301 1802 160

256 3821 2327 2977 256

512 6699 4125 5306 512

Table 24
Count of positions in Collision test, generated under tests of type B

n N 0 1 2 3

128 128 128 0 0 0

128 6400 6021 356 23 0

160 8000 7497 489 14 0

256 12800 11460 1286 54 0

Fig. 8. Distribution of the number of locations where the ASCII symbols
are equal in the 160-bit hash values generated under tests of type B,

where N = 8000



568

M. Todorova, B. Stoyanov, K. Szczypiorski, W. Graniszewski, and K. Kordov

Bull.  Pol.  Ac.:  Tech.  67(3)  2019

The empirical values confirm that the novel hash algorithm
BentSign has an excellent collision resistance.

4.6. Birthday attack analysis. The birthday attack is one of
the typical attack on the hash algorithms. The primary target
of this attack is to find two input messages with identical hash
values [18, 27], and [41]. The time complexity of the attack is
O(2n/2). Thus for the minimal 128-bit hash value, the attack
needs to have 264 attempts, which is sufficient to make the
birthday attack unrealistic.

4.7. Meet-in-the-middle attack analysis. The meet-in-the-
middle attack attempts to find collisions on intermediate hash
values [18]. In the BentSign, the intermediate results are based
on the dynamical values of the chaotic attractor. It means that
any small differences in the initial values contributes signifi-
cant changes in the next-state values [24, 27]. As a result, the
proposed hash algorithm can prevent meet-in-the-middle attack.

4.8. Second pre-image attack analysis. For any input mes-
sage M1, the second pre-image attack tries to find another input
message M2, that has the same hash value [3, 22]. In the pro-
posed hash algorithm, the calculations are based on the mix
of the highly nonlinear Boolean function and chaotic values of
the Signature attractor. Thus, the BentSign is protected against
second pre-image attack.

5. Conclusions

In this paper, we propose a novel keyed hash algorithm based on
a Boolean function and a chaotic attractor. The hash algorithm
called BentSign is based on classical bent Boolean function
and two Signature attractors. The provided theoretical and ex-
perimental results verify that the proposed hash algorithm can
generate output hash values with a good level of security, strong
collision resistance, and protection against most common at-
tacks.

Acknowledgements. This study was funded by European Re-
gional Development Fund and the Operational Program “Sci-
ence and Education for Smart Growth” under contract UNITe
No. BG05M2OP001-1.001-0004-C01 (2018-2023); and the In-
stitute of Telecommunications, Warsaw University of Technol-
ogy, through the Statutory Grant of the Polish Ministry of Sci-
ence and Higher Education.

References
[1] A. Akhavan, A. Samsudin, and A. Akhshani, “A novel parallel

hash function based on 3D chaotic map”, EURASIP Journal on
Advances in Signal Processing 2013, 2013:126 (2013).

[2] G. Alvarez and S. Li, “Some basic cryptographic requirements
for chaos-based cryptosystems”, International Journal of Bifur-
cation and Chaos 16, 2129–2151 (2006).

[3] E. Andreeva, C. Bouillaguet, O. Dunkelman, P.A. Fouque,
J. Hoch, A. Shamir, J. Kelsey, and S. Zimmer, “New second-
preimage attacks on hash functions”, Journal of Cryptology 29,
657–696 (2016).

[4] M.S. Baptista, “Cryptography with chaos”, Physics Letters A 240
(1-2), 50–54 (1998).

[5] L. Bassham, A. Rukhin, J. Soto, J. Nechvatal, M. Smid, E. Bar-
ker, S. Leigh, M. Levenson, M. Vangel, D. Banks, N. Heckert,
and J. Dray, “A Statistical test suite for random and pseudo-
random number generators for cryptographic application”, NIST
Special Publication 800-22, Revision 1a (Revised: April 2010),
http://doi.org/10.6028/NIST.SP.800-22r1a.

[6] A. Belazi, A. El-Latif, A. Diaconu, R. Rhouma, and S. Belghith,
“Chaos-based partial image encryption scheme based on linear
fractional and lifting wavelet transforms”, Optics and Lasers in
Engineering 88, 37–50 (2017).

[7] T.W. Cusick and P. Stănică, Cryptographic Boolean Functions
and Applications, Academic Press, 2009.

[8] W. Diffie and M.E. Hellman, “New directions in cryptogra-
phy”, IEEE Transactions on Information Theory 22 (6), 644–654
(1976).

[9] K. Ganesan and K. Murali, “Image encryption using eight dimen-
sional chaotic cat map”, The European Physical Journal Special
Topics 223 (8), 1611–1622 (2014).

[10] A. Kanso and M. Ghebleh, “A fast and efficient chaos-based
keyed hash function”, Communications in Nonlinear Science and
Numerical Simulation 18 (1), 109–123 (2013).

[11] A. Kanso and M. Ghebleh, “A structure-based chaotic hashing
scheme”, Nonlinear Dynamics 81 (1-2), 27–40 (2015).

