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Abstract. This article focuses on the finite element analysis (FEA) of the nonlinear behavior of a layered functionally graded material (FGM) 
plate as concerns displacement, stresses, critical buckling load and fundamental frequency. The material properties of each layer in an FGM 
plate are assessed according to a ceramic based simple power law distribution and the rules of mixture. The finite element model of a layered 
FGM plate is developed using ANSYS®15.0 software. The developed finite element model is used to study the static and dynamic responses 
of an FGM plate. In this paper, the effects of power law distribution, thickness ratio, aspect ratio and boundary conditions are investigated for 
central displacement, transverse shear stress, transverse normal stress, critical buckling load and fundamental frequency, and the obtained FEA 
results are in sound agreement with the literature test data results. Since the FGM is used in a high temperature environment, the FE analysis 
is performed for the FGM plate under a thermal field and then correlated. Finally, the FGM plate is analyzed under a thermomechanical load 
by using the current FE concept.
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the power law index. Rao et al. [8] have performed the finite 
element modeling and analysis of an FGM shell structure under 
different mechanical, thermal and free vibration conditions. 
Thai et al. [9] have developed a four-node quadrilateral finite 
element using Lagrangian and Hermitian interpolation func-
tions, and presented different shear deformation theory for the 
bending and vibration analysis of FGM plates. Daouadji et al. 
[10] developed new higher shear deformation theory using the 
Navier solution to investigate the static behavior of an FGM 
plate for various boundary conditions, the aspect ratio and 
thickness ratio. Yang et al. [11] have investigated vibration and 
buckling of FGM plates subjected to an initial stress by higher 
order shear deformation theory. Zhao et al. [12] have presented 
the mechanical and thermal buckling analysis of functionally 
graded ceramic-metal plates which contain a square and circular 
hole for finding the influence of the size of the hole on buckling 
strength. Latifi et al. [13] have investigated the buckling of thin 
rectangular FGM plates using the double Fourier series proce-
dure and Stokes’ transformation. Rad et al. [14] have obtained 
a critical buckling load of functionally graded plates containing 
a crack using classical plate theory by FEM, and have shown 
numerically that the critical load decreases as the power law 
index increases.

Abrate [15] obtained natural frequencies, buckling loads 
and static deflections of FG plates from the corresponding 
results for isotropic plates without direct analysis of FG plates. 
Matsunaga [16] carried out an analysis of the stability and free 
vibration of FGM plates using two-dimensional higher order 
deformation theory. Zhao et al. [17] have presented a method 
for analyzing the free vibration of an FGM plate using the 
element-free kp˗Ritz method for various boundary conditions, 
which has already been successfully implemented in the anal-
ysis of isotropic and composite plates. Efraim [18] derived an 

1.	 Introduction

In recent decades, there has appeared a wide range in FGMs 
plates which are a heterogeneous composite made of two con-
stituents, i.e. ceramic and metal one, with both the composition 
and material properties varying gradually through the thickness 
of the plate. The finite element method (FEM) is used for the 
calculation of the central deflection, plane stresses, transverse 
shear stress, critical buckling load and natural frequencies of 
FGM plates with different volume fractions of two constituent 
materials and it requires large computational efforts.

Reddy [1] has used third order shear deformation plate the-
ory to analyze the static response of FGM rectangular plates. 
Qian et al. [2] have employed the higher order shear and nor-
mal deformable plate theory along with the Meshless Local 
Petrov-Galerkin method (MLPG) to analyze thick FGM plates. 
The static behavior of FGM plates using a generalized shear 
deformation theory has been investigated by Zenkour [3]. An 
interesting review of the modeling and analysis of FGMs has 
been prepared by Birman et al. [4]. Matsunaga [5] examined 
the bending behavior of thick FGM plates using the shear 
deformable theory with higher order. Talha et al. [6] developed 
higher order shear deformation theory based on an isopara-
metric element with a nine node to investigate the bending and 
vibration response of FGM plate. Singha et al. [7] investigated 
the nonlinear bending analysis of FGM plates under transverse 
distributed load. The authors assumed grading in the thickness 
direction using simple power law distribution with respect to 

*e-mail: vasiraja@mepcoeng.ac.in

Manuscript submitted 2018-07-28, revised 2018-10-03 and 2018-10-10,  
initially accepted for publication  2018-10-16, published in August 2019



