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Abstract. In the complex RLC network, apart from the currents flows arising from the normal laws of Kirchhoff, other distributions of current, 
resulting from certain optimization criteria, may also be received. This paper is the development of research on distribution that meets the 
condition of the minimum energy losses within the network called energy-optimal distribution. Optimal distribution is not reachable itself, but 
in order to trigger it off, it is necessary to introduce the control system in current-dependent voltage sources vector, entered into a mesh set 
of a complex RLC network. For energy-optimal controlling, to obtain the control operator, the inversion of R(s) operator is required. It is the 
matrix operator and the dispersive operator (it depends on frequency). Inversion of such operators is inconvenient because it is algorithmically 
complicated. To avoid this the operator R(s) is replaced by the R’ operator which is a matrix, but non-dispersive one (it does not depend on s). 
This type of control is called the suboptimal control. Therefore, it is important to make appropriate selection of the R’ operator and hence the 
suboptimal control. This article shows how to implement such control through the use of matrix operators of multiple differentiation or integra-
tion. The key aspect is the distribution of a single rational function H(s) in a series of ‘s’ or ‘s–1’. The paper presents a new way of developing 
a given, stable rational transmittance with real coefficients in power series of ‘s/s–1՚. The formulas to determine values of series coefficients 
(with ‘s/s–1’) have been shown and the conditions for convergence of differential/integral operators given as series of ‘s/s–1’ have been defined.

Key words: principle of minimum energy losses, optimal and suboptimal control, power series, operators of multiple differentiation or integra-
tion, decomposition of a rational function.
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The network is characterized by the so-called internal op-
erators matrix Z(s) (s = d/dt), contact operators matrix Z0(s) 
and external operators matrix Z00(s).

The equations of network operator assume the form:

	
–Zi   ¡ Z0i0  = 0
–Z0

Ti + Z00i0 = u0
� (1)

(0 – zero vector (or zero operator), T – a sign of transposition).

1.	 Introduction. Energy-optimal distribution 
and control systems

In DC circuits there is the minimum energy principle, according 
to which the currents distribution in a complex network are such 
that the total energy losses are minimal [1, 2]. However, this 
rule usually does not work in the sinusoidal current circuits [3]. 
On the other hand, in non-sinusoidal signals domain, the term 
“reactive power” makes no sense, which means that this term 
should not be used during testing the quality of electrical energy 
distribution in the network [4, 5]. However, the compensation 
problems aimed at resetting the indicator of reactive power 
can be solved as optimization tasks consisting in minimizing 
energy losses in the network or as related tasks of minimizing 
the RMS value of currents [6, 7]. Study [8] showed that in the 
complex RLC network, besides the currents flows arising from 
the normal laws of Kirchhoff – called current divider – other 
distributions of current, resulting from certain optimization cri-
teria, may also be received through appropriate controls.

The distribution that meets the condition of the minimum 
energy losses within the network was examined (energy-optimal 
distribution). In Fig. 1 the RLC network with power given as 
a vector of current signals i0 is shown. Distribution of mesh 
currents within the network is determined by the vector of cur-
rent signals i.

Fig. 1. The complex network with multicurrent power; i – internal 
mesh currents vector; i0 external current vector
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In Fig.2 the structure of system of equations (1) is illus-
trated. In this figure the sizes of the matrix and vectors are 
shown.

Current divider and energy-optimal current distribution are 
described by the two matrix-similar systems of operator equa-
tions:

	 Z(s)i ¡ Z0(s)i0 = 0� (2)

	 R(s)i ¡ R0(s)i0 = 0� (3)

where the matrix operators of impedance Z(s), R(s) and Z0(s), 
R0(s) are related in the way that:

	 Z(s) = R(s) + X(s)� (4)

where:

	 Z(–s) = R(s);    X(–s) = –X(s)� (5)

which makes  that distribution (4) on Hermitian and skew-Her-
mitian part is a unique one:

	

R(s) =  1
2

Z(s) + Z(–s) ;

X(s) =  1
2

Z(s) ¡ Z(–s) .

