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Abstract. In this article, we present a comprehensive measurement system to determine the level of user emotional arousal by the analysis of 
electrodermal activity (EDA). A number of EDA measurements were collected, while emotions were elicited using specially selected movie 
sequences. Data collected from 16 participants of the experiment, in conjunction with those from personal questionnaires, were used to determine 
a large number of 20 features of the EDA, to assess the emotional state of a user. Feature selection was performed using signal processing and 
analysis methods, while considering user declarations. The suitability of the designed system for detecting the level of emotional arousal was 
fully confirmed, throughout the number of experiments. The average classification accuracy for two classes of the least and the most stimulating 
movies varies within the range of 61‒72%.

Key words: electrodermal activity (EDA), galvanic skin response (GSR), skin conductance response (SCR), feature selection, arousal, valence, 
classification, regression.
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of emotional excitement [8, 12]. In a large number of articles, 
the concept of EDA is identified with only the measurement 
of skin resistance/conductance [13‒16]. The biggest advantage 
of this method is its simplicity. In contrast, its disadvantage is 
a disturbed signal influenced by a number of factors [8, 17]. 
Proper selection of features, extracted from an EDA signal, 
can make the detection of the user’s level of emotional arousal 
more effective.

As demonstrated in many studies, the nervous system is 
strongly connected with the sweat glands on the human skin 
[18]. The changes in the level of sweat secretion in response 
to emotional stimuli change the value of skin resistance. The 
two components of skin conductance (SC) can be separated: 
slow-variable (skin conductance level – SCL) and fast-variable 
(skin conductance response – SCR) [19]. In the literature, you 
can also find the terms: tonic component of skin conductance, 
specifying slow-variable component, and phasic component of 
skin conductance, specifying fast-variable component [20]. The 
tonic component is related to the level of emotional excitation of 
a user [13], but as it is changing very slowly, the measurement 
intervals have to be long (from tens of seconds to minutes).

For example, spontaneous fluctuations in this component 
occur 1‒3 times per minute.

The use of skin conductance (SC) for the purpose of detect-
ing the level of emotional arousal has been mentioned in many 
works. Furthermore, autonomic activity such as EEG or heart 
rate (HR) are also used to assess the internal emotional state of 
the subject [21]. In the paper [22] GSR for emotion recognition 
was used. Ten features of GSR were extracted: average signal 
value, signal variance, standard deviation, the number of local 
maxima, the number of local minima, the mean conductivity 
difference for each consecutive pair of local minimum-maxi-
mum, the global maximum, the global minimum, the difference 

1. Introduction

Automatic emotion detection can improve human communica-
tion with the computer, can be used in psychology and medicine 
for diagnosis of a user’s mental state and in neuromarketing 
[1‒3]. To read the emotional state of a man, you can use a whole 
range of methods, including pulse measurement, ECG analysis, 
EEG analysis, facial expressions, pupil size and electrodermal 
activity (EDA) [4‒6]. Also, a fusion of data, collected from 
different sources, can be used. Unfortunately, each of these 
methods has some weaknesses, and the effectiveness of the 
known solutions is still not satisfactory [7]. EDA is commonly 
used in the field of human-computer interaction [8]. Effective 
use of the EDA signal in recognizing the level of emotional 
arousal would offer better communication between human and 
computer, leading to affective computing [9‒11].

Electrodermal activity (EDA) is the property of the human 
body that causes continuous variation in the electrical charac-
teristics of the skin. In the past, by a number of authors, EDA 
has been identified with skin conductance (SC), galvanic skin 
response (GSR), electrodermal response (EDR), psychogalvanic 
reflex (PGR), skin conductance level (SCL), skin conductance 
response (SCR) and sympathetic skin response (SSR). The 
long history of research into the electrical properties of the 
skin by a variety of disciplines has resulted in an excess of 
names, now standardized to electrodermal activity (EDA). But 
the older names are still in use. So Thus, we can say that EDA 
is the one of the earliest known methods for measuring the level 
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of them, the ratio between the number of maxima and stimuli 
duration (peaks/time). These features allowed, at best, to clas-
sify 3 classes of emotions (positive, negative and neutral) with 
an accuracy of 77.33%. Lang et al. [20, 22] discovered that the 
mean value of the GSR is related to the level of arousal. Several 
GSR signal features have been proposed in the research (mean 
and standard deviation of skin resistance, mean of derivative, 
mean of absolute of derivative, mean of derivative for negative 
values only, proportion of negative samples in the derivative vs. 
all samples, spectral power in the bands 0‒0.1 Hz, 0.1‒0.2 Hz, 
0.2‒0.3 Hz, 0.3‒0.4 Hz). But the selection of those features was 
not described well enough. Also, the significance of the features 
for the emotion recognition was not presented. In the work [23] 
EEG, GSR and respiratory signals were recorded. The following 
GSR signal features were proposed: mean skin resistance, mean 
of derivative over the whole trial, average GSR variation, mean 
of derivative for negative values only, average decrease rate, 
proportion of negative samples in the derivative vs. all samples. 
However, also no results of the usefulness of these features for 
the emotion recognition were presented. Paper [24] presents the 
use of GSR signal in attempt to determine the boredom, engage-
ment and anxiety as indicators in computer games. There were 
applied features such as: mean skin resistance, mean of deriva-
tive, mean of derivative for negative values only, proportion of 
negative samples in the derivative vs. all samples. The authors 
indicate that all these features of the GSR signal were useful. 
In the work [25] affective characterization of movie scenes, 
based on multimedia content analysis and user’s physiological 
emotional responses to them, are presented. GSR signal features 
such as average skin resistance, average of derivative, mean 
of derivative for negative values only, proportion of negative 
samples in the derivative were used. The authors showed that 
the highest correlations (of GSR and participant’s self-assess-
ments) was for the feature “GSR standard deviation” (0.55) for 
arousal and for the feature “average of GSR derivative” (–0.45) 
for valence. In the paper [26] multimodal emotion recognition 
in response to videos is presented. Physiological signals includ-
ing ECG, EEG (32 channels), galvanic skin response (GSR), 
respiration amplitude and skin temperature were recorded while 
the videos were shown to the participants. Unfortunately, the 
authors do not show how they used GSR signals to recognize 
emotions. Summing up, in many works, the authors register 
GSR signals, calculate complicated GSR signal features and 
do not use them or use them in a limited extent to recognize 
emotions.