828

N. Vasiraja and P. Nagaraj

Bull.  Pol.  Ac.:  Tech.  67(4)  2019

empiric accurate formula that gives a correlation between the 
fundamental frequencies of an FGM plate and isotropic plate, 
even with different Poisson’s ratio and with less computational 
efforts. Javaheri et al. [19] studied the buckling behavior of 
simply supported rectangular FGM plates. Chu et al. [20] inves-
tigated buckling analysis of thin FGM plates based on the collo-
cation method associated with radial basis function. The appli-
cation and characterization of FGM plates have been indicated 
by Malik et al. [21] and Chmielewski et al. [22]. Zur [23] has 
performed frequency analysis of a thin circular plate using the 
Green’s function approach. Timoshenko et al. [24] explained 
the fundamental theory of plates and shells. Zhang et al. [25] 
applied theoretical analysis to a thin functionally graded mate-
rial plate based on the physical neutral surface. Taj et al. [26] 
used higher deformation theory to analyze static behavior of 
FGM under an FGM plate and skew plate. Zhang [27] has suc-
cessfully modelled an FGM rectangular plate using higher shear 
deformation theory. Lal et al. [28] explained vibration analysis 
of an axisymmetric FGM model. Parandvar et al. [29] proposed 
and analyzed dynamic response of an FGM plate under static, 
thermal and harmonic load. Zur used quasi˗Green’s function to 
analyze an elastically supported FGM circular plate [30] and 
annular plate [31].

In recent literature, the mathematical modeling of a basic 
2D structure of FGM has been established very well while 
for the 3D part the FGM profile is very limited. In the case 
of a complex engineering structure, i.e. a gas turbine blade or 
aircraft fuselage, it is mandatory to carry out finite element 
analysis of the 2D and 3D structure of FGM. Since to date 
very limited literature is available on 2D and 3D mathemat-
ical modelling of FGM under a thermal field, an attempt has 
been made to develop an FE model, based on the commercial 
FEA ANSYS®15.0 package. With this in mind, the principal 
goal of the present paper has been established as to develop 
a finite element model using ANSYS®15.0 and demonstrate the 
accuracy of the current FE model with analytical and numerical 
results. Initially the obtained results for bending, buckling and 
free vibration behavior of FGM plates with a varying power 
law index, boundary conditions, aspect ratio and thickness ratio 
have been correlated. Since the premier application of FGM is 
under a thermal field, FE analysis on central deflection of an 
FGM plate under a thermal field has also been done and vali-
dated. In view of producing new results, the FE analysis of an 
FGM plate has been performed under thermo˗mechanical load 
using the current FE model.

2.	 Evaluation of effective material properties 
of FGM plate along thickness direction

The FGM plate which is modeled as a mixture of ceramic mate-
rial and metal with thickness ‘h’ is shown in Fig. 1. The material 
on the bottom surface (z = – h/2) of the plate is rich in ceramic 
components whereas the top surface (z = h/2) material is rich 
in metal. Here ‘z’ is the distance measured from the middle 
of the plate. In the current FGM plate model, the effective 
properties of the modulus of elasticity, mass density and the 

Poisson’s ratio for each layer are evaluated by the simple rule 
of mixtures techniques as represented in Equation 1 to Equa-
tion 3. The volume fractions of constituents of ceramic (VCer) 
is calculated using Equation 4 and shown in Fig. 2.

	 E(z) = ECerVCer + EMetVMet� (1)

	 v(z) = vCerVCer + vMetVMet� (2)

	 ρ(z) = ρCerVCer + ρMetVMet� (3)

	 VCer =   1
2

 +  z
h

k
.� (4)

In Equation 4 the power law index parameter, ‘k’, com-
mands material distribution through the thickness of the plate 
that takes on values greater than or equal to zero. Accordingly, 

Fig. 1. Schematic representation of FGM plate

Fig. 2. Variation of volume fraction of ceramic material through 
thickness

k = 0 
k = 0.2 
k = 0.5 
k = 1 
k = 2 
k = 5 
k = 100
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the bottom surface (z = – h/2) of the plate is modeled as purely 
ceramic while the top surface (z = h/2) is modeled as pure 
metal and for different value of k, thus different volume frac-
tion of the ceramic material would be obtained. It can also be 
noted that the plate becomes isotropic, and the material prop-
erties of all layers are the same while setting k = 0 or 1. The 
VMet is determined based on a simple rule of mixture shown 
in Equation 5.

	 VCer + VMet = 1.� (5)

3.	 Finite element modeling of FGM plate

In the present paper, the finite element formulation for the FGM 
plate has been completed using ANSYS®15.0 software. The 
Shell181 element is a layered element used to model the FGM 
plate with a layer concept. It is the four node element with each 
node  having six degrees of freedom (translation and rotation 
about the x, y and z axes). This element is governed by first 
order shear deformation theory (Mindlin˗Reissner shell theory). 
It accepts surface load (pressure) and body load (temperature) 
and also stores variables of all layers. It is able to produce nodal 
displacement, shear force, bending moment, in˗plane stresses, 
shear stresses and also interlaminar shear stresses. Details of 
the FE analysis (analysis type, element type, materials, bound-
ary and loading conditions) are presented in Table 1. In this 
model, a finite portion of the thickness is considered as each 
layer and treated as an isotropic material. Material properties 
have been evaluated in the middle of each layer by using power 
law index grading. A twenty-layer shell element has been used 
for the FGM plate. A typical FE model of the FGM plate with 
the boundary conditions is shown in Fig. 3. In Figure 4, the 
different colors indicate the number of layers with different 
material properties.