� (6)

In this way the systems of equations (2) – (Z , Z0) type 
and (3) – (R, R0) type are identical in matrix way, but in an 
operator way equations (3) are the Hermitian variant of equa-
tions (2).

Solutions of the systems of equations (2) and (3) are: mesh 
currents vector of current divider

	 idz =  Z(s) –1Z0(s)i0� (7)

and energy-optimal mesh currents distribution as a vector

	 iopt =  R(s) –1R0(s)i0� (8)

Optimal distribution itself is not as reachable as the distri-
bution of current divider but in order to trigger it off, it is nec-
essary to carry out the optimal control by the control operator 
Xc(s), generating signal of the voltage source ec appropriately 
distributed in the internal meshes of network:

	 ec = Xc(s)i0� (9)

where [8]:

	 Xc(s) = X(s) R(s) –1R0(s) ¡ X0(s) .� (10)

So, Xc(s) is a skew-Hermitian matrix operator processing 
the signal-vector i0 in the voltage signal-vector ec:

Xc(–s) = –Xc(s)

For DC networks, distributions idz and iopt overlap because 
matrix operators Z(s) and R(s) overlap for s = 0 and it is consis-
tent with the principle that in the DC circuits, currents distribu-
tion is such that the total energy losses are minimal [1, 2].

It also appears that energy-optimal distributions and current 
divider distributions can be the same without control when the 
deviation operator disappears:

	 Δ(s) =  R(s) –1R0(s) ¡  Z(s) –1Z0(s)� (11)

which is related to the optimal control operator by the formula:

	 Xc(s) = Z(s)Δ(s) .� (12)

From equations (10) and (12) the following theorem of equiv-
alence is derived:

	
	 Δ = 0		  XR–1R0 = X0

	 	 ⇔	 or
	 Xc = 0		  RX–1X0 = R0

	for each s

.
� (13)

Networks fulfilling the condition (13) reach the energy-optimal 
current distribution of i0 without control. In study [8] such net-
works were called naturally energy-optimal.

Example 1.
A ladder structure – a long line in a discrete model (Fig. 3). 
The figure shows a circuit which is powered from both sides.

Fig. 2. Scheme the system of equations (1);  
1 – internal operators matrix, 2 – contact operators matrix,  
3 – external operators matrix, 0 – vector (or operator) zero,  

T – a sign of transposition

In Fig.2 the structure of system of equations (1) is 
illustrated. In this figure the sizes of the matrix and 
vectors are shown. 
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Fig. 2. Scheme the system of equations (1); 
1 - internal operators matrix, 2 - contact operators matrix, 3 - external 
operators matrix, 0 - vector (or operator) zero, T - a sign of transposition 
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In the diagram, inner meshes 1, 2, 3 and external 01, 02 
was selected. The structure of the system of mesh equations is:

Figure 3 also shows optimal control implemented using voltage 
sources controlled by the currents 01, 02 distributed in the 
meshes of the ladder circuit.

2.	 Suboptimal control. Decomposition  
of the matrix-rational impedance operators 
in a power series of s and s–1

As shown in equation (10) to designate the key control oper-
ator Xc(s) for the approach presented here, one needs to carry 
out a complicated operation to reverse the dispersive matrix 
operator (it depends on s) R(s). This can be avoided by using 
so-called suboptimal control, defined by the operator [9]:

	 esub = (∆R(s) + Xsub(s))i0� (14)

where:

	 ∆R(s) = R(s)(R )–1R0 ¡ R0(s)� (15)

is the differential operator of mismatch resistance and:

	 Xsub(s) = X(s)(R )–1R0 ¡ X0(s)� (16)

is the suboptimal control operator.
Independent of s the matrix operator R  will replace the 

dispersive operator R(s).
As a result of such a simplification the full control operator 

ΔR(s) + Xsub(s)  ceases to be skew-Hermitian, which makes 
that the property of skew-Hermitian operators is lost, namely 
energy-neutral feature [10, 11].