In this article, we present feature extraction and selection 
techniques of EDA for the automatic detection of the level of 
emotional arousal. We measure skin conductance, in an indirect 

way, by measuring the resistance between the two electrodes 
located on the subject’s body [27], passing low-intensity current 
through the skin and measuring the voltage drop. To measure 
skin resistance in practice, electrodes are placed on the index 
finger and the middle finger of the non-dominant hand [28]. 
Novelty in our research is an examination of a wide range of 
twenty EDA signal features. The aim of the research was to 
indicate the most significant features for estimation of level 
of emotional arousal. In existing literature, studies have usu-
ally been performed only for several EDA signal features [13]. 
We did not find any works comparing such a large number of 
features, in terms of their significance, with the exception of 
[29, 30].

2. Materials

The experiment was attended by 22 men, students of the War-
saw University of Technology, aged 20±2 years. Prior to signal 
registration, volunteers were informed of the purpose of the 
experiment. Acquisition always started at the same time in the 
morning. The lighting conditions were uniform for all the par-
ticipants. Movies were presented with stereo sound. The volume 
was always set at the same level (thereby ensuring the subject’s 
comfort). The video was presented on a 27-inch LCD moni-
tor. The user’s eye distance from the center of the screen was 
approximately 60 cm. During the experiment, the person was 
seated in a comfortable armchair with a backrest and a palm 
rest. On the left-hand fingers (index and middle), electrodes 
were attached, from which an electrical signal proportional to 
the change in the skin conductance (SC) was acquired. For 
signal recording, a specially designed electronic circuit was 
used. The SC signal registration rate was 10 S/s. After instruct-
ing a user about the course of the experiment, the experiment 
supervisor left the room. The program created by the authors 
enabled synchronous video presentation and SC signal acqui-
sition according to the sequence shown in Fig. 1.

A user was asked to watch all (21) movies in each session. 
A random movie order was established. The total recording time 
was 8 min and 10 s. Thereafter, the supervisor returned to the 
room and asked about the participant’s comfort. After a short 
break, the SC signal was re-recorded with a random sequence of 
video presentations – second session. The registered SC signal 
was subjected to a preliminary visual assessment. The signal 
was recorded correctly for 16 people.

To elicit emotions in users, multimedia material in the form 
of short movies was prepared. Table 1 presents some of the 
characteristics of the prepared movies. Before and after each 

Fig. 1. Schematic representation of the video sequence presented to a user
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movie, a 5 s black screen was added along with a 5 s movie 
showing “colored curves.” Such a gap between movies, lasting 
a total of 10 s, was dictated by the delay of the EDA response to 
a stimulus, at the same time the subject got some time to calm 
their emotions before the next presentation [13].

The presented movies did not have to elicit the desired 
emotions in all the participants. The way in which a stimulus 
is perceived by a user depends on a number of factors, such 
as cultural determinants, age, sex, life experience, and the 
psychophysical state of a user at the time of the experiment. 
Our experiments were carried out for a homogeneous group of 
people (22 men, students of the Warsaw University of Tech-
nology, aged 20±2 years). The selection of such a group of 
people allowed a more controlled evocation of emotions. Fur-
thermore, the EDA signal and its features do not allow very 
precise determination of the degree of emotion in all subjects. 
Such accuracy is probably determined by the technical and 
physiological artifacts of the EDA signal. It can also be of great 
importance that each person reacts differently to the presented 
movies (even in such a homogeneous group). For that reason, 
there is no certainty that the calculated features will be just as 
useful for a differently defined group (e.g., women, or men of 
a different age).