3.1. Convergence study.  Initially, the convergence study for 
the current FE model is done for nondimensional central dis-
placement (W– c), maximum bending moment (M– x), maximum 
shear force (Q– xz) and maximum transverse shear stress (τ–xz max) 
of a simply supported thin (when a/h = 100) isotropic square 

Table 1 
Finite element model and analysis description

Parameter Description

Software package 
used

ANSYS® 15.0

Analysis type structural˗ static, modal, buckling  
and thermo-mechanical (coupled field)

Element name Shell181 (structural analysis)
Shell131 (thermal analysis)

Material used Static analysis :
Aluminum (Al) and Alumina (Al2O3)

Thermo˗mechanical:
Aluminum (Al) and Zirconia (ZrO2)

Material properties Given in Table 2

Number of layers 20

Layer material 
properties

Varying from bottom to top by simple exponential 
power law index (k) and each layer is considered 
isotropic

Loading condition Transverse uniformly distributed load (q0) and thermal 
field (bottom surface temperature = 20°C and top 
surface temperature varying from 20°C to 300°C 

Boundary condition SSSS (simply supported)
at x = 0 and a: v = w = ϕy = 0
at y = 0 and b: u = w = ϕx = 0

CCCC (clamped)
at x = 0 and a: u = v = w = φx = φy = ϕz = 0
at y = 0 and b: u = v = w = φx = φy  = ϕz = 0

Table 2 
Material Properties

Material E 
(GN/m2)

ν ρ 
(kg/m3)

K 
(W/m K)

α 
(m/K)

Aluminum
Alumina
Zirconia

70
380
151

0.3
0.3
0.3

2707
3800
3000

204
10.4
2.09

23£10–6

7.4£10–6

10£10–6

Fig. 3. FE model of FGM plate using ANSYS® shell 181 element Fig. 4. FE model of FGM plate with 20 layers
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plate under transverse uniformly distributed load (UDL) q0 
and compared with the analytical solution presented by Timos-
henko et al. [24]. The following equations are used to evaluate 
the nondimensional parameter unless indicated otherwise. It is 
found from this that reasonable convergence is attained with 
50£50 numbers of finite elements, as shown in Table 3.

Table 3 
Convergence study of FE model

Non˗ 
dimensional 
parameter

Current analysis results for various mesh sizes Timoshenko 
[24]10£10 20£20 30£30 40£40 50£50

W– c

M– x

Q– xz

τ–xz max

0.00406
0.04680
0.28920
0.43385

0.00406
0.04779
0.32117
0.48176

0.00406
0.04785
0.32772
0.49158

0.00406
0.04787
0.33055
0.49582

0.00406
0.04788
0.33350
0.50025

0.00406
0.04790
0.33730
0.50200

4.	 Simulation results and discussion

4.1. Bending analysis of isotropic plate and validation. Ini-
tially, the current FE model was validated for center deflec-
tions, in˗plane stress and shear stress of isotropic plates with 
different thickness ratios (a/h = 10 and 100). Table 4 indicates 
that center deflections matched well for thin and thick plates 
and Table 5 shows the ability of the current FE model to eval-
uate in˗plane stress and shear stress of plate along thickness 
direction. Based on the results that are closer to the literature 
test data, it is revealed that the current FE model could be used 
for analyzing the thin (a/h = 10) and thick plate (a/h = 100).

Table 4 
Center deflections of isotropic plates (EMet = ECer = 1, q0 = 1,  

and a/b = 1)

a/h Present Reddy [1]

100
10

44346.20
46.62

44383.87
46.65

Table 5 
In˗plane stress (σxx) and shear stress (τxy) of isotropic plate along 

thickness direction

a/h z
σxx τxy

Present Reddy [1] Present Reddy [1]

100 0.005
0.004
0.003
0.002
0.001
0.000

2872.9
2298.3
1723.7
1149.1
574.57
0.0000

2873.4
2298.5
1723.8
1149.2
574.59
0.0000

1939.0
1551.2
1163.4
775.60
387.80
0.0000

1949.0
1558.8
1168.8
779.15
389.54
0.0000

4 0.005
0.004
0.003
0.002
0.001
0.000

28.72
22.98
17.23
11.49
5.745
0.000

28.92
23.00
17.17
11.41
5.693
0.000

19.39
15.51
11.63
7.758
3.879
0.000

20.00
15.62
11.50
7.565
3.751
0.000

4.2. Bending behavior of FGM plate. In this section, first 
the efficiency of the current FE model is assessed within static 
analysis of the FGM plate. Here the FGM plate is composed 
with aluminum as the metal and alumina as the ceramic com-
ponent while the material properties of each layer are evaluated 
using Equation 1, 2 and 3 and fed into the FE model. FEA 
results corresponding to nondimensional central displacements, 
maximum shear stress and in˗plane stress along x direction 
for the FGM plates with simply supported edges (SSSS) and 
clamped edges (CCCC) under transverse UDL are tabulated in 
Table 6a and 6b, and it is seen that the developed FEA results 
are discreetly matched with Singha et al. [7].