[12] A. Kanso, H. Yahyaoui, and M. Almulla, “Keyed hash func-
tion based on chaotic map”, Information Sciences 186, 249–264
(2012).

[13] K. Kordov, “Signature attractor based pseudorandom generation
algorithm”, Advanced Studies in Theoretical Physics 9 (6), 287–
293 (2015).

[14] K. Kordov and L. Bonchev, “Using circle map for audio encryp-
tion algorithm”, Mathematical and Software Engineering 3 (2),
183–189 (2017).

[15] Z. Lin, S. Yu, and J. Lü, “A novel approach for constructing one-
way hash function based on a message block controlled 8D hy-
perchaotic map”, International Journal of Bifurcation and Chaos
27 (7), 1750106 (2017).

[16] G. Marsaglia, DIEHARD: a battery of tests of randomness,
https://github.com/reubenhwk/diehard.

[17] M. Melosik, P. Sniatala, and W. Marszalek, “Hardware Trojans
detection in chaos-based cryptography”, Bull. Pol. Ac.: Tech. 65
(5), 725–732 (2017).

[18] A.J. Menezes, P.L. van Oorschot, S.A. Vanstone, Handbook of
Applied Cryptography, CRC Boca Raton, 1996.

[19] W. Oniszczuk, “Loss tandem networks with blocking – a semi-
Markov approach”, Bull. Pol. Ac.: Tech. 58 (4), 673–681 (2010).

[20] M.A. Murillo-Escobar, C. Cruz-Hernández, L. Cardoza-
Avendaño, and R. Méndez-Ramírez, “A novel pseudorandom
number generator based on pseudorandomly enhanced logistic
map”, Nonlinear Dynamics 87 (1), 407–425 (2017).

[21] M. Y. Mohamed Parvees, J. Abdul Samath, and B. Parameswaran
Bose, ‘ ‘Medical images are safe – an enhanced chaotic scram-
bling approach”, Journal of Medical Systems 41, 167 (2017).

[22] J. Peng, S. Jin, H. Liu, and W. Zhang, “A novel hash function
based on hyperchaotic Lorenz system”, Advances in Intelligent
and Soft Computing 62, 1529–1536 (2009).

[23] K. Pommerening, “Fourier analysis of Boolean maps – a tutorial”
2005, http://www.staff.uni-mainz.de/pommeren/.

[24] H. Ren, Y. Wang, Q. Xie, and H. Yang, “A novel method for one-

way hash function construction based on spatiotemporal chaos”,
Chaos, Solitons and Fractals 42, 2014–2022 (2009).

[25] O.S. Rothaus, “On “bent” functions”, Journal of Combinatorial
Theory, Series A 20 (3), 300–305 (1976).

[26] C.H. Skiadas and C. Skiadas, Chaotic modelling and simulation:
analysis of chaotic models, attractors and forms, CRC Press,
2008.

[27] D.R. Stinson, Cryptography: theory and practice, CRC Press,
1995.

[28] B.P. Stoyanov, “Chaotic cryptographic scheme and its random-
ness evaluation”, in 4th AMiTaNS’12, AIP CP 1487, 397–404
(2012), DOI: 10.1063/1.4758983.

[29] B.P. Stoyanov, “Pseudo-random bit generator based on Cheby-
shev map”, in 5th AMiTaNS 13, AIP CP, 1561, 369–372 (2013),
DOI: 10.1063/1.4827248.

[30] B.P. Stoyanov, “Pseudo-random bit generation algorithm based
on Chebyshev polynomial and Tinkerbell map”, Applied
Mathematical Sciences 8 (125), 6205–6210 (2014), DOI:
10.12988/ams.2014.48676.

[31] B.P. Stoyanov, “Using Circle map in pseudorandom bit genera-
tion”, in 6th AMiTaNS’14, AIP CP 1629, 460–463 (2014), DOI:
10.1063/1.4902309.

[32] B. Stoyanov and K. Kordov, “Cryptanalysis of a modified encryp-
tion scheme based on bent Boolean function and feedback with
carry shift register”, AIP Conference Proceedings 1561, 373–377
(2013), DOI: 10.1063/1.4827249.

[33] B. Stoyanov and K. Kordov, “Novel Zaslavsky map based pseudo-
random bit generation scheme”, Applied Mathematical Sciences
8 (178), 8883–8887 (2014).

[34] B. Stoyanov and K. Kordov, “A Novel pseudorandom bit gen-
erator based on Chirikov Standard map filtered with shrinking
rule”, Mathematical Problems in Engineering 2014, Article ID
986174, 1-4 (2014), DOI: 10.1155/2014/986174.

[35] B. Stoyanov and K. Kordov, “Novel secure pseudo-random num-
ber generation scheme based on two Tinkerbell maps”, Advanced
Studies in Theoretical Physics 9 (9), 411–421 (2015), DOI:
10.12988/astp.2015.5342.

[36] B. Stoyanov, K. Szczypiorski, and K. Kordov, “Yet another pseu-
dorandom number generator”, International Journal of Electron-
ics and Telecommunications 63 (2), 195–199 (2017).