Therefore, making appropriate selection of the R  operator 
is important and hence the suboptimal control. One of the many 
possibilities of solving this issue is the distribution of a matrix 

Fig. 3. A ladder system powered from two sides and optimal control sources distributed in the meshes of the ladder circuit
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A ladder structure – a long line in a discrete model (Fig. 
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In the diagram, inner meshes 1, 2, 3 and external 01, 02 
was selected. The structure of the system of mesh 
equations is: 
 
 

1,4,5 -5  -4  

-5 2,5,6 -6 
  

 -6 3,6,7 
 

-7 

   
  

   
  

 

1 

2 

3 

01 

02 

 

  = 

 

  Z    1             2            3            01         02  -Z0 
i 
 
 
 
 
 

i0 
 
 
 
 

   

   

   

x 

x 

 

x x 

1 
 
 
2 
 
 
3 
 
 
 
 
  
The structure of the current divider equations 

0iZZi 00   is visible above. Empty places indicate 

‘zero’ operators or signals, places with 'x' contain 
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system of equations. 
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was selected. The structure of the system of mesh 
equations is: 
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The structure of the current divider equations 

0iZZi 00   is visible above. Empty places indicate 

‘zero’ operators or signals, places with 'x' contain 
operators or signals that do not take part in solving the 
system of equations. 
For the branch structure of  RLC type: 
 

 
 
is obtained 

ΣLrXRZ 1ss)s()s()s(   

where: 

r  - matrices of mesh resistances 
L - matrices of mesh inductances 
Σ -matrices of mesh elastances (the inverse of the 
capacity) 

The optimal control operator have the following form: 

              )()( 00
1 LrLrX  ssc  

or             )()( 00
11 ΣrΣrX  ssc  

or )()()( 00
11

00
1 ΣrΣrLrLrX   sssc  

The condition of the naturally energy-optimal network 
(Δ=0) takes the form of the following matrix structure: 
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Fig. 3 shows also optimal control implemented using 
voltage sources controlled by the currents 01, 02 
distributed in the meshes of the ladder circuit. 
 
2. Suboptimal control. Decomposition of the 

matrix-rational impedance operators in a 
power series of ‘s’ and ‘s-1’ 

 
As shown in equation (10) to designate the key control 
operator Xc(s) for the approach presented here, one  needs 
to carry out a complicated operation to reverse the 
dispersive matrix operator (it depends on s) R(s). This can 
be avoided by using so-called the suboptimal control, 
defined by the operator [9]: 
 

0))()(( iXRe ss sub
sub             (14) 

where: 
 

)(')')(()(Δ 00
1 sss RRRRR        (15) 

 
is so-called the differential operator of mismatch 
resistance and: 
 

)(')')(()( 00
1 ssssub XRRXX        (16) 

 
is the suboptimal control operator. 
Independent of s the matrix operator R’ will replace the 
dispersive operator R(s). 
As a result of such a simplification the full control 
operator [ΔR(s) + Xsub(s)] ceases to be skew-Hermitian, 
which makes that the property of skew-Hermitian 
operators is lost, namely energy-neutral feature [10,11]. 
Therefore, making appropriate selection of the R’ 
operator is important and hence the suboptimal control. 
One of the many possibilities of  solving this issue is the 
distribution of a matrix rational function in the power 
series of s or s-1 [12,13,14,15]. It allows in uncomplicated 
way to separate impedance operators into Hermitian and 
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rational function in the power series of s or s–1 [12‒15]. It 
provides a simple way to separate impedance operators into 
Hermitian and skew-Hermetian parts. As a result, one can de-
termine non-dispersive resistance components as zero terms of 
the appropriate power series.