It is also observed that nondimensional central displacement 
increases with the increase in power law index, k > 0. This 
is due to the fact that the larger ‘k’ value means the plate has 
a smaller ceramic component and hence its stiffness is reduced. 
In addition to that, shear stress value increases with increasing 
of ‘k’ up to 1 and then decreases with further increasing of ‘k’ 
as shown in Table 6b.

Table 6a 
Nondimensional central displacement W– c of SSSS  

and CCCC thin square FGM plate under q0

Power  
law index

SSSS CCCC

Present Singha  
et al. [7] Present Singha  

et al. [7]

Ceramic
0.5
1
2
5

Metal

0.004064
0.006236
0.008136
0.010447
0.012388
0.022048

0.004064
0.006269
0.008154
0.010449
0.012359
0.022064

0.001237
0.001949
0.002540
0.003264
0.003870
0.006883

0.001267
0.001955
0.002542
0.003258
0.003854
0.006881

Table 6b 
Nondimensional maximum shear stress and in˗plane stress of SSSS 

and CCCC thin square FGM plate under q0 

Power  
law index

SSSS CCCC
τ–xz max σ–xx τ–xz max σ–xx

Ceramic
0.5
1
2
5

Metal

0.502760
0.526720
0.542260
0.539220
0.504100
0.502760

28.728
37.196
43.456
49.884
55.214
28.728

0.638044
0.665576
0.692580
0.665902
0.603208
0.638044

28.308
36.652
42.822
49.154
54.402
28.308

Figure 5 and 6 represent the variation of nondimensional 
central deflection with power law index for the FGM square 
plates having SSSS and CCCC boundary conditions, respec-
tively. The lower k value has low deflection due to high stiff-
ness while the higher k value has high deflection due to low 
stiffness. The variation of nondimensional in˗plane stress 
through the thickness of a thin square FGM plate under UDL is 
analyzed and the results are shown in Fig. 7 for various values 
of the power law index. It is noticed that the through-thick-
ness variation of in˗plane stress is linear for the isotropic plate 
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(k = 0 and 100) and becomes non˗linear for the in-between 
value of k. The effect of power law index on transverse shear 
stress through the thickness variation is highlighted in Fig. 8. 
It is observed that the variation of transverse shear stress (τ–xz) 

through the thickness is parabolic in general and maximum in 
the middle of the thickness for the isotropic plate (k = 0 and 
100). But for the remaining ‘k’ value, the peak of transverse 
shear stress does not occur in the middle due to unsymmetrical 
material properties along the thickness direction.

The capability of the current FE formulation is also tested 
for the SSSS thick FGM plate (Al/Al2O3) subjected to q0. The 
nondimensional central displacement, in˗plane stress and shear 
stress values evaluated here were compared with those of the 
generalized shear deformation theory in Table 7a, and it has 
been found that the results matched very well. Then the in˗plane 
stress and shear stress results were also obtained for the CCCC 
boundary condition, as presented in Table 7b.

Table 7a 
Nondimensional central displacement W– c, in˗plane stress σ–xx  
and shear stress τ–xz of SSSS thick FGM square plate under q0

Power  
law index

W– c σ–xx τ–xz

Present Zenkour 
[3]

Present Zenkour
[3]

Present Tahar et al. 
[10]

Ceramic
0.5
1
2
5

Metal

0.466
0.712
0.927
1.193
1.444
2.530

0.466
—

0.929
1.195
1.435
2.530

2.872
3.719
4.345
4.988
5.521
2.872

2.868
—

4.430
5.168
5.891
2.868

0.491
0.501
0.491
0.466
0.427
0.491

0.5072
—

0.5072
0.4651
0.4128
0.5072

Table 7b 
Nondimensional central displacement W– c, in˗plane stress σ–xx  

and shear stress τ–xz for CCCC thick FGM square plate under q0

Power law index W– c σ–xx τ–xz

Ceramic
0.5
1
2
5

Metal

0.16416
0.24776
0.32148
0.41800
0.52136
0.88920

2.73574
3.55542
4.15828
4.76128
5.21704
2.73574

0.60242
0.63158
0.63278
0.60416
0.56374
0.60242

Fig. 5. W– c for SSSS thin FGM square plates under q0

a in m

W– c

Fig. 6. W– c for CCCC thin FGM square plates under q0

a in m

W– c

Fig. 7. Variation of σ–xx/100 through thickness for SSSS thin FGM 
square plates under q0

σ–xx

z/
h

Fig. 8. Variation of τ–xz through thickness for SSSS thin FGM square 
plates under q0

τ–xz

z/
h
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The current FE model aims to investigate the effect of aspect 
ratio (a/b) on central displacement of the FGM plate. Table 8 
and Fig. 9 and 10 show the variation of nondimensional center 
deflection of the FGM plate with different aspect ratios for a sim-
ply supported thin and thick FGM plate, respectively. Central 
displacement is at its maximum for the metallic plate (k = 100) 
and at its minimum for the ceramic plate (k = 0). The differ-
ence increases as the aspect ratio increases while it may remain 
unchanged with the increase of thickness ratio. One of the main 
inferences from the FE analysis is that the response of FGM 
plates is intermediate to that of the ceramic and metal homoge-
neous plates. Figure 11 exhibits central displacement for vary-
ing thickness ratios and implies that it may remain unchanged 
despite increasing the thickness ratio beyond a/h = 10.