The key issue was the proper choice of materials for the 
selected group. We were considering evoking emotions using 

the IAPS [31], IADS [32], NAPS [33] databases. However, 
we finally decided to use movies. We were hoping that movies 
could evoke stronger, more diverse emotional feelings [34]. 
We have chosen 50 publicly available movies on the Internet. 
In order to select the best of them, movies were shown to 3 
people from the group taking part in the experiment. Based on 
their subjective assessment, 21 movies were selected which 
were then presented to the rest of the group. Despite this, the 
presented movies did not have to cause the same emotions in 
each person. Therefore, we created, based on the works [35], 
[36], a questionnaire to help to determine the evoked emotions. 
Right after the second registration session, each subject was 
asked to fill out a questionnaire with two questions about the 
emotions triggered by each movie:
3. “Evaluate the type of emotions you experienced while 

watching a movie on a scale of −4 (negative) to +4 (pos-
itive)”.

4. “Rate the intensity of the emotions you experienced while 
watching a movie on a scale of 1 (low stimulating) to 9 
(very stimulating)”.
To make it easier for the subject to evaluate a movie, he 

could re-watch each of the presented videos while filling out the 
questionnaire. Thus, the questionnaires, covering 21 presented 
movies, were filled out by all users. The results of the subjec-
tive questionnaires (valence and arousal) about the emotions 

Table 1 
A compilation of movies used to elicit emotions

No. Mark Movie description Duration [s]

01 Birds A scene of birds flying against the sky, relaxing music in the background 10.13

02 Girl1 A scene of dancing, scantily dressed girl with rhythmic music 14.96

03 Highway A scene presenting the loops of the motorways from the bird’s eye view, with calm music 05.02

04 Horror1 A fragment of Sinister movie with a terrifying face and sound effects 09.11

05 Saw1 A fragment of Saw movie with scenes of blood faces and screams 10.07

06 Attack A scene showing a boy, after leaving the camera the boy turns out to be an assailant 04.97

07 Refugees A scene presenting an attempt to push a barricade on the border with screams 10.02

08 Slap A fragment of Lynx advertising, a sneaking man gives a slap to his girlfriend’s mother 11.08

09 Funeral1 A fragment of funeral, with calm music 14.95

10 Dentist A fragment of a movie showing the tooth extraction 09.94

11 Flag A fragment of a movie showing the man eating the metal pins with the flag. 05.00

12 Girl2 A scene of dancing, scantily dressed girl with rhythmic music 12.94

13 Beating A scene showing the beating of a girl by a man 10.01

14 Weather A scene presenting the lake among the mountains with calm music 09.94

15 Saw2 A fragment of the movie Saw with scenes of blood faces and screams 09.99

16 Funeral2 A fragment of funeral, with calm music 18.05

17 Horror2 A fragment of Lights Out movie with a terrifying face and sound effects 09.99

18 Weather A scene with a man presenting a weather forecast 09.97

19 Vegetarian A fragment of Lynx advertising depicting a man reacting to a woman’s words 10.54

20 Amputation A fragment of a movie showing finger amputation 09.97

21 Button A fragment of the movie containing elements of surprise and rhythmic music 71.14
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experienced while watching movies are presented in Table 2. 
This was an objective assessment and may not be honest or 
even fully aware. The distribution of the subjective evaluations 
(medians) in the valence-arousal space, for all movies, is pre-
sented in Fig. 2.

Table 2 
Results of the evaluation of emotions for all users  

(valence and arousal), No.-film number, µ-mean, ϭ-standard 
deviation, Me-median

Arousal Valence
No. µ ϭ Me µ ϭ Me
1 2.67 2.20 2.0 –1.72 1.36 1.0
2 7.33 1.85 8.0 –3.11 1.53 4.0
3 1.94 1.30 1.0 –0.56 1.42 0.0
4 5.89 2.40 6.0 –0.72 1.99 –1.0
5 5.89 2.14 6.0 –0.94 2.31 –2.0
6 3.72 1.67 4.0 –1.83 1.10 –2.0
7 4.61 2.17 5.0 –0.78 1.83 –1.0
8 6.11 1.75 6.0 –2.89 0.76 –3.0
9 3.72 2.24 3.0 –1.06 1.59 –1.0

10 6.11 2.49 7.0 –1.28 2.14 –1.5
11 3.06 1.80 3.0 –1.11 1.45 –1.0
12 7.22 2.16 7.5 –2.89 1.41 –3.5
13 6.61 2.06 6.5 –2.22 2.21 –3.0
14 2.78 2.21 2.0 –1.56 1.50 –1.0
15 5.72 2.22 6.0 –0.61 2.15 –1.0
16 3.50 2.43 2.5 –1.11 1.68 –1.0
17 6.00 1.68 6.5 –0.94 1.80 –1.5
18 1.33 1.03 1.0 –0.17 0.79 –0.0
19 5.22 2.16 5.0 –2.67 0.77 –2.5
20 6.44 2.31 7.0 –1.72 2.44 –2.5
21 6.00 2.17 6.0 2.22 1.52 –2.0

Despite our attempt to select movies in such a way that they 
were found in every quarter of the valence/arousal space, the 
distribution was not even and was arranged in the shape of the 
letter “V”. Similar distributions were obtained in other works 
[35]. This shape of distribution means that the most positive 
and negative movies were at the same time highly stimulating.