The matrix-rational operators type Z(s) and Z0(s) in the 
system of equations (2) (see also Fig. 2) are decomposed in a 
power series of s:

	

Z(s) = R(s) + X(s) = 

Z(s) = r + 
n=1

1

∑ rn s2n + s
µ

L + 
n=1

1

∑ Ln s2n
¶

Z0(s) = R0(s) + X0(s) = 

Z0(s) = r0 + 
n=1

1

∑ rn
0s2n + s

µ
L0 + 

n=1

1

∑ Ln
0 s2n

¶
� (17)

or in a power series of s–1:

	

Z(s) = R(s) + X(s) = 

Z(s) = r + 
n=1

1

∑ rn s–2n + s–1
µ
Σ + 

n=1

1

∑ Σn s–2n
¶

Z0(s) = R0(s) + X0(s) = 

Z0(s) = r0 + 
n=1

1

∑ rn
0s–2n + s–1

µ
Σ0 + 

n=1

1

∑ Σn
0 s–2n

¶
� (18)

where:
	 r, rn , r0, rn

0	– resistance matrices;
	L, Ln , L0, Ln

0	– inductance matrices;
	Σ, Σn , Σ0, Σn

0	– �elastance matrices (the inverse of the capacity).

With a view to the suboptimal control (see formulas (14, 15 
and 16)), assuming the nondispersive operator R  as r (R  = r), 
the following is obtained:

–	 the suboptimal control operators

	
Xsub(s) = X(s)r–1r0 ¡ X0(s) = s (Lr–1r0 ¡ L0) +

Xsub(s) + 
n=1

1

∑ s2n(Lnr–1r0 ¡ Ln
0)

� (19)

for s decomposition, or

	
X sub(s) = s–1 (Σr–1r0 ¡ Σ0) +

X sub(s) + 
n=1

1

∑ s–2n(Σn r–1r0 ¡ Σn
0)

� (20)

for s–1 decomposition,

–	and the differential operators of mismatch resistance

ΔR(s) = R(s)r–1r0 ¡ R 0(s) =   r + 
1

n=1
∑ rn s2n r–1r0 ¡ r0 ¡

ΔR(s) ¡ 
1

n=1
∑ rn

0s2n = 
1

n=1
∑ s2n(rnr–1r0 ¡ rn

0)

or        ΔR(s) = 
1

n=1
∑ s–2n(rnr–1r0 ¡ rn

0).

They all are the matrix operators of multiple differentia-
tion or integration wherein X sub(s) operators are odd opera-
tors (skew-Hermitian) and ΔR(s) operators are even operators 
(Hermitian).

Decomposition of a single rational function H(s) in a power 
series of s, which is essential in further proceedings, is carried 
out as follows:

H(s) = 
b0 + b1s + b2s2 + … + bN ¡ 1sN ¡ 1

a0 + a1s + a2s2 + … + aN sN
 =

H(s) = x0 + x1s + x2s2 + x3s3 + …

The set of searched coefficients {xn}1n = 1 meets the system of 
equations:

a0 x0 = b0

a0 x1 + a1x0 = b1

a0 x2 + a1x1 + a2x0 = b2

…          …
a0 xN ¡ 1 + a1 xN ¡ 2 + a2 xN ¡ 3 + … + aN ¡ 1x0 = bN ¡ 1

…          …
a0 xn + N + a1xn + N ¡ 1 + a2 n + N ¡ 2 + … + aN xn = 0

�(21)

From the first N – equations of equations system (21) the initial 
values of sequence {xn}1n = 0 are determined:

{x0, x1, …, xN ¡ 1}.

The rest of equations are recursive equations from which the 
remainder values of the sequence {xn}1n = 0 are determined by 
substituting:

xn = p–n.