Figure 12 shows that the distributions of in˗plane stress 
through the thickness are compressive throughout the plate up to 
z = 0.150 and after that the stress become tensile. Figure 13 and 
14 show the distributions of shear stresses τ–xz and τ–xy through 
the thickness. The power law index of the FGM plate is assumed 
as k = 2 in these figures. The distributions of shear stresses τ–xz 

Fig. 10. Variation of W– c as function of aspect ratios for a/h = 100 
under q0

Fig. 9. Variation of W– c as function of aspect ratios for a/h = 10 
under q0

Fig. 12. Variation of σ–xx as for different aspect ratios under q0

Fig. 11. Variation of W– c for different thickness ratios under q0

a/b

a/b

a/h

z/h

W– c
W– c

W– c
σ– xx

Table 8 
Nondimensional central displacement W– c = 10WcECer h3/q0a4 

of FGM plate for different aspect ratios

a/h a/b
Power law index

k = 0 k = 0.5 k = 1 k = 2 k = 5 k = 100

110

0.5
1.0
1.5
2.0
2.5
3.0

1.140
0.466
0.180
0.078
0.038
0.020

1.748
0.712
0.275
0.117
0.057
0.030

2.272
0.928
0.358
0.153
0.074
0.040

2.926
1.196
0.462
0.199
0.096
0.052

3.503
1.441
0.562
0.244
0.120
0.066

6.194
2.533
0.980
0.423
0.206
0.112

100

0.5
1.0
1.5
2.0
2.5
3.0

1.064
0.443
0.220
0.069
0.032
0.016

1.698
0.653
0.256
0.106
0.049
0.025

2.216
0.799
0.333
0.138
0.063
0.033

2.844
0.966
0.428
0.177
0.082
0.042

3.3710
1.1710
0.5080
0.2113
0.0980
0.0500

5.735
2.432
0.861
0.358
0.167
0.085

–
– – –

–
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through the thickness are not parabolic and the stresses increase 
as the aspect ratio decreases. It also needs to be noted that the 
maximum value of shear stress occurs at z = 0.198, not in the 
middle of the plate as in the case of the isotropic plate.

4.3. Buckling behavior of FGM plate. Critical buckling loads 
of an FGM plate with SSSS edges under unidirectional compres-
sion for different power law index and aspect ratios are obtained 
by using the current FE model and the comparison of the results 
with those obtained by Javaheri et al. [19]. They are presented 
in Table 9. The results appear to match each other very closely. 
The plate become isotropic with the highest possible stiffness 
while ‘k’ equals zero, and increase in the FGM power law index 
causes the portion of metal to be more pronounced, leading to 
a decrease in plate stiffness. As a result, for each aspect ratio 
in Table 9, the greatest buckling load, corresponding to k = 0, 
decreases with the increase in the power law index. In addition, 
the buckling load increases with an increase in the aspect ratio 
for each FGM power index due to increasing the a/b ratio. The 
plate becomes shorter in the direction of the compressive load 

while the length a is constant. Additionally, critical buckling 
loads of the FGM plate with CCCC edges are evaluated and 
tabulated in Table 10. The results are higher than for the FGM 
plate SSSS edges due to stability of the clamped condition.

Table 9 
Critical buckling loads (£105 N/m) of FGM plate with SSSS edges

a/b Model
Power law index

k = 0 k = 0.5 k = 1 k = 5 k = 100

1

1.5

2

2.5

3

Present
Javaheri et al. [19]
Present
Javaheri et al. [19]
Present
Javaheri et al. [19]
Present
Javaheri et al. [19]
Present
Javaheri et al. [19]

16.820
16.805
17.982
17.984
10.643
10.632
14.322
14.311
18.934
18.921

14.444
—

15.201
—

16.934
—

19.332
—

12.337
—

3.407
3.390
3.987
3.973
5.316
5.310
7.154
7.134
9.458
9.430

2.234
2.240
2.614
2.621
3.485
3.511
4.690
4.722
6.201
6.221

1.257
—

1.471
—

1.961
—

2.638
—

3.488
—

Table 10 
Critical buckling loads (£105 N/m) of FGM plate with CCCC edges

a/b Model Power law index
k = 0 k = 0.5 k = 1 k = 2 k = 5 k = 100

1 
 

1.5 
 

2 
 

2.5 
 

3

Present 
Javaheri et al. 
[19]
Present 
Javaheri et al. 
[19]
Present 
Javaheri et al. 
[19]
Present 
Javaheri et al. 
[19]
Present 
Javaheri et al. 
[19]