However, using movies as stimuli has its drawbacks. As 
movies were of relatively long duration, they could introduce 

a source of variation in emotions. Also the opportunity to watch 
movies two times could be a problem, because the feelings 
could not be the same as at the first time.

5. Methods

A block diagram of the skin resistance measurement system is 
shown in Fig. 3. This system consists of electrodes, a measure-
ment circuit (an amplifier with RC filters), an ATmega328P 
microcontroller (including an A/D converter), and a personal 
computer. During the experiments, elastic bands with Ag/ AgCl 
electrodes (8 mm diameter) were used to ensure good elec-
trode–skin contact. A schematic representation of the measure-
ment system is shown in Fig. 4.

The circuit is powered from a source VCC of 5 V. A 2.5 V 
supply voltage from the R1/R2 divider is applied to the bridge 
arms. In one branch of the bridge are the R4 resistor and the 
P5 potentiometer, and in the other are the R3 resistor and the 
measured resistance connected via electrodes to the terminals 
E−/E+. The differential amplifier circuit is based on three oper-
ational amplifiers. Two of them, labeled as IC1A and IC1B, 
operate as high-input resistance that do not load the bridge. The 

Fig. 3. Block diagram of the EDA measurement system

Fig. 2. Distribution of the median of the valence and the arousal for 
all the movies
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output amplifier, designated as IC1D, operates in the differential 
mode with the gain ku = R9/R7 = 200 kΩ/10 kΩ = 20. The 
output signal is filtered through a passive RC filter (R1 = 1 MΩ, 
C2 = 100 nF, cutoff frequency = 0.16 Hz).

The amplified and filtered signal is further processed in the 
ATmega328P microcontroller (16 MHz clock). The microcon-
troller includes a 10-bit A/D converter with a processing speed 
of 6 kS/s. Next, the signal is averaged in the windows contain-
ing 600 samples, which reduces the recording speed to 10 S/s. 
These data are sent via a USB link to a personal computer. At 
the same time, an application (in C#) with a synchronous pre-
sentation of movies is launched on the same computer.

In the first step, the built-in electronic circuit was calibrated 
to read out the voltage at the output for the resistance applied 
to the input. To do this, resistors Rk of known resistance were 
applied to the measuring electrodes and the output level of the 
A/D converter was read. The results of the laboratory tests are 
provided in Table 3.

Table 3
Results of the laboratory tests for calibrating the measurement system

Input resistance value Rk [kΩ] ADC levels
1150 111
1390 142
1750 248
1000 289
2000 357
3000 383
4000 397
5000 405
6000 411

The rational model was used to approximate the mea-
sured characteristic (Numerator degree = 4, Denominator 
degree = 3), which was described by equation [37]:

 R =  
p1x4 + p2x3 + p3x2 + p4x + p5

x3 + q1x2 + q2x + q3
 (1)

where x denotes the recorded voltage value (0–1023) and R rep-
resents the approximated value of the resistance in kilo-ohms. 
The calculated model coefficients were as follows: p1 = 2.894, 
p2 = −2702, p3 = 7.547£105, p4 = 1.733£104, p5 = 8648, 
q1 = −1129, q2 = 3.043£105, and q3 = −4091.

The registered signal was subjected to pre-processing to 
identify the phasic component and then we extract features that 
enable us to describe a user’s emotions (arousal level). A block 
diagram of the skin resistance pre-processing is shown in Fig. 5.

Fig. 5. Functional diagram of the measurement signal processing

Fig. 4. Schematic representation of the skin resistance measurement circuit
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Data from the 10-bit A/D converter were subjected to 
conditioning and linearization (Linearization) and then, con-
verted to the conductance value (Conversion to conductance) 
expressed in siemens [S]. To get rid of the potential noise, the 
signal in the 250 sample windows was averaged (Smooth-
ing). An important part of the signal processing was the use 
of a Butterworth low-pass filter (0.05 Hz) to extract the tonic 
component. Removing the tonic component from the registered 
signal enabled us to obtain the phasic component. This phasic 
component was subjected to the normalization process followed 
by feature extraction. An example of the phasic component 
is shown in Fig. 6. (0.05 Hz) to extract the tonic component 
[38]. Removing the tonic component from the registered signal 
enabled us to obtain the phasic component. This phasic com-
ponent was subjected to the normalization process followed 
by feature extraction. An example of the phasic component is 
shown in Fig. 6.