This leads to a characteristic equation of the system with the 
rational transmittance H(s):

	 {a0 + a1 p + a2 p2 + … + aN pN = 0}.� (22)

The roots of characteristic equation (22):

{ p1, p2, p3, …, pN ,}
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are simultaneously poles of H(s) (the eigenvalues). The general 
solution of the recursive equation (21) has the form:

	 xn = 
m=1

N

∑ cm pm
¡n� (23)

where a set of constant {cm}N
m = 1 is determined from the the 

linear equations:

	
m=1

N

∑ cm pm
¡n = xn   for n = 0, 1, 2, ..., N ¡ 1� (24)

The same rational function can be decomposed in a series ‘s–1’:

H(s) = 
bN ¡ 1 + bN ¡ 2s–1 + bN ¡ 3s–2 + … + b0s–(N ¡ 1)

aN + aN ¡ 1s–1 + aN ¡ 2s–2 + … + a0s–N
s–1 =

H(s) = ( y0 + y1s–1 + y2s–2 + y3s–3 + …)s–1.

The searched coefficients set of the series {yn}1n = 0 meets N 
– equations of initial conditions:

aN y0 = bN ¡ 1

aN y1 + aN ¡ 1 y0 = bN ¡ 2

aN y2 + aN ¡ 1 y1 + aN ¡ 2 y0 = bN ¡ 3

…                …
aN yN ¡ 1 + aN ¡ 1 yN ¡ 2 + aN ¡ 2 yN ¡ 3 + … + a1 y0 = b0

� (25)

from which the values of {yn}N ¡ 1
n = 0 and recursive equation are 

determined:

aN yn + N + aN ¡ 1 yn + N ¡ 1 + aN ¡ 2 yn + N ¡ 2 + … + a0 yn = 0

which, after substituting xn = pn transforms into the charac-
teristic equation (22) so in the same equation as for the ‘s’ 
decomposition. Thus the general form of the series {yn}1n = 0 
takes a form:

	 yn = 
m=1

N

∑ dm pm
n� (26)

where the weighting coefficients {dm}N
m = 1 satisfy the system 

of linear equations:

	
m=1

N

∑ pm
n dm = yn   for n = 0, 1, 2, ..., N ¡ 1� (27)

and the {pm}n
m = 1 is the set of poles of the rational function H(s).

Example 2.
A special role is played by the 2nd order system, for which:

H(s) = 
b0 + b1s

a0 + a1s + a2s2
 = s–1 b1 + b0s–1

a2 + a1s–1 + a0s–2

with real coefficients, but such that a0, a1, a2 have the same sign 
(a0  6= 0, a2  6= 0). The ‘s’, ‘s–1’ decompositions then proceed 
according to the following scheme:

H(s) = x0 + x1s + x2s2 + … =

H(s) = ( y0 + y1s–1 + y2s–2 + …)s–1

The common characteristic equation and poles can be expressed 
in the form:

a0 + a1 p + a2 p2 = 0

hence

p = 
a1

2
 + j a0a2 ¡ 

³a1

2

2́

{ p1, p2} = { p, p*} so that jpj =  a0a2

Note
When:

p = –
a1

2
 +  j (–1)

³a1

2

2́
 ¡ a0a2  =

p = –
a1

2
 ± j2

³a1

2

2́
 ¡ a0a2  =

p = –
a1

2
 ±  

³a1

2

2́
 ¡ a0a2  < 0.

Initial conditions and the general solution of recursive equations 
for sequences {xn}1n = 0, {yn}1n = 0 take the form:

a0 x0 = b0	 x0 = 
b0

a0
→

a0 x1 + a1x0 = b1	 x1 = 
a0b1 ¡ a1b0

a0
2

for the ‘s’ decomposition, and

a2 y0 = b1	 y0 = 
b1

a2
→

a2 y1 + a1 y0 = b0	 y1 = 
a2b0 ¡ a1b1

a2
2

for the ‘s–1’ decomposition.
Hence:

xn = c1 p–n + c2(p*)
–n

wherein the coefficients c1, c2 satisfy the system of equations
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c1 + c2 = x0 → c1, 2 = 
W1, 2

W
p–1c1 + (p*)

–1c2 = x1

W1 = j x0		  1

x1		  (p*)
–1 j = (p*)

–1x0 ¡ x1

W2 = j 	 1	 x0

	p–1	 x1
j = x1 ¡ p–1x0 = –W1

*

W = (p*)
–1 ¡ p–1 = –W *.