17.273 
17.261 

22.400 
22.432 

33.065 
33.040 

47.692 
47.660 

65.931 
65.840

11.249 
— 

14.590 
— 

21.542 
— 

31.083 
— 

42.988 
—

8.622 
8.608 

11.184 
11.180 

16.515 
16.473 

23.833 
23.761 

32.967 
33.610

6.716 
6.715 

8.711 
8.721 

12.861 
12.852 

18.558 
18.542 

25.667 
26.222

5.662 
5.671 

7.341 
7.380 

10.833 
10.871 

15.618 
15.681 

21.579 
22.171

3.182 
— 

4.126 
— 

6.091 
— 

8.785 
— 

12.145 
—

Figure 15 shows the variation of critical buckling load for 
different aspect ratios for the simply supported FGM plate 

Fig. 14. Variation of τ–xy for different aspect ratios under q0

Fig. 13. Variation of τ–xz for different aspect ratios under q0

z/h

z/h

Fig. 15. Variation of critical buckling load for different aspect ratios 
of SSSS thick FGM plate
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while Fig. 16 represents the clamped conditions. The differ-
ence in critical buckling load increases with the aspect ratio 
due to more of the power law index having minimum ceramic 
constituents.

4.4. Fundamental frequency of FGM plate. The natural 
frequencies of FGM plates with different material properties, 
aspect ratios and support conditions are examined in this sec-
tion. The first ten natural frequencies for square plates with 
SSSS boundary conditions for k = 0, 0.5, 1, 2, 5 and ∞ are 
obtained, and the thickness of the plate is considered as 0.1 

m. The two thickness ratios a/h = 5 and 10 and two types of 
boundary conditions, i.e. SSSS and CCCC, have been selected.

Table 11 shows the variation of the dimensionless frequency 
parameter Ω = ωh ρCer/ECer with the power law index for the 
FGM plates. The results for the first ten modes are computed. 
In the case of the plate with the SSSS boundary condition, the 
frequencies in all ten modes decrease as the power law index 
k increases, with the trend becoming gentler as ‘k’ increases, 
which is anticipated, because a larger power law index means 
that a plate has a smaller ceramic component and that its stiff-
ness is thus reduced. Similar trends are also observed for the 
CCCC boundary conditions, as shown in Table 12. Figure 17 
shows variation of frequency parameter (Ω) versus the power 

Fig. 16. Variation of critical buckling load for different aspect ratios 
of CCCC thick FGM plate
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Table 11 
Dimensionless frequency parameter (Ω) for SSSS FGM square plate

a/b Method Mode
No.

Power law index
Ceramic 0.5 1 5 Metal

5 Matsunaga 
[16]

Present

11
11
12
13
14
15
16
17
18
19
10

0.21210
0.21113
0.38955
0.38955
0.46178
0.46178
0.55088
0.66750
0.77954
0.77954
0.78889

0.18190
0.18010
0.34038
0.34038
0.40266
0.40266
0.48080
0.58812
0.67893
0.67893
0.69790

0.16400
0.16645
0.32298
0.32298
0.37274
0.37274
0.45547
0.54522
0.64125
0.64125
0.64759

—
0.13762
0.25103
0.25103
0.29733
0.29733
0.35301
0.42536
0.49468
0.49468
0.49979

0.10770
0.10736
0.19809
0.19809
0.23482
0.23482
0.28013
0.33943
0.39641
0.39641
0.40118

10 Matsunaga 
[16]

Present

11
11
12
13
14
15
16
17
18
19
10

0.05777
0.05767
0.13764
0.13764
0.19476
0.19476
0.21120
0.25753
0.25753
0.27543
0.32298

0.04917
0.04816
0.11633
0.11633
0.17033
0.17033
0.18017
0.22080
0.22080
0.24081
0.27868

0.04427
0.04448
0.10748
0.10748
0.16184
0.16184
0.16651
0.20413
0.20413
0.22871
0.25773

—
0.03782
0.09000
0.09000
0.12610
0.12610
0.13767
0.16751
0.16751
0.17804
0.20942

0.02933
0.02933
0.06999
0.06999
0.09904
0.09904
0.10740
0.13096
0.13096
0.14006
0.16424

Table 12 
Dimensionless frequency parameter (Ω) for CCCC FGM square plate

a/b Mode
No.