For analysis, the EDA signals registered from the beginning 
of the movie to 4s after its completion was taken. We focused 
on the characteristic local extremes, as suggested in the exist-

ing literature [13]. The notation Apk, r can be understood as the 
amplitude of the k-th local extreme, located at the position of 
the r-th sample. Usually, a few local extremes are registered 
and we do not know which of them are associated with the 
user’s reaction to a stimulus. Therefore, often, certain statistical 
measures of the recorded extrema are used as features. In this 
study, we examined several known measures and proposed new 
ones (Table 4).

Fig. 6. Typical phasic component

Table 4 
A summary of all the features of the phasic SC component

No. Name Movie description

01 FrequencyPeak Frequency of occurrence of local extremes

02 MaxAmpPeak The highest value of the determined maxima

03 VarAmpPeak Variance of amplitude values calculated for local extremes

04 StdAmpPeak Standard deviation calculated for local extremes

05 SkewnessAmpPeak Skewness calculated for amplitudes of local extremes

06 KurtosisAmpPeak Kurtosis calculated for amplitudes of local extremes

07 MaxAbsAmpPeak Maximum value of modules of amplitudes of local extremes

08 VarSC Variance calculated for SC signal samples

09 StdSC Standard deviation calculated for SC signal samples

10 SkewnessSC Skewness calculated for SC signal samples

11 KurtosisSC Kurtosis calculated for SC signal samples

12 SumPosDiffSC Sum of positive values of the first derivative of the SC signal

13 SumNegDiffSC Sum of negative values of the first derivative of the SC signal

14 FDSC Fractal dimension calculated using Box-counting method [37, 38]

15 MaxDeltaForward The maximum value of the difference between the amplitudes of the local extrema and the amplitude 
values of the signal samples measured a second later

16 MaxDeltaBack The maximum value of the difference between the amplitudes of the local extrema and the amplitude 
values of the signal samples measured a second earlier

17 SlopeSC The measure of the rise or fall of the slope of the SC curve: calculated using the minimized squared error 
for the linear equation

18 ActivitySC Hjorth activity that represents the signal power (the variance of a time function) [38]

19 MobilitySC Hjorth mobility determined as the square root of the ratio of the variance of the first derivative of the 
signal to the signal [38]

20 ComplexitySC Hjorth a complexity as an estimate of the bandwidth of the signal, which indicates the similarity of the 
shape of the signal to a pure sine wave [39]
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In order to assess the usability of features, we used the 
Spearman correlation and classifiers. Spearman’s correlation 
assesses monotonic relationships (whether linear or not) [39]. 
We also tested a range of well-known classifiers [40, 41]:
● SVM with a linear kernel (SVM-LINEAR), 
● SVM with a quadratic kernel (SVM-QUADRATIC), 
● SVM with a polynomial kernel (SVM-POLYNOMINAL),
● SVM with an MLP kernel (SVM-MLP),
● SVM with an RBF kernel (SVM-RBF), 
● LDA (LDA-LINEAR), 
● QDA (LDA-QUADRATIC), and
● K-NN (1-NN, 3-NN, and 5-NN).

6. Results

To estimate which features are most associated with emotions 
Spearman’s correlation between the determined features and 
the values of valence and arousal, declared in the user ques-
tionnaires, was calculated [42]. The minimum, maximum, and 
average values and the standard deviation of the calculated 
Spearman’s correlations (for all the movies and all the users 
for session I) are given in Tables 5 and 6.

The obtained results show low or moderate absolute val-
ues of correlation of features with user’s declarations [43]. In 
some cases, these values of the correlation are above 0.5. This 

proves that for some people the values of calculated features are 
correlated with the results of the questionnaires. Low values of 
these correlations show that the EDA signal is not an exact mea-
sure indicating emotions. However, similar to our study, small 
values of EDA signal features correlation with questionnaires 
can be found in other works, for example [25, 44]. Anyway, on 
the basis of results in the Tables 5 and 6, we are able to indicate 
worse and better features.

To indicate features associated with valence and arousal, we 
chose users for whom the mean correlation value was at least 
0.2, and the value of the correlation between the determined fea-
tures and the values declared in the surveys for at least one user 
were greater than 0.5. Consequently, we did not find even one 
feature, satisfying these criteria, for correlation with valence. 
However, such features for arousal were found. The features 
that meet the above criterion were as follows: MaxAmpPeak 
(0.26), VarAmpPeak (0.24), StdAmpPeak (0.24), MaxAbsAmp-
Peak (0.21), VarSC (0.25), StdSC (0.24) and ActivitySC (0.24).

We also use the t-statistic to select the best features. This 
allowed us to rank features from the best to the worst. The 
ranked features are listed in Table 7. The highest t-value (t > 3) 
were obtained for the following features: MaxAmpPeak, Max-
DeltaForward, MaxDeltaBack, MaxAbsAmpPeak, Kurtosis-
AmpPeak, and StdSC (boldfaced text in Table 7).