So occurs:

c*
1 =  

W1
*

W*
 =  

–W2

–W
 =  c2

On the other hand:

yn = d1 pn + d2(p*)
n

where:

d1 + d2 = y0
→ d1, 2 = 

W1, 2

Wpd1 + p*d2 = y1

W1 = p*y0 ¡ y1

W2 = –(py0 ¡ y1) = –W1
*

W = p* ¡ p = –W *

and hence: d1
* = d2.

Thus, the common expansion of s/s–1 will take the following 
form:

H(s) = 
1

n=0
∑

³
cp–n + c*(p*)

–n´sn = 

H(s) = 
1

n=0
∑ 2jckpj–ncos(∠c ¡ n∠p)–n´ sn = 

H(s) = 
1

n=0
∑ c

µ s
p

¶n
 + c*

µ s
p*

¶n
 = 

H(s) = s–1
1

n=0
∑

³
dpn + d*(p*)

n´s–n = 

H(s) = s–1
1

n=0
∑ 2jdkpjncos(∠d + n∠p) s–n =

H(s) = s–1
1

n=0
∑ d

µ
p
s

¶n
 + d*

µ
p*

s

¶n
.

The general s/s–1 expansion of a rational function of any 
order has the following form:

	

H(s) = 
n=0

1

∑
m=1

N

∑ cm pm
¡n sn = 

H(s) = 
m=1

N

∑ cm
n=0

1

∑
µ s

pm

¶n
 = 

H(s) = s–1

n=0

1

∑
m=1

N

∑ dm pm
n s– n =

H(s) = s–1

m=1

N

∑ dm
n=0

1

∑
µpm

s

¶n
.

� (28)

3.	 The convergence of s/s–1 series

The convergence of operators (differential/integral) set by se-
ries ‘s/s–1’ (28) needs to be tested by a harmonic signal forcing, 
substituting s = jω.

Hence the convergence conditions obtained:
–	for the series ‘s’

	 j ωpm
j < 1  →  ω <  min

1 ∙ m ∙ N
{jpmj}� (29)

–	and for the series ‘s–1’

	 j pm

ω j < 1  →  ω >  max
1 ∙ m ∙ N

{jpmj}.� (30)

Particularly for the 1st and the 2nd order systems:

b0

a0 + s
; 

b0 + b1s

a0 + a1s + a2s2
:   a0, a1, a2 > 0

whose poles are appropriate:

p = – a0

for the 1st order system and

∆ = a1
2 ¡ 4a0a2 = (–1)4

µ
a0a2 ¡ 

µa1

2

¶2
¶

 → 

→ p1, 2 = – a1

2
 ±  j a0a2 ¡ 

³a1

2

2́
 ¥  jp1, 2j =  a0a2

for the 2nd order system.

Hence, the following convergence conditions for the series ‘s’ 
and ‘s–1’ are obtained:

Order 1:	 ω < a0	 ω > a0

Order 2:	 ω < minjpj	 ω > maxjpj
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where:
minjpj = 

a1

2
 ¡  ∆ ;

maxjpj = 
a1

2
 +  ∆ ;

and             ∆  =  
³a1

2

2́
 ¡ a0a2

appropriate to the ‘s’ and ‘s–1’ series for real poles, and:

Order 2:	 ω <  a0a2	 ω >  a0a2

for the complex poles and appropriate to the ‘s’ and ‘s–1’series.
The appropriate location of the poles on the plane is illus-

trated in Fig. 4.

nondispersive, is suggested. It can be achieved by decomposing 
all impedance operators participating in the issue in power se-
ries of variables ‘s’ or ‘s–1’.

It allows for a simple separation of impedance operators 
on the part of Hermitian and skew-Hermitian, and also for 
finding non-dispersive resistance components as zero terms of 
appropriate power series. A key aspect is the decomposition of 
a single rational function H(s) in a power series of ‘s’ or ‘s–1’. 
To examine this the following is proposed.