Power law index
Ceramic 0.5 1 5 Metal

5 11
12
13
14
15
16
17
18
19
10

0.32098
0.56041
0.56041
0.74613
0.74613
0.75247
0.85779
0.86965
0.89233
1.01761

0.27601
0.49046
0.49046
0.65061
0.65061
0.66373
0.76114
0.76899
0.77633
0.90426

0.25643
0.45610
0.45610
0.61543
0.61543
0.61768
0.70832
0.71630
0.73200
0.84227

0.20213
0.34927
0.34927
0.46769
0.47555
0.47555
0.53206
0.53800
0.56301
0.62926

0.16322
0.28497
0.28497
0.37941
0.37941
0.38264
0.43621
0.44224
0.45377
0.51747

10 11
12
13
14
15
16
17
18
19
10

0.09840
0.18779
0.18779
0.26318
0.31030
0.31327
0.37271
0.37271
0.37517
0.37517

0.08274
0.15983
0.15983
0.22584
0.26759
0.26986
0.32476
0.32476
0.32607
0.32607

0.07656
0.14803
0.14803
0.20928
0.24807
0.25020
0.30140
0.30140
0.30923
0.30923

0.06362
0.12061
0.12061
0.16849
0.19793
0.19982
0.23855
0.23855
0.24076
0.24076

0.05004
0.09549
0.09549
0.13383
0.15779
0.15930
0.18953
0.18953
0.19078
0.19078

Fig. 17. Variation of Ω vs power law index for different thickness 
ratios

k

Fr
eq

ue
nc

y 
pa

ra
m

et
er



835

The effect of material gradient on the static and dynamic response of layered functionally graded material plate using finite element method

Bull.  Pol.  Ac.:  Tech.  67(4)  2019

law index for various thickness ratios while Fig. 18 presents 
the same for the SSSS and CCCC plate.

Since the stability of the CCCC condition is more than 
SSSS, the frequency parameter is high under the CCCC con-
dition. Figure 19 and 20 indicate the variation of the dimen-
sionless frequency parameter (Ω) versus the aspect ratio for 
the SSSS and CCCC FGM square plate. It is noted that for 
the SSSS condition the frequency parameter is not changed 
beyond the aspect ratio of 2.5 although it keeps increasing with 
the aspect ratio.

4.5. Analysis of FGM plate under thermal field. The current 
FE analysis has been attempted to find central deflection of the 
FGM plate under thermal field for different thickness ratios 
(a/h = 5, 20, 100) using ANSYS®15.0, hence FGM was used 
in high temperature environments. In this section, the FGM 
plate is composed with aluminum as the metal and zirconia as 
the ceramic component, and individual material properties are 
presented in Table 2. The results have been obtained for vary-
ing temperatures at the top, from 20°C to 300°C, while tem-
perature at the bottom remained constant at 20°C. The results 
are tabulated in Table 13. They have been validated against 
Taj et al. [26] when the top surface is at 300°C and the bot-
tom surface temperature is 20°C for different thickness ratios, 
and the results match considerably, as shown in Table 13. The 
results also revealed that negative deflection (deflecting in 
downward direction) of the plate is observed under the thermal 
field because of the high thermal coefficient with increasing 
temperature at the top, which is quite opposite in the case of 
a plate under mechanical loading.

Table 13 
Nondimensional central deflection of simply supported FGM 

plate with different power law index under different top surface 
temperatures 

a/h Method Temp.
at top Ceramic K = 1.0 K = 2.0 Metal

5

Present
Present
Present
Present
Present

Taj et al. 
[26]

20°C
50°C

100°C
200°C
300°C
300°C

0
–7.70£10–4

–1.92£10–3

–4.31£10–3

–6.70£10–3

–6.70£10–3

–7.25£10–4

–2.18£10–3

–4.82£10–3

–1.01£10–2

–1.54£10–2

–1.57£10–2

–8.20£10–4

–2.32£10–3

–5.14£10–3

–1.08£10–2

–1.64£10–2

–1.64£10–2

0
–1.77£10–3

–4.40£10–3

–9.90£10–3

–1.54£10–2

–1.54£10–2

20

Present
Present
Present
Present
Present

Taj et al. 
[26]

20°C
50°C

100°C
200°C
300°C
300°C

–0
–1.15£10–2

–3.06£10–2

–6.88£10–2

–1.07£10–1

–1.07£10–1

–9.54£10–3

–3.48£10–2

–7.70£10–2

–1.61£10–1

–2.46£10–1

–2.59£10–1

–9.98£10–3

–3.71£10–2

–8.22£10–2

–1.72£10–1

–2.63£10–1

–2.64£10–1

0
–2.64£10–2

–7.03£10–2

–1.58£10–1

–2.46£10–1

–2.46£10–1

100

Present
Present
Present
Present
Present

Taj et al. 
[26]

20°C
50°C

100°C
200°C
300°C
300°C

0
–0.286
–0.763
–1.718
–2.673
–2.670

–0.239
–0.871
–1.923
–4.030
–6.139
–6.253

–0.250
–0.926
–2.052
–4.310
–6.566
–6.586

0
–0.658
–1.756
–3.952
–6.148
–6.140

Fig. 18. Variation of Ω vs power law index for different boundary 
conditions
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Fig. 19. Variation of Ω vs aspect ratio for SSSS FGM plate
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Fig. 20. Variation of Ω vs aspect ratio for CCCC FGM plate
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q0 = –5000 N/m2. Variation of axial stress σ–xx at the top and 
bottom surface of the FGM plate (Al/ZrO2) has been evalu-
ated using the current finite element model and established in 
Table 15. When the isotropic plate is subjected to the mechan-
ical load and thermal field, both top and bottom surfaces expe-
rience compressive stress while the composite plate is subjected 
to tensile stress at the top surface and compressive stress at the 
bottom surface due to metal segments.