The obtained results indicate that the most useful features 
for the identification and classification of emotional excitation 

Table 5 
Statistics of Spearman’s correlation between the valence values 

declared in the surveys and the values of the determined features

Feature No. Min Max Mean Std

01 –0.57 0.20 –0.12 0.22

02 –0.44 0.57 –0.17 0.28

03 –0.36 0.43 –0.02 0.16

04 –0.36 0.43 –0.02 0.16

05 –0.36 0.38 –0.06 0.23

06 –0.55 0.18 –0.05 0.17

07 –0.40 0.61 –0.18 0.28

08 –0.51 0.63 –0.14 0.29

09 –0.51 0.63 –0.14 0.29

10 –0.46 0.54 –0.04 0.24

11 –0.49 0.24 –0.03 0.18

12 –0.48 0.44 –0.11 0.26

13 –0.55 0.55 –0.13 0.31

14 –0.44 0.28 –0.06 0.23

15 –0.42 0.60 –0.17 0.28

16 –0.43 0.61 –0.17 0.30

17 –0.25 0.40 –0.05 0.21

18 –0.51 0.63 –0.14 0.29

19 –0.44 0.70 –0.14 0.24

20 –0.45 0.41 –0.11 0.19

Table 6 
Statistics of Spearman’s correlation between the arousal values 

declared in the surveys and the values of the determined features

Feature No. Min Max Mean Std

1 –0.48 0.33 –0.08 0.23

2 –0.36 0.60 –0.13 0.29

3 –0.55 0.24 –0.03 0.22

4 –0.55 0.24 –0.03 0.22

5 –0.33 0.50 –0.08 0.21

6 –0.34 0.36 –0.02 0.17

7 –0.55 0.58 –0.11 0.29

8 –0.48 0.62 –0.06 0.29

9 –0.48 0.62 –0.06 0.29

10 –0.44 0.56 –0.02 0.23

11 –0.35 0.18 –0.04 0.16

12 –0.42 0.38 –0.01 0.24

13 –0.55 0.62 –0.07 0.32

14 –0.43 0.29 –0.03 0.23

15 –0.50 0.57 –0.11 0.29

16 –0.43 0.57 –0.11 0.29

17 –0.36 0.45 –0.03 0.23

18 –0.48 0.62 –0.06 0.29

19 –0.5 0.42 –0.04 0.25

20 –0.42 0.36 –0.06 0.21
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are those calculated for the local extremes in the phasic SC 
component. The results obtained are consistent with the results 
of the psychological research presented in the existing literature 
[45, 46].

The classification accuracy was used to assess the per-
formance of the classifiers [47]. To use the data efficiently, 
a 10-fold cross-validation (CV) test was used in our experi-
ment. For emotion classification CV tests were used in works 
[48‒52]. In k-fold cross-validation, the original set is randomly 
partitioned into k equal sized subsets. Of the k subsets, a single 
subset is retained as the validation data for testing the model, 
and the remaining (k−1) subsets are used as training data. The 
cross-validation process is then repeated k times (k-folds), with 
each of the k subsets used exactly once as the validation data. 
The k results from the folds are then averaged to produce a sin-
gle estimation [53].

We evaluated the suitability of the calculated features for the 
classification of high- and low-stimulating movies (according to 
the arousal parameter). For this purpose, the two most and the 
two least stimulating movies were selected. The questionnaires 
indicated, that the most stimulating movies were #2 and #12 (the 
median in the declarations was 8 and 7.5) and the least stimu-
lating movies were #3 and #18 (the median in the declarations 
was 1 in both cases). The classification accuracies for a selected 
feature (and for the 10-CV test) are presented in Table 8.

The obtained results allowed us to conclude that for the 
“extreme” movies, there is a possibility of distinguishing strong 
and low emotions with an average classification accuracy of 
61–72% (max = 75%). Similar results of emotion recognition, 
using the EDA changes, were reported in [54‒56]. The best clas-
sification results (Table 8) we obtained for the SVM-LINEAR  
classifier (72%) and LDA-QUADRATIC classifier (70%). The 
best average accuracy of classification were obtained for fea-
tures: SkewnessAmpPeak (71%), MaxAbsAmpPeak (71%), 
MaxAmpPeak (69%), KurtosisAmpPeak (69%), MaxAbsAmp-
Peak (69%).

The authors also carried out leave-one-subject-out tests  for 
two classes: high- and low-stimulating movies selected as previ-
ously [53]. In this case only SVM-LINEAR classifier was used. 
The results of classification accuracy are presented in Table 9.