Theorem. The given, stable rational transmittance

H(s) = 
b0 + b1s + b2s2 + … + bN ¡ 1sN ¡ 1

a0 + a1s + a2s2 + … + aN sN

with real coefficients can be decomposed in power series of 
‘s/s–1’ type:

H(s) = 
1

n=0
∑ xnsn = s–1

1

n=0
∑ yns– n

which complete series coefficients {xn}1n = 0 , {yn}1n = 0 are de-
termined by formulas:

xn = 
N

m=1
∑ cm pm

–n,   yn = 
N

m=1
∑ dm pm

n

where { p1, p2, p3, …, pN ,} is the set of single poles of the func-
tion H(s), ie. the roots of characteristic equation:

a0 + a1s + a2s2 + … + aN sN = 0

and the constant weight {cm}N
m = 1 and {dm}N

m = 1 are determined 
from the system of linear equations

N

m=1
∑ pm

–ncm = xn,   
N

m=1
∑ pm

n dm = yn

for n = 0, 1, 2, ..., N ¡ 1
where the initial values of series, ie. {xn}N ¡ 1

n = 0 , {yn}N ¡ 1
n = 0 , are cal-

culated from the bottom triangle systems of linear equations 
(21) and (25).
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the 2nd order system. 
Hence, the following convergence conditions for the 
series ‘s’ and ‘s-1’ are obtained: 
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1’series. 
The appropriate location of the poles on the plane is 
illustrated in Fig. 4. 
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Fig. 4 The location of poles of the system on the plane 
 
The ‘s’ series, as a multiple differentiaton system is 
convergent in the low frequency band, while the multiple 
integration system described by the ‘s-1’ power series is 
convergent in the high frequency band. It means that the 
frequency range of convergence for the ‘s’ decomposition 
is bounded above and an appropriate range of 
convergence for the ‘s-1’ decomposition from the bottom. 
 
4. Conclusions 
 
In order to obtain the energy-optimal currents distribution, 
is necessary to determine the optimal control operator. 
The operation of inverse a matrix-dispersive Hermitian 
operator R(s) is there included which consists of two 
parts: a matrix operator inversion and a rational dispersive 
operators inversion. However, to avoid executing this 
second step, so called suboptimal control with the 
operator in which the resistive components are 
nondispersive, is suggested. It can be achieved by 
decomposition all impedance operators participating in 
the issue in power series of variables ‘s’ or ‘s-1’. 
It allows a simple separation of impedance operators on 
the part of Hermitian and skew-Hermitian, and also 
allows to find non-dispersive resistance components as 
zero terms of appropriate power series. A key aspect is the 
decomposition of a single rational function H(s) in a 
power series of ‘s’ or ‘s-1’. To examine this it is proposed 
the following 
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with real coefficients can be decomposed in power series 
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the 2nd order system. 
Hence, the following convergence conditions for the 
series ‘s’ and ‘s-1’ are obtained: 
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appropriate to the ‘s’ and ‘s-1’ series for real poles, and: 
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for the complex poles and appropriate to the ‘s’ and ‘s-

1’series. 
The appropriate location of the poles on the plane is 
illustrated in Fig. 4. 
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Fig. 4 The location of poles of the system on the plane 
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with real coefficients can be decomposed in power series 
‘s/s-1’ type: 
 

The ‘s’ series, as a multiple differentiation system is conver-
gent in the low frequency band, while the multiple integration 
system described by the ‘s–1’ power series is convergent in 
the high frequency band. It means that the frequency range of 
convergence for the ‘s’ decomposition is bound above and an 
appropriate range of convergence for the ‘s–1’ decomposition 
from the bottom.

4.	 Conclusions

In order to obtain the energy-optimal currents distribution, it 
is necessary to determine the optimal control operator. The op-
eration of inverse a matrix-dispersive Hermitian operator R(s) 
is considered, which consists of two parts: a matrix operator 
inversion and a rational dispersive operators inversion. How-
ever, to avoid executing this second step, so called suboptimal 
control with the operator in which the resistive components are 
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