Table 15 
Nondimensional axial stress (σ–xx = σxx£h2/q0£a) of simply 

supported FGM thin plate (a/h = 100) with different power law 
index under thermal field (different top surface temperatures) 

and mechanical load (q0)

Temp.
at top

Ceramic k = 1.0 Metal

Top Bottom Top Bottom Top Bottom

120°C
150°C
100°C
200°C
300°C

–0.0147
–0.0147
–0.0147
–0.0146
–0.0146

–0.5900
–1.0420
–1.7980
–3.3000
–4.8200

0.0312
0.3020
0.7540
1.6600
2.5600

–0.5380
–10.2200
–18.5200
–3.5200
–5.2200

–0.0348
–0.0346
–0.0346
–0.0346
–0.0346

–0.6100
–1.0920
–1.8980
–3.5000
–5.1200

6.	 Conclusions

In this study, the static and dynamic behavior of an FGM plate 
were examined by means of using the FEA software package, 
ANSYS®15.0. The following results were obtained from the 
current finite element studies:
●	 The validation study reveals the efficiency and capability of 

the current FE model for analysis of bending, buckling and 
free vibration behavior of FGM plates with varying power 
law index, boundary conditions, aspect ratio, thickness ratio 
and also temperature.

Figure 21 shows the nondimensional central deflection of 
the simply supported FGM thin (a/h = 100) plate under vary-
ing thermal field. It can be observed that the central deflection 
of the FGM plate increases linearly with the rising of thermal 
load. The ceramic phase shows minimum range of deflection 
changes and due to combination of metal and ceramic compo-
nents, central deflection falls above the ceramic range. Similar 
trends have been observed for a clamped FGM plate, as shown 
in Fig. 22.

5.	 FE analysis of FGM plate under thermal  
and mechanical load

In view to producing new results, based on the current FE 
model using ANSYS®15.0, the static behavior of the FGM plate 
(Al/ ZrO2) under thermal and mechanical load has been ana-
lyzed and tabulated in Table 14. It shows that central deflection 
is positive for the isotropic material (k = 0 and 100), with top 
and bottom temperature the same at 20°C. For the remaining k 
values and top surface temperatures, it is negative due to more 
expansion in the lower stiffness value along with uniform load 

Fig. 21. Variation of nondimensional deflection (W– c = Wc/h) of 
simply supported FGM thin plate (a/h = 100) by varying top surface 

temperature and power law index

Top surface Temperature in °C

W– c

–

–

–

–

–

–

–

Fig. 22. Variation of nondimensional deflection (W– c = Wc/h) of 
CCCC FGM thin plate (a/h = 100) by varying top surface temperature 

and power law index

Top surface Temperature in °C

W– c

–

–

–

–

–

–

Table 14 
Nondimensional central deflection (W– c = Wc/h) of simply 

supported FGM thin plate (a/h = 100) with different power law 
index under thermal field (different top surface temperatures) and 

mechanical load (q0)

Temp. at top Ceramic k = 1.0 k = 2.0 Metal

20°C
50°C

100°C
200°C
300°C

–0.147
–0.140
–0.619
–1.577
–2.535

–0.037
–0.662
–1.717
–3.827
–5.937

–0.033
–0.696
–1.826
–4.086
–6.346

–0.317
–0.350
–1.445
–3.648
–5.851
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●	 Displacement decreases with the power law index since 
stiffness of constituents is decreasing.

●	 The distributions of shear stresses τxz through the thickness 
are not parabolic for the FGM plate when the k value is 
other than 0 and ∞. This is due to the gradient of materials 
from ceramic to metal ones.

●	 The ceramic-rich FGM plate exhibits higher critical buck-
ling load. The critical buckling load is at its minimum in the 
case of a simply supported plate whereas it is at its maxi-
mum in a clamp-supported plate.

●	 The ceramic-rich FGM plate displays a higher natural fre-
quency parameter than the metal-rich one when the higher 
thickness ratio (thin plate) shows a lower natural frequency 
parameter.

●	 The dimensionless frequency parameter is not changed 
beyond the aspect ratio of 2.5 for the simply supported plate 
while it keeps increasing further with the increasing aspect 
ratio for the clamped support.

●	 It is also to be noted that negative deflection of the plate is 
observed under the thermal field, as high thermal expansion 
with increasing temperature at the top causes the plate to 
deflect in downward direction.

●	 When an FGM plate is subjected to both thermal and 
mechanical load, stresses are changing from compressive 
to tensile stress at the top surface of the composite plate 
and deflection is changing from zero to a positive value at 
the top surface at 20°C.

●	 The above-obtained results on the static and dynamic behav-
ior of FGM plates observed with varying parameters such 
as the power law index, thickness ratio, aspect ratio, tem-
perature and types of loads applied are believed to prove 
useful for designers and researchers who are involved in 
this particular field.
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