Table 7 
List of features ordered according to the t-value

Feature No. t-value Feature No. t-value
02 4.32 04 2.12
15 3.76 12 2.10
16 3.64 17 1.60
07 3.61 20 1.34
06 3.26 11 1.27
09 3.12 01 1.23
10 2.29 19 1.06
8 2.24 05 0.72

18 2.24 03 0.56
13 2.13 14 0.17

Table 8 
Classification accuracies [%] (for the 10-CV test) for two classes: 

high- and low-stimulating movies
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N
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1 69 64 69 69 69 68 68 69 71 67 68
2 69 57 72 74 71 69 69 67 69 68 69
3 69 67 72 71 69 69 67 61 65 63 67
4 69 63 72 67 69 69 67 54 57 61 65
5 74 71 75 67 68 71 74 67 71 74 71
6 75 63 76 60 68 71 72 60 78 72 69
7 75 64 69 67 65 71 71 61 74 69 69
8 74 56 71 63 64 71 71 64 72 71 68
9 74 60 71 61 65 71 72 64 68 72 68

10 75 58 68 67 61 71 71 67 71 76 68
11 75 53 72 57 65 69 71 72 71 75 68
12 72 57 72 61 64 69 69 72 68 76 68
13 67 57 67 58 61 69 72 69 72 71 66
14 65 54 63 61 57 69 68 64 71 69 64
15 68 56 57 67 54 69 69 67 67 67 64
16 74 67 64 68 57 69 69 67 72 69 68
17 74 63 58 61 57 68 69 67 68 67 65
18 71 68 61 60 47 67 69 64 65 65 64
19 79 65 63 57 47 67 71 67 67 64 65
20 75 63 56 64 42 67 71 65 64 68 63
µ 72 61 67 64 61 69 70 65 69 69

Table 9 
Classifiation accuriacies (for leave-one-subject-out test) for two 

classes: high- and low-stimulating movies

Feature No. Accuracy [%] Feature No. Accuracy [%]
01 75.0 11 73.6
02 73.6 12 73.6
03 76.3 13 73.2
04 73.6 14 73.6
05 76.3 15 73.6
06 73.8 16 73.6
07 73.0 17 73.1
08 72.2 18 73.6
09 76.4 19 73.6
10 73.6 20 73.2

The leave-one-subject-out test with SVM-LINEAR classifier 
was also performed for all 20 features altogether. In this case, 
a classification accuracy was 79%. Summed up for all users 
confusion matrix is presented in Table 10.
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Table 10 
Confusion matrix (for leave-one-subject-out test) for two classes: 

high- and low-stimulating movies

True class

High-arousal Low-arousal

Pr
ed

ic
te

d High-arousal 58 16

Low-arousal 17 56

7. Discussion

An example of skin resistance recorded using the measuring 
circuit presented above, is shown in Fig. 7. The vertical dashed 
lines indicate the moments of change in the displayed stimuli.

There are several ways to separate the SC signal into tonic 
and phasic components. Barry et al. [57] attempted to correct 
the baseline by subtracting each phasic component from an 
extension of the preceding phasic component using graphical 
tools. Lim et al. [58] proposed a model based on a response 
function made of 4–8 parameters optimized for each single 
response to obtain a response-by-response variation in the SCR 
shape. This method required visual inspection to select the best 
model. Alexander et al. [59] estimated of the sudomotor nerve 
activity (SMNA) using a model where the SC is the result of 
a convolution between discrete bursting episodes of the SMNA 
and a biexponential impulse response function (IRF) assumed 
known a priori and time invariant. Benedek and Kaernbach 

[60] criticized some aspects of Alexander’s model and devel-
oped two new models in which the LTI (linear time-invariant) 
assumption was modified to take into account the variability in 
SCR shape. These methods are known as nonnegative deconvo-
lution [60] and continuous deconvolution analysis (CDA) [61]. 
Both models split the SMNA into two parts, one describing 
the phasic activity and the other representing EDA variations 
of different origins (e.g., noise). The above models assume 
a pharmacokinetic model of the dynamic law of diffusion of 
sweat. Recently, Bach presented the SCRalyze toolbox (now 
incorporated into PsPM), which comprises several models that 
assume a LTI system [62]. These models use a heuristic IRF 
which parameters have been optimized on large datasets. SCR 
analyze algorithms try to estimate the model input (SMNA) 
or parameters that best explain the observed SC data based on 
optimization methods. Moreover, they include a noise term, 
which also accounts for possible violations of the assumption 
of time invariance. In the work [63] the cvxEDA algorithm 
was proposed. The proposed model describes SC as the sum of 
three terms: the phasic component, the tonic component, and 
an additive white Gaussian noise term incorporating model 
prediction errors as well as measurement errors and artifacts. 
This model is physiologically inspired and fully explains EDA 
through a rigorous methodology based on Bayesian statistics, 
mathematical convex optimization, and sparsity. The simplest 
approach is to use a digital filter. Based on the literature, 
the cut-off frequency of the high-pass filter should be up to 
0.05 Hz [38].