[37] K. Szczypiorski, “StegHash: new method for information hiding
in open social networks”, International Journal of Electronics
and Telecommunications 62 (4), 347–352 (2016).

[38] M. Todorova, B. Stoyanov, K. Szczypiorski, and K. Kordov,
“SHAH: hash function based on irregularly decimated chaotic
map”, International Journal of Electronics and Telecommunica-
tions 64 (4), 457–465 (2018), DOI: 10.24425/123546.

[39] D. Valli and K. Ganesan, “Chaos based video encryption us-
ing maps and Ikeda time delay system”, The European Physical
Journal Plus 132, 542 (2017).

[40] J. Walker, ENT: a pseudorandom number sequence test program,
http://www.fourmilab.ch/random/.

[41] Y. Wang, K-W. Wong, and Di Xiao, “Parallel hash function con-
struction based on coupled map lattices”, Communications in
Nonlinear Science and Numerical Simulation 16, 2810–2821
(2011).

[42] IEEE CS, 754-2008-IEEE Standard for floating-point arithmetic,
DOI: 10.1109/IEEESTD.2008.4610935.



569

BentSign: keyed hash algorithm based on bent Boolean function and chaotic attractor

Bull.  Pol.  Ac.:  Tech.  67(3)  2019

way hash function construction based on spatiotemporal chaos”,
Chaos, Solitons and Fractals 42, 2014–2022 (2009).

[25] O.S. Rothaus, “On “bent” functions”, Journal of Combinatorial
Theory, Series A 20 (3), 300–305 (1976).

[26] C.H. Skiadas and C. Skiadas, Chaotic modelling and simulation:
analysis of chaotic models, attractors and forms, CRC Press,
2008.

[27] D.R. Stinson, Cryptography: theory and practice, CRC Press,
1995.

[28] B.P. Stoyanov, “Chaotic cryptographic scheme and its random-
ness evaluation”, in 4th AMiTaNS’12, AIP CP 1487, 397–404
(2012), DOI: 10.1063/1.4758983.

[29] B.P. Stoyanov, “Pseudo-random bit generator based on Cheby-
shev map”, in 5th AMiTaNS 13, AIP CP, 1561, 369–372 (2013),
DOI: 10.1063/1.4827248.

[30] B.P. Stoyanov, “Pseudo-random bit generation algorithm based
on Chebyshev polynomial and Tinkerbell map”, Applied
Mathematical Sciences 8 (125), 6205–6210 (2014), DOI:
10.12988/ams.2014.48676.

[31] B.P. Stoyanov, “Using Circle map in pseudorandom bit genera-
tion”, in 6th AMiTaNS’14, AIP CP 1629, 460–463 (2014), DOI:
10.1063/1.4902309.

[32] B. Stoyanov and K. Kordov, “Cryptanalysis of a modified encryp-
tion scheme based on bent Boolean function and feedback with
carry shift register”, AIP Conference Proceedings 1561, 373–377
(2013), DOI: 10.1063/1.4827249.

[33] B. Stoyanov and K. Kordov, “Novel Zaslavsky map based pseudo-
random bit generation scheme”, Applied Mathematical Sciences
8 (178), 8883–8887 (2014).

[34] B. Stoyanov and K. Kordov, “A Novel pseudorandom bit gen-
erator based on Chirikov Standard map filtered with shrinking
rule”, Mathematical Problems in Engineering 2014, Article ID
986174, 1-4 (2014), DOI: 10.1155/2014/986174.

[35] B. Stoyanov and K. Kordov, “Novel secure pseudo-random num-
ber generation scheme based on two Tinkerbell maps”, Advanced
Studies in Theoretical Physics 9 (9), 411–421 (2015), DOI:
10.12988/astp.2015.5342.

[36] B. Stoyanov, K. Szczypiorski, and K. Kordov, “Yet another pseu-
dorandom number generator”, International Journal of Electron-
ics and Telecommunications 63 (2), 195–199 (2017).

[37] K. Szczypiorski, “StegHash: new method for information hiding
in open social networks”, International Journal of Electronics
and Telecommunications 62 (4), 347–352 (2016).

[38] M. Todorova, B. Stoyanov, K. Szczypiorski, and K. Kordov,
“SHAH: hash function based on irregularly decimated chaotic
map”, International Journal of Electronics and Telecommunica-
tions 64 (4), 457–465 (2018), DOI: 10.24425/123546.

[39] D. Valli and K. Ganesan, “Chaos based video encryption us-
ing maps and Ikeda time delay system”, The European Physical
Journal Plus 132, 542 (2017).

[40] J. Walker, ENT: a pseudorandom number sequence test program,
http://www.fourmilab.ch/random/.

[41] Y. Wang, K-W. Wong, and Di Xiao, “Parallel hash function con-
struction based on coupled map lattices”, Communications in
Nonlinear Science and Numerical Simulation 16, 2810–2821
(2011).

[42] IEEE CS, 754-2008-IEEE Standard for floating-point arithmetic,
DOI: 10.1109/IEEESTD.2008.4610935.