We conducted preliminary experiments using the Ledalab 
tools, the cvxDEA toolbox and the use of the IIR filter for EDA 
decomposing into the tonic and phasic components. We can 

Fig. 7. An example of the registered SC signal
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observe slight differences in the shape of this component for 
various types of decomposition algorithms (Fig. 8). Considering 
the obtained results, we decided to implement a second-order 
Butterworth low-pass filter, with a cutoff frequency of 0.05 Hz. 

An example result of SC signal decomposition using this filter 
is shown in Fig. 9.

We also wanted to check whether using the proposed set 
of EDA features, you can determine (approximate) the values 

Fig. 8. Separated phasic component with the use of different algorithms

Fig. 9. SC signal decomposition into slow-variable and fast-variable components using IIR filter
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of arousal. Based on all the calculated features of the SC sig-
nal, we tried to estimate the arousal value for a user. Thus, we 
could compare the level of stimulation declared by a user in the 
questionnaire with the real, measured value. For the estimation 
of the arousal value, linear regression was applied. The declara-
tions collected for the least stimulating (#3) and the most stim-
ulating (#2) movies were used. The estimated level of arousal 
and the declared value in the questionnaires for all the users 
(for all the features) are shown in Fig. 10.

The presented regression results (Fig. 10) indicate a slight 
deviation between the value declared by a user (Declaration) 
and the approximated value (Regression). Thus, it seems to be 
sensible to say that the proposed EDA features are suitable not 
only in the task of classification but also in the task of deter-
mining the level of arousal.

The classification results for individual features presented 
in Table 8 allow to indicate features that are important in deter-
mining the level of emotional arousal. We did not carry out 
research indicating the best sets of features. The use of several 
features could improve the classification results. We obtained 
the best average classification result 72% for the SVM-LIN-
EAR classifier. The obtained classification results are hard to 
directly compare with the results presented in other works. To 

evoke emotions, stimuli are used in the form of photos, movies 
and sounds. In addition, each group of people taking part in 
experiments had different experiences and was less or more 
susceptible to the presented stimuli [35]. Therefore, in the lit-
erature, one can find results indicating the different accuracies 
of the classification of emotions. In the work [64], International 
Affective Digitized Sound System database was used to evoke 
emotions. The stimuli were grouped into four different levels 
of arousal and two levels of valence. Two separate classifica-
tion algorithms were implemented for the arousal and valence 
recognition. Experimental results demonstrated that system was 
able to achieve a recognition accuracy of 77.33% on the arousal 
dimension, and 84% on the valence dimension. In the work [65] 
the authors use SCR signals associated with emotions, such as 
calmness, happiness, anger, sadness and fear. As for the emo-
tion classification experiment, the overall recognition rates were 
67‒72% by Fisher, 67‒76% by k-NN, 66‒72% by LDC and 
73‒87% by QDC, respectively. In [66] a device is used to iden-
tify basic human emotions indexed by Electrodermal Activity 
(EDA) in real time. The device measures changes in Skin Con-
ductance Level (SCL), caused due to stimulating signals from 
brain, which results from sympathetic neural activity. Ag/AgCl 
electrodes, placed on the ventral side of the distal forearm, were 

Fig. 10. The estimated level of arousal (Red) and the declared value (Blue) in the questionnaires for all the participants  
(Left: movie #2, Right: movie #3)
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used to evaluate the emotions of the user outside the constrained 
laboratory environment – without interrupting the normal daily 
routine. Happiness could be predicted with an efficiency 65% 
and anger with an efficiency 60% while the remaining emo-
tions had poor success. In [67] the authors showed how the 
frequency of the external electrical source affected the accuracy 
of arousal recognition. This suggests a role of skin susceptance 
in the study of affective stimuli through electrodermal response. 
The average accuracy was in the range of 62.5% to 63.34%, 
whereas at 100 Hz, the pattern recognition system showed an 
accuracy of 71.67%.

In order to fully examine the best features of EDA for 
the purpose of estimating the level of emotional arousal in 
the future, we plan to work on a larger number of people and 
using other databases. We also have plans to compare features 
obtained using various pre-processing methods.

8. Conclusions

The results have confirmed the possibility of recognizing 
the emotional excitation of a user using EDA. The average 
classification accuracy for two classes of the least and the most 
stimulating movies varies within the range of 61‒72%. Some of 
the features of EDA proved to be more useful for recognizing 
the level of arousal. The best features that were repeated 
in the selection results were: MaxAmpPeak, VarAmpPeak, 
StdAmpPeak, MaxAbsAmpPeak, VarSC, StdSC, ActivitySC, 
MaxDeltaForward, MaxDeltaBack, KurtosisAmpPeak, 
SkewnessAmpPeak. These features are related to the maximum 
values, energy or statistical properties of the phasic component. 
The results indicate that such features should be used in the 
analysis of the EDA for the level of arousal recognition. Of 
great importance is the quality of the recorded SC signals and 
the pre-processing methods. In conjunction with the features 
of other physiological signals (such as ECG, EEG, and EMG), 
the proposed analysis can produce better results.
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